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The instantaneous frequency (IF) of a signal is a well-defined

quantity that is widely used for analysing non-stationary

signals. However, often in practice, IF as a function of time can

possess large spikes and negative values. Moreover, IF is very

sensitive to noise, limiting its range of practical application. Due

to these deficiencies, we introduce the concept of moment of

velocity (MoV) for signal analysis. As a case study, we compare

the performance of MoV to a standard Hilbert transform-based

approach for R-wave identification in human electrocardiogram

signals, demonstrating that our approach is more robust to

noise. We examine characteristic heartbeats obtained from the

MIT-BIH Arrhythmia database. A detection error rate of 0.07%,

a positive predictive value of 99.97%, and a sensitivity of

99.95% are achieved against analysis results from the database.
1. Introduction
The concept of the Hilbert transform and instantaneous frequency

(IF), amplitude and phase is used in many scientific applications,

such as communications, seismology, sonar and biomedical

engineering [1,2]. Conceptually, IF is explicated as the frequency

of a sine function that locally fits the signal. The definition of IF

is based on the Hilbert transform and the phase derivative of

the analytic signal [3].

The application of IF is limited for multicomponent signals.

Note that the IF of a signal normally is a fluctuating waveform,

which is sensitive to the amplitudes of the frequency

components. Therefore, the interpretation of spectral information

is often severely constrained by the nonlinear nature of the IF.

In order to overcome this difficulty, a number of useful

quantities are introduced in the literature. To control the impact
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of the amplitudes, the concept of weighted average IF (WAIF) can be used for multicomponent

signals [4]. The intensity and envelope weighted average of IF (IWAIF and EWAIF) are introduced

to increase computational efficiency and accuracy [5]. The main difference between the IWAIF of

a signal and its EWAIF is the choice of weighting function. Both IWAIF and EWAIF are constant

and independent of time. Therefore, they are not appropriate for a signal with varying frequency

such as a chirp. One useful concept for describing the changing spectral structure of a time-

varying signal is its average frequency as a function of time, which arises in time-frequency

distribution theory and is the first conditional moment of frequency or conditional mean

frequency of the distribution [6,7].

In this paper, we suggest the concept of moment of velocity (MoV) as a convenient tool for analysis of

non-stationary signals. As will be seen, MoV is very similar to IF except that it is more robust to noisy

conditions. We show that MoV can suppress the large spikes that often clutter the IF signal. Therefore,

it can provide spectral information of the original signal in a more convenient way. As a case study

application of MoV, we demonstrate its use in electrocardiogram (ECG) signals from the MIT-BIH

Arrhythmia database [8] in order to identify the QRS complex in ECG waveforms.
c.open
sci.6:182001
2. The Hilbert transform
Many approaches have been presented for signal instantaneous parameters estimation such as those

based on Gabor’s method, EMD, the Wigner distribution, etc. In this section, we will briefly review

the Gabor approach that uses the Hilbert transform to produce the IF.

2.1. The Hilbert transform equations
Any one-dimensional integral transform pair may be written as u(t), U(s) [3], where a time (or other

variable) function u(t) is transformed into a complex function of a real or complex variable s. The

transform pair is defined by the following pair of integrals:

U(s) ¼
ð
V

u(t)w(t, s) dt; t [ V (2:1)

and u(t) ¼
ð
G

U(s)C(s, t) ds; s [ G, (2:2)

where the function w(t, s) is the kernel; C(s, t) is the conjugate kernel; U(s) is called the (integral) transform

of u(t); and u(t) is the inverse transform. The Hilbert transform pair is defined by the integrals [9]

U(s) ¼ 1

p

ð1

�1

u(t)
s� t

dt; �1 , t , 1 (2:3)

and u(t) ¼ 1

p

ð1

�1

U(s)

t� s
ds; �1 , t , 1: (2:4)

A comparison with the general forms of (2.1) and (2.2) shows that the Hilbert transform is defined

using the kernel w(t, s) ¼ 1/[p(s 2 t)] and the conjugate kernel C(s, t) ¼ 1/[p(t 2 s)]; that is, the

kernels differ only by sign. The variable s is a time variable. Therefore, the Hilbert transform of a

function of time is another function of a time of different shape. The mathematical definition of the

Hilbert transform is usually written in the form

y(t) ¼ H[x(t)] ¼ 1

p

ðþ1

�1

x(t)

t� t
dt: (2:5)

The Hilbert transform can be considered as a convolution between 1/pt and the signal x(t), i.e. y(t) ¼
x(t) � 1/pt, and the inverse relation is x(t) ¼ y(t) � 21/pt.

2.2. Instantaneous parameters
The complex signal that has an imaginary term equal to the Hilbert transform of the real part is called

the analytic signal z(t), where z(t) ¼ x(t) þ jH[x(t)]. The instantaneous amplitude is defined as the

magnitude of the analytic function or the instantaneous amplitude is absolute value of analytic signal

e(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(t)2 þH[x(t)]2

q
. The IF of a signal is a function of time and also a measure of the frequency
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Figure 1. (a) Angular momentum coordinate system and (b) signal and the Hilbert transform analytic plane for x(t) ¼ sin(t).
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corresponding to a particular time component of the signal. For a real signal, s(t), the instantaneous

frequency, f (t), is defined as

f(t) ¼ 1

2p

df(t)
dt

, (2:6)

where f(t) is the instantaneous phase of analytic signal, and defined by f(t) ¼ arctan(H[x(t)]/x(t)).
Therefore, the IF may be written in following form:

f(t) ¼ 1

2p

d

dt
arctan

H[x(t)]
x(t)

� �� �

¼ x(t)(dH[x(t)]=dt)�H[x(t)](dx(t)=dt)
x(t)2 þH[x(t)]2

:

(2:7)

In order for IF to be meaningful (i.e. always non-negative), the slope of the instantaneous phase must

be always positive. This implies that the time signal must be locally symmetric to the zero mean.

Therefore, as explained in appendix A, any DC offset produces results with negative frequencies that

are difficult to interpret.

3. The moment of velocity
The initial concept of MoV is derived by analogy from angular momentum in the field of particle

dynamics. For an analytic signal, the imaginary part is the Hilbert transform of its real part that is

the original signal. Therefore, the original signal is always orthogonal to the Hilbert transform of

the waveform. Similarly, the angular momentum vector is perpendicular to the position vector. The

angular momentum coordinate system is shown in figure 1a. As an example, a signal and the Hilbert

transform analytic plane are illustrated in figure 1b for the case when x(t) ¼ sin(t).
The angular momentum for a moving particle of unit mass is defined as

L ¼ r� v, (3:1)

where r is the position vector of particle and v is particle velocity. If the vectors r and v are resolved into

components and the cross-product formula is applied we obtain,

L ¼
i j k
rx ry rz
vx vy vz

������
������ ¼ (ryvz � rzvy)iþ (rzvx � rxvz)jþ (rxvy � ryvx)k, (3:2)

where i, j, k, are the standard unit vectors, and the indices represent the x, y and z components of the

vectors. Assuming the particle moves in the x-y plane, the angular momentum is perpendicular to the

x-y plane and equation (3.2) is reduced to only its z components defined by the scalar

Lz ¼ rxvy � ryvx

¼ rx
dry

dt
� ry

drx

dt
:

(3:3)

In terms of signal and the Hilbert transform of the analytic signal, we replace rx, ry and Lz in equation

(3.3) by x(t), H(t) and MoV, respectively. Therefore, MoV is defined as

moment of velocity ¼ x(t)
dH[x(t)]

dt
�H[x(t)]

dx(t)
dt

: (3:4)
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Figure 2. For qualitative comparison of IF and MoV, (a) the characteristic heartbeat, (b) the corresponding instantaneous
frequency obtained from the Hilbert transform, (c) instantaneous frequency obtained from complex wavelet and (d ) MoV,
are shown for a normal patient. On the right (e – h), we add 20 dB SNR Gaussian white noise to the ECG in order to
illustrate the effect of noise.
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4. Case study: moment of velocity in ECG analysis
In this section, as a case study, we illustrate the application of MoV in the analysis of an ECG time series.

To demonstrate the utility of MoV, an ECG time series is selected as it is a well-known class of non-

stationary signal.

The ECG waveform, which reveals the electrical activity of the heart, is a vital physiological

signal [10]. Note that ECG signals are transient, time-varying and non-stationary. The fact that

ECG signals are non-stationary imposes a number of limitations on using basic time and

frequency analyses. Most time and frequency analyses are established on the assumption that

signals are stationary or locally stationary. Therefore, these methods cannot cope with all the

characteristics of ECG signals. Consequently, Hilbert transforms have been found to be useful

for analysis of an ECG signal (e.g. [11 – 15]). The combination of some useful properties of the

Hilbert transform and other mathematical tools is used for detecting the QRS complex in the

study of Benitez et al. [16]. Current methods have varying success in their ability to determine

R peaks. Not only do ECG signals vary in morphology, baseline, amplitude and signal

strength but also they are usually contaminated with noise, and the analysis of an ECG signal

with noise is challenging. We employ the detection of R peaks as a case study to demonstrate

the utility of MoV.
4.1. R-wave detection using the moment of velocity
In an ECG waveform, the interval between cardiac cycles is called the beat-to-beat interval and is used to

explore instantaneous heart rate [17]. Basically, the beat-to-beat interval is labelled using the letters P, Q,

R, S and T for the individual peaks and this is carried out for whole recording [18]. According to the

literature [19,20], the most important information about an ECG signal is contained in the P wave,

QRS complex and T wave. A Hilbert transform-based approach using IF has been proposed to

analyse ECG signals [21]. The fact that the R wave lies in a different frequency range is used as a key

factor for QRS identification.
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Figure 3. (a) Characteristic heartbeat of subject 104 from the MIT-BIH Arrhythmia database [8], (b) corresponding MoV and (c) ECG
with the R wave identified using our approach based on MoV.
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Figure 2 illustrates the ECG, corresponding IF and MoV curves for a patient from the Physionet

database [8]. Here, IF is obtained from two different approaches, the Hilbert transform and the

complex wavelet. The particular complex wavelet method we use is based on the Morse wavelet

[22,23]. Additionally, 20 dB SNR noise is intentionally added to the signal and the corresponding IF

and MoV waveforms are shown. In order to directly compare IF and MoV, no filtering or

pre-processing steps are carried out on the ECG.

Considering figure 2, although the IF waveforms possess the frequency information of the ECG

signal under analysis, the information is cluttered with large spikes and negative values,

particularly in the case of the IF obtained from the Hilbert transform. The influence of DC offset,

riding waves and abrupt changes of signal are the main causes of these large spikes and negative IF

values. The use of MoV can overcome this problem by removing the numerator that can take on

very small values.

As is mentioned in [21], frequency characteristics may be used to identify the QRS complex and the R

wave may be identified by detecting spikes in instantaneous frequency plot. However, this is problematic

as the IF signal is cluttered with too many spikes as can be seen in figure 2b. Considering figure 2b,c,d,

when focusing on higher frequency components or rapidly changing features, the MoV may be a more

practical tool than IF.

The R peaks are distinguishable in the MoV plots. In addition, ECG signals may be contaminated by

different kinds of noise [20], and all ECG analysis applications require the accurate detection of the R

wave in the presence of noise. In figure 2e, we intentionally add 20 dB SNR Gaussian white noise to

the ECG signal to show the deleterious impact on IF. In figure 2f,g, it may be seen from

corresponding IF plots that the effect of noise obscures any signal features including R waves.

Moreover, figure 2h shows the MoV for the same EGC waveforms with 20 dB SNR of added white

Gaussian noise, showing that the R waves are maintained above the noise.

After applying MoV to the ECG signal, a simple filtering and peak detection algorithm is used to

identify the R waves. The peak detection algorithm must be adaptive, because if the amplitude of the

signal varies, the algorithm will miss the R waves that are less than the defined tolerance.

Figures 3 and 4 demonstrate two normalized heartbeat characteristics of 10 s from patients 104 and

122 with manually annotated R waves. The corresponding MoV curves are shown in figures 3b and 4b.

The R waves detected using the algorithm are demonstrated in the lower panels, and they correctly

match the manual annotations.
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Figure 5. The performance of MoV versus the approach of Benitez et al. [16] when the original ECG signal is intentionally
contaminated with different amounts of noise. The number of false negatives and false positives, sensitivity and detection error
rate for both approaches are demonstrated.
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4.2. Performance of MoV in noisy conditions
The detection of ECG signals introduces noise in the channel together with noise due to unwanted

muscle activity. To examine the impact of noise on the performance of MoV, we intentionally add



Table 1. The R wave detected results for each individual subject from the database.

subject
ID*

manual
annotation

MoV
approach

failed
detection FP FN

detection
error rate (%) SE PPV

100 2273 2273 0 0 0 0.00 100 100

101 1865 1864 3 1 2 0.16 99.89 99.95

102 2187 2186 1 0 1 0.04 99.95 100

103 2084 2082 2 0 2 0.09 99.90 100

104 2229 2230 3 2 1 0.13 99.96 99.91

105 2572 2573 5 3 2 0.19 99.92 99.88

106 2027 2027 0 0 0 0.00 100 100

107 2137 2136 3 1 2 0.14 99.91 99.95

109 2532 2531 1 0 1 0.03 99.96 100

111 2124 2125 1 1 0 0.04 100 99.95

112 2539 2539 0 0 0 0.00 100 100

113 1795 1795 2 1 1 0.11 99.94 99.94

114 1879 1878 3 1 2 0.15 99.89 99.95

115 1953 1953 0 0 0 0.00 100 100

116 2412 2411 1 0 1 0.04 99.96 100

117 1535 1534 1 0 1 0.06 99.93 100

118 2278 2279 1 1 0 0.04 100 99.96

119 1987 1987 0 0 0 0.00 100 100

121 1863 1861 2 0 2 0.10 99.89 100

122 2476 2475 1 0 1 0.04 99.96 100

123 1518 1518 2 1 1 0.13 99.93 99.93

124 1619 1619 0 0 0 0.00 100 100

average 0.07 99.95 99.97

*Note that we have only used the subjects considered in Benitez’s study in order to make a direct comparison.
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different amounts of Gaussian white noise to the ECG signal of subject no. 100 from the MIT-BIH

Arrhythmia database [8], and evaluate both MoV and the approach of Benitez et al. [16]. The

approach of Benitez is a Hilbert transform-based method; and so we select this for purposes of

comparison. It applies a useful Hilbert transform property that takes a zero crossing between

consecutive positive and negative inflection points in the original waveform and represents it as a

peak in its Hilbert transform conjugate. Therefore, in order to transform R peaks to zero crossings, the

algorithm first obtains the derivative of the ECG signal. Then it applies the Hilbert transform to

obtain peaks from zero crossing points. Finally, it uses instantaneous amplitude of the analytic signal

to highlight R waves. In order to obtain a fair comparison, the same peak detection algorithm is

applied to both approaches in a similar way. Performance is then assessed by comparison with

manual annotations.

A false negative (FN) occurs when a true QRS complex identified in the corresponding manual

annotation file is missed. Moreover, a false QRS detection is denoted as a false positive (FP).

Sensitivity (SE) and detection error rate, respectively, are calculated using the following equations:

sensitivity (SE) ¼ TP

TPþ FN
� 100, (4:1)

where TP denotes the numbers of true positive detections, and

detection error rate ¼ FPþ FN

number of heartbeats
� 100: (4:2)



Table 2. The R-wave identification accuracy for each individual subject is calculated using the MoV approach and the Benitez
approach [16].

subject ID SE (%) PPV (%)

MoV approach the Benitez approach [16] MoV approach the Benitez approach [16]

100 100 100 100 100

101 99.89 99.95 99.95 99.84

102 99.95 99.91 100 99.95

103 99.9 100 100 100

104 99.96 99.78 99.91 99.46

105 99.92 99.88 99.88 99.73

106 100 100 100 99.95

107 99.91 99.67 99.95 99.95

109 99.96 99.72 100 99.96

111 100 99.95 99.95 99.95

112 100 100 100 100

113 99.94 100 99.94 100

114 99.89 100 99.95 99.95

115 100 100 100 100

116 99.96 100 100 100

117 99.93 99.93 100 99.93

118 100 100 99.96 99.96

119 100 100 100 99.95

121 99.89 99.95 100 100

122 99.96 100 100 100

123 99.93 100 99.93 99.93

124 100 100 100 100

average 99.95 99.94 99.97 99.93

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:182001
8

The performance of MoV versus the approach of Benitez et al. [16] is evaluated in figure 5 that shows

MoV is more reliable than Benitez’s approach in noisy conditions. In particular, the detection error rate of

MoV is considerably lower for SNR levels worse than 18 dB.

4.3. Results
The results for 22 subjects obtained from the MIT-BIH Arrhythmia database are illustrated in table 1. The

performance of MoV approach against the approach of Benitez et al. [16] is evaluated in table 2 as a

number of other approaches have also been compared to the study by Benitez et al. [16]. Note that no

noise is added in this experiment. Here, positive predictive values (PPV) respectively are calculated

using the following equation,

PPV ¼ TP

TPþ FP
� 100: (4:3)

5. Conclusion
MoV is introduced as a tool for the analysis of non-stationary signals. The approach is based on IF and

yet is more robust to noisy conditions. As a case example, we demonstrate that for a noisy ECG signal, the

loss in signal features in an IF plot is dramatic. Moreover, using the MIT-BIH Arrhythmia database, the



royalsocietypub
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approach performed successfully with accurate R-wave identification, even when the original signal is

contaminated with noise. The comparison between MoV and a different Hilbert transform-based

approach indicates the advantage of MoV in the case of R-wave identification in noisy conditions. Our

MoV approach demonstrates reduced error especially for 18 dB SNR or less. The result also suggests

that MoV may be considered as an alternative method to IF or other instantaneous parameters in

other non-stationary applications, particularly in noisy conditions.
lishing.org/journal/rsos
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Appendix A
Negative values may appear in the IF waveforms, which is meaningless physically. Note that DC offsets,

riding waves and abrupt changes in the signal under analysis can be the main cause of negative IF.

Figure 6 shows how DC offset may potentially influence the sign of IF. Figure 6a demonstrates three

signals with different DC terms, s(t) ¼ sin(2pt), sin(2pt) þ 0.5 and sin(2pt) þ 2. In figure 6b, the

trajectory of the signals versus their Hilbert transforms are shown. The trajectory for all the signals is

a circle with the centres shifted by different amounts. Finally, the corresponding instantaneous phase

and frequency diagrams are shown in figure 6c,d, respectively.
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Figure 6. Signals with different DC term and their instantaneous parameters. (a) Signals, (b) Hilbert diagram, (c) instantaneous
phase and (d ) instantaneous frequency.
A.1. No DC offset
For the case of zero DC offset, s(t) ¼ sin(2t), the trajectory of signal and Hilbert transform is a circle with

its centre exactly located on the origin; see blue circle in figure 6b. Therefore, a point moving on the circle

https://github.com/Dorraki/Moment-of-Velocity.git
https://github.com/Dorraki/Moment-of-Velocity.git
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with a constant angular speed, v, possesses a linear instantaneous phase with constant slope; see blue

line in figure 6c. The corresponding IF that is a straight line is shown in figure 6d.

A.2. Low DC offset
In the presence of a small DC offset less than the signal amplitude, s(t) ¼ sin(2pt) þ 0.5, the origin is still

located in the Hilbert transform circle but is not located exactly on the centre of the circle; see red circle in

figure 6b. Thus, for a point travelling on the circle with constant v, the phase slope is time-varying. It may

be seen that from the blue curve in figure 6c that the slope is always positive, therefore, the corresponding

IF possesses some positive peaks in the location of major phase variations.

A.3. High DC offset
In this case, s(t) ¼ sin(2pt) þ 2, the origin is located out of the Hilbert circle; see yellow circle in figure 6b.

Therefore, for a moving point with constant v, the instantaneous phase possesses negative slope in each

period. These negative slopes in the instantaneous phase diagram cause negative values in the

corresponding IF, see yellow curve in figure 6d.
sci.6:1820
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