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Many physical systems can be adequately modelled using a
second-order approximation. Thus, the problem of system
identification often reduces to the problem of estimating the
position of a single pair of complex–conjugate poles. This
paper presents a convenient but approximate technique for
the estimation of the position of a single pair of complex–
conjugate poles, using the moment of velocity (MoV). The
MoV is a Hilbert transform based signal processing tool that
addresses the shortcomings of instantaneous frequency.
We demonstrate that the MoV can be employed for
parameter identification of a dynamical system. We estimate
the damping coefficient and oscillation frequency via MoV of
the impulse response.
1. Introduction
In many real-world problems, lack of a dynamic representation of
the system under analysis is a major difficulty. Therefore, system
identification can be considered as a helpful approach to provide
a dynamical model for the system. In order to obtain the model,
one may stimulate the system with a specific signal and use the
output for deriving a state space model in the time domain or
alternatively a transfer function model in the frequency domain.
In previous studies, some specific signals such as impulse [1], step
[2,3] and ramp [4] inputs are employed to explore the response of
dynamical systems to external stimuli.

Parameter identification is a longstanding theme of system
identification [5,6]. The field of parameter identification has
emerged as a significant area of engineering, and there exists a
large number of studies. Some useful tools such as integral
equations [7], neural networks [8], least-squares approaches [9],
Newton iteration [10] and genetic algorithms [11] have been
reported to assist with the parameter identification problem.
The application of the Hilbert transform for parameter
identification has been widely investigated over the last few
decades. A number of these previous studies are briefly
summarized in the following.
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In general, the methods take advantage of instantaneous frequency (IF) and instantaneous amplitude

(IA) of the impulse response to identify the damping coefficient and oscillation frequency separately, and
in these methods the IF and IA are obtained from the Hilbert transform. In one of the early studies, two
points on impulse response curve whose IA is reduced by −8.7 dB are used to estimate damping
coefficient and oscillation frequency [12]. In another study, both instantaneous phase and amplitude is
employed to estimate the parameters [13]. To reduce the influence of noise, the previous method is
modified by employing a least-squares regression on the IA for a truncated signal [14].

As an application in mechanical engineering, a time domain non-parametric method for nonlinear
vibration system identification based on the Hilbert transform has been introduced [15]. Using this
approach, both the oscillation frequency and also the real nonlinear elastic force characteristics can be
extracted. Based on the Hilbert–Huang spectral analysis, a method was proposed to identify multi-
degree-of-freedom linear systems using the measured free vibration signal [16]. The approach uses a
linear least-square fit algorithm to identify the oscillation frequency and damping coefficient from the
IA and phase.

A parameter identification approach based on empirical mode decomposition, the random decrement
technique, and the Hilbert–Huang transform was also proposed [17]. The study used ambient wind
vibration data in order to estimate the damping coefficient and oscillation frequency in tall buildings.
Moreover, an approach for parameter identification in nonlinear vibrating systems has been presented
based on measured signals for free and forced vibration regimes [18]. That experimental method
considered the application of the Hilbert transform for identification of nonlinearities in stiffness and
damping characteristics of a mechanical vibrating system.

In this paper, we propose a new moment of velocity (MoV) approach to address the problem of
parameter identification. In particular, we show that the MoV is a convenient but approximate
approach for the estimation of the position of a complex–conjugate pair of poles on the s plane.
Moment of velocity as a signal processing tool, is considered a reliable alternative to IF as it
suppresses large spikes that often clutter the IF signal [19]. In addition to IF, IA is incorporated in
MoV. For illustrative purposes, we apply MoV to the impulse response of a dynamical system that
behaves as a pure exponential. The signal can be unwrapped using the ln( · ) function, and following
a linear least-square fit procedure, the damped parameters may be obtained simultaneously from
the slope and y-intercept of the fitted line. Moreover, in order to investigate the impact of noise on the
estimated parameters, a noise experiment is conducted for various levels of SNR. The results show
that errors in the estimated parameters are tolerable for SNRs of 30 dB or better.
2. The moment of velocity
In mathematics and signal processing, the Hilbert transform is a specific linear operator that obtains a
real variable function y(t) and returns another real variable function H[y(t)]. The mathematical
definition of the Hilbert transform is written usually in the form [20–22]:

H[y(t)] ¼ 1
p

ðþ1

�1

y(t)
t� t

dt: (2:1)

The Hilbert transform also can be defined as a convolution between the signal and 1/πt:

H[y(t)] ¼ y(t)� 1
pt

: (2:2)

The IA is defined as the magnitude or absolute value of the analytic function, i.e. z(t) = y(t) + iH[y(t)].
Therefore, the IA is given by

e(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y(t)2 þH[y(t)]2

q
: (2:3)

The IF of a signal is a function of time and also a measure of the frequency corresponding to a
particular time component of the signal. For a real signal, y(t), the IF, f (t), is defined as

f(t) ¼ 1
2p

df(t)
dt

, (2:4)
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where ϕ(t) is the instantaneous phase of analytic signal z(t). Therefore, the IF may be written in
following form:

f(t) ¼ 1
2p

d
dt

arctan
H[y(t)]
y(t)

� �� �

¼ y(t)(dH[y(t)]=dt)�H[y(t)](dy(t)=dt)
y(t)2 þH[y(t)]2

:

(2:5)

Although IF is widely used in signal processing, in many cases using IF as a signal processing tool is
challenging to interpret. Also, IF is sensitive to noise because in the formula for calculating IF the
numerator is divided by a dominator that can be very small, and consequently IF as a function of
time can become cluttered with spikes.

In order to overcome the deficiencies, the MoV is introduced [19]. The MoV is very similar to IF except
that the denominator of the instantaneous frequency equation is removed. Therefore, this significantly
avoids singularities in the phase space and clutter in the f(t) waveform. The MoV is defined as [19]

moment of velocity ¼ y(t)
dH[y(t)]

dt
�H[y(t)]

dy(t)
dt

: (2:6)
sci.6:190671
3. The impulse response of a second-order system
In control theory, physical systems are generally described mathematically in terms of linear systems of
ordinary differential equations [23]. When these equations are transformed using integral transforms,
such as the Laplace or Fourier, then physical systems are modelled using finite rational polynomials in
an auxiliary variable, s = jω. Therefore, the transfer function is a rational function in the complex
variable, that is

Transfer function ¼ output(s)
input(s)

¼ P(s)
Q(s)

: (3:1)

The zeros of the polynomial, Q(s), are called poles and correspond to responses that have finite output
for zero input. It is widespread for one mode to dominate the response of the whole system. It is also
common for this mode to be of a damped oscillatory type, corresponding to a single pair of complex–
conjugate poles. This can occur whenever the potential energy function of the system possesses a local
minimum [24]. In this case, one can approximate a large complicated system, with many poles and
zeros, by a simple second-order system with a single pair of complex–conjugate poles—this is what is
referred to as a second-order approximation. Various mechanical or electrical systems may be
realistically modelled using a second-order approximation. Thus,

Transfer function � a2s2 þ a1sþ a0
s2 þ 2asþ v2

0
: (3:2)

In order to model the behaviour of a real physical system, using an approximate second-order model,
it is necessary to estimate the position of the pole pair. This can potentially be carried out in the frequency
domain, by stimulating the system with a sinusoidal source and then measuring the magnitude and
phase of the response at different frequencies; however, this is often not practical. There are situations
when the only practical sources are step functions, u(t), or impulses δ(t). Therefore, we may stimulate
the system with steps or impulses and then sample the response in the time domain. The impulse
response of a second-order system generally is written as

y(t) ¼ A e�at cos (vdt)þ B e�at sin (vdt), (3:3)

where v2
d ¼ v2

0 � a2.
The problemof plant parameter identification then becomes equivalent to asking:Howdoes one estimate

the position of the pair of complex–conjugate poles if the only data at our disposal is a set of time-domain
samples of the response of the system to steps or impulses? As an illustration, consider a bell struck with
a hammer and the sound is recorded as it gradually decays. The estimation of the damped frequency of
oscillation ωd and the damping coefficient α using only the data from the sound recording is desirable.

Considering the distribution of the errors of measurement, the maximum likelihood method can
potentially be applied to estimate the parameters ωd and α. If the errors are known to be the result of
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a large number of uncorrelated random effects, then one can potentially apply the Central Limit Theorem

and assume the errors to have a Gaussian distribution. Thus, the problem of plant identification reduces
to a nonlinear least-squares estimation problem [25]. The difficulty with this approach is that the resulting
equations are nonlinear and need to be solved iteratively, using a numerical method such as gradient
descent. A further weakness of this approach is that it is an exact solution to an approximation of the
real problem. Therefore, for certain types of problems, it is reasonable to have a ready but
approximate solution to the approximate, second-order, problem—the MoV method provides this, as
described in the following.
 .org/journal/rsos

R.Soc.open
sci.6:190671
4. Parameter identification using MoV
The impulse response described in equation (3.3) is equivalent to

y(t) ¼ C e�at cos (vdt�F), (4:1)

where C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
, cos (F) ¼ A=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
and sin (F) ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
. The constant C can be

determined using initial conditions when t equals zero in the impulse response. This type of function
will apply whenever the input to the system is zero. If the input is a finite sum of step and impulse
functions, then the input will be zero for most of the time. There will be abrupt changes in C and Φ
but the parameters, α and ωd will be constant as long as the structure of the plant is maintained.

Bedrosian’s theorem states that the Hilbert transform of the product of a low-pass and a high-pass
signal with non-overlapping spectra is given by the product of the low-pass signal and the Hilbert
transform of the high-pass signal [21]. Appling Bedrosian’s theorem and the shifting property to
equation (4.1) implies that the Hilbert transform of y(t) is

H[y(t)] ¼ C e�at sin (vdt�F): (4:2)

Considering equation (2.6), the MoV of y(t) is defined as

MoV[y(t)] ¼ 1
2p

d
dt

arctan
H[y(t)]
y(t)

� �� �
� (y(t)2 þH[y(t)]2),

¼ 1
2p

C2 e�2at � d
dt

(vdt�F),

¼ 1
2p

C2vd e�2at:

(4:3)

This signal is a pure exponential function and can essentially be unwrapped using the ln( · ) function.
Thus,

ln (MoV[y(t)]) ¼ �2atþ ln
C2

2p
vd

� �
: (4:4)

Therefore, the damped oscillation frequency ωd can be obtained from the y-intercept and the damping
coefficient α may be obtained from the slope of equation (4.4). To achieve this, a linear least-square fit
procedure is used to estimate the slope and y-intercept. The coefficients of the fitted line with
equation of p(x) = p1x + p0 is used for estimating of the parameters:

a ¼ � p1
2

(4:5)

and

vd ¼ 2p e p0

C2 : (4:6)

This allows us to directly estimate the parameters α and ωd. It may be seen that the use of the
difference operation has removed all reference to Φ.
5. Numerical results and noise analysis
To examine our approach, a second-order systemusing knowndamped parameters is simulated. In addition,
we assess the performance of proposed parameter approach identification on two real-world problems.
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Figure 1. Parameter identification using MoV. (a) The impulse response of a second-order system with damping coefficient α =
0.05 and oscillation frequency of ωd = 1. (b) The MoV of the impulse response. (c) Taking logarithm of MoV of impulse response and
fitting a line on output signal. (d ) Adding 25 dB SNR noise to the impulse response. (e) The moment of velocity of the noisy impulse
response. ( f ) Taking logarithm of MoV of noisy impulse response and fitting a line on the output signal.
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5.1. Simulated system
First, a second-order system is simulated. The quality factor of the system is Q = 10 and so the theoretical
value of the damping coefficient is α = 0.05. Moreover, the characteristic frequency of the simulated plant
is ωd = 1.0. After applying the MoV approach, the estimated damping coefficient is obtained αest = 0.0504
and the estimated oscillation frequency is obtained ωest = 1.0009.

The system responses usually are contaminated with noise introduced by the channel and sampling
deficiencies. The noise may exert a considerable impact on the outcome of the parameter identification
approach. A comprehensive noise analysis is presented in [19] for MoV and other Hilbert-based tools
such as IF that explains the relative robustness of MoV in noisy conditions. To assess the performance
of the MoV parameter identification approach in noisy conditions, we intentionally add 25 dB SNR
noise to the impulse response. The estimated damping coefficient in noisy conditions is obtained
αest = 0.0580 and the estimated oscillation frequency is obtained ωest = 1.0090. The procedure is shown
in figure 1. Our simulations suggest that MoV is a convenient technique for the estimation of the
position of a single pair of complex–conjugate poles even under noisy conditions. In order to evaluate
the approach under noisy conditions, the percentage of errors in αest and also ωest versus SNR is
demonstrated in figure 2. As expected, it can be seen that an increase in SNR results in reduced error.
5.2. Real-world problems
To assess the proposed parameter identification method for real-world problems, two time series related
to a free vibration test and an industrial production response after the 1990 earthquake are employed.

A free vibration test of a submerged pipeline was established by giving an initial displacement in the
middle of the pipeline, and the response was recorded over time [26]. The damping coefficient α = 0.4824
and the damped oscillation frequency ωd = 20.1062 are determined from the experiment. The time series
is shown in figure 3a, and the corresponding MoV and fitted line are also illustrated in figure 3b,c. The
estimated damping coefficient for this time series is obtained as αest = 0.4725 and the estimated oscillation
frequency is obtained ωest = 20.3184.
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Figure 2. Absolute values of percentage error in αest and ωest versus SNR.
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Figure 3. Assessing the MoV approach for real-world problems. (a) The response corresponding to a free vibration test with
damping coefficient α = 0.4824 and oscillation frequency of ωd = 20.1062. (b) The moment of velocity of the free vibration
response. (c) Taking logarithm of MoV and fitting a line on output signal. (d ) An industrial production time series with
damping coefficient α = 0.0077 and oscillation frequency of ωd = 0.1387. (e) The MoV of the industrial production time series.
( f ) Taking logarithm of MoV and fitting a line on the output signal.
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In the same way, another dynamic response related to an industrial production response after the
1990 earthquake is used for assessing the MoV parameter identification approach. The oscillatory
behaviour of industrial production is shown in figure 3d. The damping coefficient α = 0.0077 and the



Table 1. The experimental and estimated damping parameters using our proposed MoV approach and a traditional method [14]
for free vibration test [26] and industrial production [27] problems.

parameters

free vibration industrial production

experimental

[26] MoV

traditional

[14]

experimental

[27] MoV

traditional

[14]

α 0.4824 0.4725 0.4618 0.0077 0.0061 0.0057

err ¼ 2:05% err ¼ 2:31% err ¼ 18:0328% err ¼ 26:3158%

ωd 20.1062 20.3184 19.8520 0.1387 0.1770 0.1038

err ¼ 1:04% err ¼ 1:28% err ¼ 21:6384% err ¼ 33:6224%
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damped oscillation frequency ωd = 0.1387 are obtained [27]. Applying the MoV method to the time series
provides the estimated damping coefficient αest = 0.0061 and the estimated oscillation frequency ωest =
0.1770. The MoV and the corresponding fitted line are shown in figure 3e,f .

We also evaluate both MoV and the approach of Agneni et al. [14] as a well-known traditional
parameter identification method and modified version of [12,13]. The dynamic properties of the
mechanical and economic systems are listed in table 1, which were obtained through experimental
testing and parameter estimation. The performance of MoV versus the method of Agneni et al. is
evaluated in the table 1 that shows MoV is more reliable than Agneni’s approach particularly for the
industrial production case.
6. Conclusion
A formulation based on the MoV is presented for convenient system parameter identification. Our
approach has potential application in continuous real time approximation such as in monitoring and
tracking control. The simulations suggest that MoV is a convenient method for estimating the position
of a single pair complex–conjugate poles. Errors in the estimated parameters are tolerable for SNRs of
30 dB or better. A limitation of the method is that errors become large in the 0 dB to 30 dB SNR range.
It may be of interest for future studies to investigate this form of parameter identification a high noise
levels, after first adopting a signal denoising algorithm.

Data accessibility. We have made the MATLAB code for parameter identification openly available on Github at https://
github.com/Dorraki/Parameter-Identification-Using-MoV.
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