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Suprathreshold stochastic resonance (SSR) is a distinct form
of stochastic resonance, which occurs in multilevel parallel
threshold arrays with no requirements on signal strength.
In the generic SSR model, an optimal weighted decoding
scheme shows its superiority in minimizing the mean
square error (MSE). In this study, we extend the proposed
optimal weighted decoding scheme to more general input
characteristics by combining a Kalman filter and a least
mean square (LMS) recursive algorithm, wherein the weighted
coefficients can be adaptively adjusted so as to minimize
the MSE without complete knowledge of input statistics. We
demonstrate that the optimal weighted decoding scheme based
on the Kalman–LMS recursive algorithm is able to robustly
decode the outputs from the system in which SSR is observed,
even for complex situations where the signal and noise vary
over time.

1. Introduction
Stochastic resonance in multi-threshold systems was initially
investigated in [1], where the input signal is subthreshold. More
interestingly, the concept of suprathreshold stochastic resonance
(SSR) was also introduced in multi-threshold systems [2–4]. Note
that SSR is an important variation of stochastic resonance [5,
6], where the output is counterintuitively enhanced by noise,
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operating with signals of arbitrary magnitude, not restricted to weak or subthreshold signals. Since its
introduction, SSR has received considerable attention in diverse areas concerned with the transmission of
signals, and has also been considered in the design of cochlear implants [7], analogue-to-digital converter
circuits [8–10], nonlinear detectors [11,12], digital accelerometers [13] and stochastic quantizers [14]. In
the seminal works of Stocks and co-workers [2–4], the nonlinearity in each element of the model is
assumed to be a binary quantizer. Thus, such threshold systems can be described as stochastic signal
quantizers that have been analysed in terms of lossy source coding and quantization theory [14–16].
Following the works in [14–16], we investigated the decoding scheme of quantized signal, named as
optimal weighted decoding, by using weighted coefficients [17,18]. Our results show that under certain
conditions the performance of the optimally weighted quantizer response is superior to that of the
original unweighted arrays [17,18].

However, the previous studies [17,18] have been undertaken assuming that the input characteristics
are statistically stationary, and the decoding schemes are based on a priori knowledge of the inputs.
Specifically, the noise is modelled as white Gaussian distributed [17,18]. However, in practical
applications, the statistical characteristics of the input signals are generally unknown or are often varied
with time. Furthermore, noise in real systems is coloured, and the idealization of white noise is never
exactly realized [5,19]. These constraints severely limit the decoding operation based on performance
enhancement of real systems. A highly successful solution to this more difficult problem is found in
adaptive filtering, which is a powerful approach with a wide variety of engineering applications [20–24].
Adaptive filtering has the ability to adjust system parameters automatically with no a priori knowledge
of inputs, and allows processing the case wherein the properties of inputs are unknown, non-stationary
or time variable [25–27]. Interestingly, a toy model has been established that illustrates a process of
optimization that works without a priori knowledge of the input statistical distribution—so we do have
a precedent to show mathematical tractability of this class of problem [28].

Specifically, the Kalman filter and the least mean square (LMS) algorithm are two of the most
popular adaptive estimation methods in adaptive signal processing, with the former as a realization
of the optimal Bayesian estimator and the latter as a recursive solution to the optimal Wiener filtering
problem [27]. Recently, Mandic et al. subtly developed a joint perspective on these two algorithms,
and proposed the Kalman–LMS recursive algorithm that permits the implementation of Kalman filters
without any notion of Bayesian statistics [29].

The purpose of this paper is to extend optimal-weighted decoding to more general input
characteristics by using the Kalman–LMS recursive algorithm, wherein the weighting coefficients can
be adaptively adjusted based on real-time measurements of the input signals. For the typical SSR model
of threshold arrays, we find this Kalman–LMS recursive algorithm can deal with not only the simple
situation of stationary signals, but also more complicated cases of non-stationary signals and coloured
noise. The decoding performance of the mean square error (MSE) distortion obtained by the Kalman–
LMS recursive algorithm illustrates interesting progress in optimal weighted SSR that may be of benefit
in adaptive signal processing algorithms applied to nonlinear noisy systems.

2. Model and method
2.1. Model
We consider an adaptively weighted summing array of N noisy nonlinear elements, as shown in figure 1.
All elements receive the same input signal xk representing the kth element in the time series, which is
assumed to be a deterministic signal or a stationary stochastic process [29]. Each element of the array
is endowed with the same input–output characteristic, modelled by the static (memoryless) function g.
The i-th nonlinear element is subject to independent and identically distributed (i.i.d.) additive noise
component ηi,k with standard deviation ση, which is independent of the signal xk. Accordingly, each
element produces the output signal yi,k = g[xk + ηi,k]. The output signal yi,k is multiplied by the weighting
coefficient wi,k (wi,k ∈ �). wi,k are adjusted by the Kalman–LMS recursive algorithm aiming to minimize
the performance metric of MSE. All weighted outputs are summed to give the overall output of array
ŷk = ∑N

i=1 wi,k yi,k.
The Kalman–LMS recursive algorithm combines Kalman filtering with LMS-type algorithms to

control both the direction and magnitude of adaptation steps along the shortest path so as to achieve
the global minimum of MSE [29]. Our purpose is to adaptively adjust the weights by this algorithm to
make the decoding output ŷk approximate the input xk, i.e. minimizing the MSE distortion.
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Figure 1. Adaptivelyweighted summing array ofN noisy nonlinear elements, g(·). Each element operates on a common signal xk subject
to additive noise ηi,k at time k. The output of each individual element yi,k is multiplied by the weighting coefficientwi,k , and the overall
output ŷk =

∑N
i=1 wi,kyi,k .

2.2. Method
To begin, we introduce a column vector yk = [y1,k, y2,k, . . . , yN,k]� to represent the N output
signals of nonlinear elements for each random input xk. We denote a vector of weights as wk =
[w1,k, w2,k, . . . , wN,k]� and the optimal weights as wo

k that corresponds to the minimum of MSE.

2.2.1. Performance evaluation criteria

Ideally, we wish to achieve

xk = y�
k wo

k , (2.1)

where the aim is to estimate the optimal weight vector wo
k for minimizing the MSE distortion. It can be

fixed, i.e. wo
k = wo, or time varying as in equation (2.1) [29]. For the stationary input signal xk and noise

ηk, equation (2.1) can be written as:

xk = y�
k wo. (2.2)

When the inverse matrix (ykyT
k )−1 exists, the Wiener optimal weight vector wo is given by wo =

(ykyT
k )−1ykxk [16,21]. For the stationary input xk, the memoryless nonlinearity g and the stationary noise

ηk, we assume the optimal weight vector wo
k converges to the Wiener solution of wo. We desire to estimate

the optimal weight vector wo recursively, based on the existing weight vector wk−1, the input signal xk
and output signals of nonlinear elements yk, i.e. ŵo = wk = f (wk−1, xk, yk). Then the decoding output is
ŷk = y�

k wk−1. The error between the input xk, and the decoding output ŷk is given by

ek = xk − ŷk = xk − y�
k wk−1. (2.3)

Similarly, the weight error vector w̃k between the weight vector estimate wk and the optimal weight
vector wo is written by [29]

w̃k = wo − wk (2.4)

and its contribution to the error ek is given by

ek = y�
k w̃k−1. (2.5)

The decoding performance metric of MSE represents the power of the output error ek, and is
expressed as

MSE = E[e2
k], (2.6)

where the statistical expectation E(·) introduced in equation (2.6) is defined in terms of the joint
probability of the output yk and the weight error vector w̃k. The theoretical calculation of MSE is
difficult, and we will numerically obtain the MSE distortion for a sufficiently large observation time
in the following experiments.

http://rsos.royalsocietypublishing.org/
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For the memoryless function g, we assume the output yk at the recursion step k is not related to the

weight error vector w̃k−1 at the time step k − 1. Thus, the instantaneous time-varying MSE is given in [29]

ςk = E[(y�
k w̃k−1)2] = y�

k Pk−1yk, (2.7)

where Pk−1 = E[w̃k−1w̃�
k−1] is the symmetric and positive semi-definite weight error covariance matrix,

and the statistical expectation E(·) is calculated in terms of the probability density of w̃k−1. In [29],
another performance evaluating metric—the mean square deviation Jk—is introduced, which represents
the power of the weight error vector w̃k and is given by

Jk = E[w̃�
k w̃k] = tr(Pk). (2.8)

The mean square deviation Jk is related to the instantaneous MSE in equation (2.7) through the weight
error covariance matrix Pk. Therefore, minimizing Jk is equivalent to minimizing the instantaneous
MSE [29]. Based on equation (2.8), we will deduce the weight vector estimate wk at each recursion step k.

2.2.2. Optimal learning gain

The LMS algorithm uses the stochastic gradient descent and uses a recursive estimation of the optimal
weight vector, wo in equation (2.2), in the form wk = wk−1 − μk∇wE[e2

k], where μk is a step size and ∇w

is a gradient vector [29]. Based on the instantaneous estimate E[e2
k] ≈ e2

k , the LMS solution is given in [21]

wk = wk−1 + μkykek. (2.9)

Note that the second term in equation (2.9) the weight update, μkykek, has the same direction as the
vector yk. It turns out that the gradient descent performs locally optimal steps but has no means to
follow the globally optimal shortest path to the solution wo. Therefore, it is necessary to control both
the direction and magnitude of the adaptive steps μk to follow the shortest, optimal path to wo [29]. In
this way, Mandic et al. introduce a positive definite learning gain matrix Gk, in the context of Kalman
filters, to replace the scalar step size μk so as to control both the direction and magnitude of the gradient
descent [29]. Thus, the weight update recursion in equation (2.9) generalizes to

wk = wk−1 + Gkykek = wk−1 + gkek, (2.10)

where the gain vector gk = Gkyk [29].
Subtracting wo from both sides of equation (2.10) and replacing the error with equation (2.5), we can

rewrite equation (2.10) in terms of the weight error vector as [29]

w̃k = w̃k−1 − gky�
k w̃k−1. (2.11)

Utilizing equation (2.11), we can obtain the recursion for the weight error covariance matrix Pk as [29]

Pk = E[w̃kw̃�
k ] = Pk−1 − (Pk−1ykg�

k + gky�
k Pk−1) + gkg�

k y�
k Pk−1yk. (2.12)

Substituting equation (2.12) into equation (2.8), the mean square deviation is obtained as [29]

Jk = Jk−1 − 2g�
k Pk−1yk+ ‖ gk ‖2 y�

k Pk−1yk. (2.13)

This derivation of equation (2.13) uses the facts that tr(Pk−1ykg�
k ) = tr(gky�

k Pk−1) = g�
k Pk−1yk and

tr(gkg�
k ) = g�

k gk =‖ gk ‖2.
Based on equation (2.13), the optimal learning gain vector gk can be obtained by differentiating Jk with

respect to gk, setting to zero and solving for gk, to give [29]

gk = Pk−1yk

y�
k Pk−1yk

. (2.14)

This optimal gain vector is precisely the Kalman gain [22]. Substituting equation (2.14) into
equation (2.12), the update for Pk is then obtained

Pk = Pk−1 − gky�
k Pk−1. (2.15)

http://rsos.royalsocietypublishing.org/
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2.2.3. Kalman–LMS recursive algorithm

From equations (2.10), (2.14) and (2.15), Kalman–LMS recursive algorithm of estimating the optimal
weights wo is outlined as:

At each instant k > 0, based on measurements (xk, yk)

(1) compute the optimal learning gain (Kalman gain):

gk = Pk−1yk

(y�
k Pk−1yk + δ)

,

where the constant δ > 0 is an initial disturbance for preventing from recursion stop. Without
loss of generality, the symmetric and positive semi-definite matrix P0 is chosen as unit matrix.

(2) update the weight vector estimate:

wk = wk−1 + gk(xk − y�
k wk−1).

(3) update the weight error covariance matrix:

Pk = Pk−1 − gky�
k Pk−1.

The above operating process exhibits that Kalman–LMS recursive algorithm iteratively updates
the weights after each sample, which requires little or no a priori knowledge of the signal or noise
characteristics. A proof of convergence of the mean square deviation for stationary inputs is provided
in appendix A. In the meanwhile, the fastest convergence time corresponding to the array of N static
nonlinear elements in figure 1 is also analysed. Our analysis shows that the fastest convergence time is
about N times sampling time �t. It means that, for a given sampling time �t, the larger the parallel array
size N is, the longer the convergent time is. This argument will be shown in the following experiments.

3. Results
It is interesting to note that the above-mentioned decoding scheme using the Kalman–LMS recursive
algorithm can be applied to an array composed of arbitrary nonlinear elements. Here, we consider the
static function g of figure 1 as Heaviside function that is a typical threshold element [2,3]. The individual
output yi,k is given by the response function

yi,k =
{

1 xk + ηi,k > θi,

0 otherwise,
(3.1)

where θi (i = 1, 2, . . . , N) is the threshold level for each Heaviside function g.
In the following, we will explore two cases of input characteristics, i.e. stationary and non-stationary,

to examine the MSE distortion performance of optimal weighted decoding scheme based on the Kalman–
LMS recursive algorithm. In addition, for the noise components ηi,k in figure 1, white Gaussian and
coloured noises are considered, respectively.

3.1. Gaussian noise with identical thresholds
We first consider the case where all threshold levels in equation (3.1) are identical, i.e. θi = θ , and the
noises ηi,k are Gaussian distributed.

It is well known that the stationary assumption of inputs is ideal and is inadequate for dealing with
situations in which non-stationarity of the signal and or noise is intrinsic to the problem. The ability to
adapt in a non-stationary environment is an important function of an adaptive algorithm. Specifically in a
non-stationary environment it can offer a tracking capability for the time-varying input signal, provided
that the variations are sufficiently slow [24].

We now consider the case where the input xk is non-stationary stochastic signal. For instance, xk is
Gaussian distributed, but the standard deviation σx(t) is time varying. Here, the signal standard deviation
is chosen as σx(t) = √

2 sin(2π ft) with the modulation frequency f , and the sampling time �t = 10−3 s.
Of course, we can have other forms of σx(t) provided that it is slow time-varying. In appendix A, we
investigate the tracking capability of the proposed Kalman–LMS algorithm, and an intrinsic time scale
of N�t is approximately provided for analysing the temporal dynamics of the adaptive process. For
different time variations of the non-stationary input and the array size N = 63, a performance comparison

http://rsos.royalsocietypublishing.org/
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Figure 2. Comparison of mean square deviation for non-stationary inputs with various time variations. The non-stationary input is
Gaussian distributed with standard deviation σx (t)= sin(2π ft) (f = 0.1 Hz, 1 Hz and 100 Hz). Here, the array size N = 63, the noise
standard deviationση = 1 and sampling time�t = 10−3 s.
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Figure 3. MSE distortion versus ση for Gaussian noise with identical thresholds. The dashed red lines represent the MSE distortion for
non-stationary input that is Gaussian distributed with standard deviation σx (t)=

√
2 sin(2π t). The solid blue lines correspond to the

MSE distortion for stationary input that is Gaussian distributedwithσx = 1. For the two cases of input characteristics, from top to bottom
the array sizes are N = 1, 3, 15 and 63.

is shown in figure 2. It apparently shows that, when the modulation frequency f = 0.1 Hz and 1 Hz,
the mean square deviation Jk can track non-stationary changes of the environment well, since such
time variations of standard deviation σx(t), compared with the intrinsic time scale of N�t, occur slowly
enough.

Unless specifically mentioned, all results in the following parts are obtained for the example
case where the input signal for non-stationary characteristics is Gaussian distributed with standard
deviation σx(t) = √

2 sin(2π t), and the input signal for stationary characteristics is Gaussian distributed
with σx = 1.

The MSE distortions for the non-stationary stochastic input are plotted in figure 3 (dashed red lines).
Figure 3 clearly illustrates that the optimal value of ση for minimizing the MSE distortion is nonzero for
N > 1, and thus SSR occurs. As N increases, the MSE distortion at the optimal ση decreases, while the
optimal value of ση will gradually increase, even to a value larger than unity for N = 63.

For comparison, the solid blue lines correspond to the MSE distortion curves for stationary Gaussian
input signal with standard deviation σx = 1. It is noted that these two inputs have been chosen to give
the same average power. For a sufficient time duration, their average powers are all unity. It is clear in

http://rsos.royalsocietypublishing.org/
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Figure 4. MSE distortion versus standard deviation ση for coloured noise with different values of correlation time τ . The dashed red
lines represent the non-stationary input, which is Gaussian distributedwith time-varying standard deviationσx(t)=

√
2 sin(2π t). The

solid blue lines correspond to the stationary input, which is Gaussian distributed withσx = 1. For the two cases of input characteristics,
from bottom to top τ = 0.1 s, 1 s and 10 s. Here, the array size N = 63.

figure 3 that the MSE value is far larger for the non-stationary case than stationary case. In addition,
for two cases of the input characteristics, very similar qualitative behaviours are all seen. Thus, this also
validates that the SSR effect is quite general, not restricted to the stationary signals considered in [17,18].

3.2. Coloured noise with identical thresholds
In the above studies, noise is assumed to be white Gaussian distributed. In the physical world,
however, such an idealization is never exactly realized. The effects of various noise correlation times on
stochastic resonance have been previously investigated [5,19,30–37]. Owing to the practical importance
of coloured noise, we next evaluate the optimal weighted decoding performance under the coloured
noise circumstances.

We consider the model driven by an additive exponentially correlated Gaussian noise, i.e. Ornstein–
Uhlenbeck noise (OU noise). The archetypal source for OU noise is given in [19]

ξ̇ (t) = − 1
τ

ξ +
√

D
τ

ξw(t), (3.2)

where ξw(t) denotes Gaussian white noise with autocorrelation 〈ξw(t)ξw(s)〉 = 2δ(t − s) and D is the noise
intensity. The stationary autocorrelation of ξ (t) with correlation time τ is then represented by [19]

〈ξ (t)ξ (s)〉 =
(

D
τ

)
exp

(
−|t − s|

τ

)
. (3.3)

When correlation time τ → 0, equation (3.3) reproduces the white-noise source frequently used in
stochastic resonance studies.

Figure 4 shows the MSE distortion against the standard deviation ση of the OU noise with different
correlation time τ = 0.1 s, 1 s and 10 s. Here, the array size is N = 63. The dashed red lines represent
the MSE distortion performance for non-stationary inputs, while the solid blue lines correspond to the
decoding performance for stationary inputs. As the correlation time τ increases, it is seen in figure 4
that the minimum MSE value at the optimal ση increases. The characteristic behaviour for stochastic
resonance is in good agreement with results in [5,19,30–32]. The reason is that, since the variance σ 2

η of
the OU noise is D/τ in equation (3.3), the noise strength D increases proportionally with the increase of
τ for a given σ 2

η . However, we assume the output yk at the recursion step k is not related to the weight
error vector w̃k−1 at the time step k − 1 in equation (2.7). This restriction will hinder the application of
this adaptive algorithm to the case of coloured noise. Despite this, this adaptive algorithm still plays, and
presents the corresponding MSE distortions in figure 4. It is seen that, as the correlation time τ increases,
the corresponding MSE distortions increase for both the non-stationary (dashed lines) and stationary
(solid lines) inputs.
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Figure 5. The MSE distortion versus ση for coloured noise with the correlation time τ = 0.1 s in the case of identical thresholds. The
solid blue lines are for the case of stationary input, and the dashed red lines correspond to the case of non-stationary input. From top to
bottom, the array sizes N = 1, 3, 15 and 63.

Under coloured noise conditions, to compare the MSE distortion performance for stationary and non-
stationary input situations, figure 5 shows MSE for OU noise with the correlation time τ = 0.1 s and the
array sizes N = 1, 3, 15 and 63.

Note from figure 5 that, as N increases, very similar decoding performance appears when compared
with figure 3. Specifically, these two figures both indicate that the MSE is far larger for the non-stationary
case than in the stationary case. The results in figure 5 show that this Kalman–LMS recursive algorithm
can deal with not only the simple situation of stationary signals, but also more complicated cases of
non-stationary signal buried in coloured noise.

3.3. Gaussian noise with grouped thresholds
Our recent work [18] showed that the decoding performance for multigroup parameter settings is
superior to that of identical parameter settings. Following the approach presented in [18], we next
study the decoding performance of the Kalman–LMS recursive algorithm for the case of grouped
thresholds.

We divide the set of threshold elements into M (M ≤ N) groups. Within each group, the threshold
element size is equal, i.e. N/M, and the threshold levels are equally spaced and set as θm = mσx/(M + 1)
for m = 1, 2, . . . , M.

Figure 6a exhibits the MSE distortion for Gaussian noise with various group sizes M in the cases of
non-stationary and stationary inputs. Here, the array size N = 120, and the group sizes M = 1, 2, 3, 5, 10
and 120. It is apparently illustrated in figure 6a that, for small noise levels, the decoding performance
greatly improves as the group size M increases. While, for very large noise levels, all of the MSE values
that correspond to different groups tend to the same observation, which equals the MSE distortion of
the identical threshold level setting. This fact tells us that, for weak and moderate noise intensities,
the multigroup setting scheme can reduce the MSE distortion. Figure 6a also reveals that the grouped
threshold setting can be extended to adaptively weighted summing arrays.

3.4. Coloured noise with grouped thresholds
It is interesting to study the performance of weighted decoding for the case of grouped thresholds under
the coloured noise circumstances. Similarly, we also illustrate the MSE curves for OU noise with various
group sizes M in the cases of non-stationary and stationary inputs in figure 6b. It can be seen from
figure 6a,b that, as the group sizes M increase, the grouped decoding performance under the coloured
noise circumstances is similar to that under Gaussian noise circumstances.
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Figure 6. MSE distortion versus the noise level for group sizesM= 1, 2, 3, 5, 10 and 120 (from top to bottom), and the array sizeN = 120.
Within each group, the threshold element size is equal, i.e.N/M, and the threshold levels are equally spaced and set asθm = mσx/(M +
1) for m= 1, 2, . . . ,M (M≤ N). (a) White Gaussian noise. (b) Coloured noise with the correlation time τ = 0.1 s. The solid red lines
correspond to the MSE distortion for stationary input, and the dashed blue lines represent the MSE distortion for non-stationary input.

0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
SE

sh

Figure 7. MSE distortion versus the noise level ση of Gaussian white noise in the case of identical thresholds. Here, the array sizes N=
1, 3, 15 and 63 (from top to bottom), and the stationary input signal is Gaussian distributed. The circled red lines correspond to the MSE
distortion for Kalman–LMS recursive algorithm, and the blue stars represent theMSE distortion for optimalweighted decoding presented
in [17].

4. Conclusion and discussion
In this paper, we extend the optimal weighted decoding approach to more general input characteristics
in the model of a weighted summing array of N noisy nonlinear elements based on the Kalman–LMS
recursive algorithm. A proof of convergence of the mean square deviation for stationary inputs is
derived. We especially apply the algorithm to a parallel array of threshold elements and investigate
the decoding performance for inputs with stationary, non-stationary characteristics under Gaussian
noise and coloured noise circumstances. In the case of stationary inputs, after successive iterations of
the Kalman–LMS recursive algorithm it converges to the optimum Wiener solution in some statistical
sense [24]. Our previous work [17] has shown that, for the case of identical thresholds, the optimal
weighted decoding is equivalent to Wiener linear decoding. Therefore, for stationary inputs, the
decoding performance exploiting Kalman–LMS recursive algorithm is consistent with that of optimal
weighted decoding in the case of identical thresholds. Figure 7 clearly illustrates that the results for these
two methods are the same, and MSE distortion curves completely overlap.

Notably, although for the case of stationary inputs, the decoding performance of these two methods
is equal under the condition of identical thresholds, the Kalman–LMS recursive algorithm is simple and
generally easy to implement since the output weights are updated following each input signal sample,
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instead of calculating the output weights using all the training data in one shot. Therefore, compared with
the optimal weighted decoding scheme [17], this Kalman–LMS recursive algorithm is a practical method
for finding close approximate solutions to equation (2.10) in real time. Moreover, this Kalman–LMS
recursive algorithm can adaptively adjust the weighting coefficients so as to minimize the MSE distortion
without complete knowledge of input statistics and thus can be applicable to the non-stationary inputs
and the coloured noise situations as shown in figures 2 and 3–6 (dashed lines). Additionally, we also
apply the Kalman–LMS recursive algorithm to grouped threshold setting for minimizing MSE distortion.
The obtained results show that the multigroup setting scheme can be extended to adaptively weighted
summing array, and is a significant scheme for many potential applications inspired by SSR mechanism.
Although the Kalman–LMS recursive algorithm is applied in the summed array of N noisy nonlinear
elements, we expect that our findings may be important for future work on more complex models that
will stimulate further studies on SSR.

Beyond the memoryless nonlinearity considered in figure 1, we argue that this Kalman–LMS adaptive
algorithm may potentially be extended to other nonlinear systems, for instance, the Hodgkin–Huxley
neuron model [5], the reduced FitzHugh–Nagumo neuron model [4,32,34], the auditory model [6,7,16]
or biomedical devices [38]. However, the dynamical nonlinear system has its intrinsic time scale that
controls the evolution of the system state. The system outputs at adjacent time steps are also correlated
with each other to a certain extent, even the input signal or the input noise are independently identically
distributed. These factors will lead to larger misalignment between the true and estimated weights. Thus,
a more general Kalman–LMS adaptive algorithm for estimating the time-varying weight vector needs to
be developed.
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Appendix A
First, we analyse the convergence of the proposed adaptive algorithm. Based on equations (2.4) and (2.8),
the convergence of wk to the optimal weight vector wo is equivalent to the convergence of the mean
square deviation Jk. From equation (2.14), the mean square deviation Jk in equation (2.13) can be
written as

Jk = Jk−1 − g�
k Pk−1yk

= Jk−1 − y�
k P�

k−1Pk−1yk

y�
k Pk−1yk

= Jk−1 − ‖Pk−1yk‖2

ςk
. (A 1)

Note that Jk = E[‖w̃k‖2] ≥ 0 and y�
k P�

k−1Pk−1yk = ‖Pk−1yk‖2 ≥ 0, thus we find

0 ≤ Jk ≤ Jk−1, (A 2)

for ςk �= 0 and any recursion k. In practice, we update the learning gain as

gk = Pk−1yk

y�
k Pk−1yk + δ

= Pk−1yk
ςk + δ

(A 3)

and the mean square deviation Jk becomes

Jk = Jk−1 − ‖Pk−1yk‖2

ςk + δ
, (A 4)

for δ > 0 and ςk + δ > 0. The inequality of equation (A 2) still holds. Therefore, as k → ∞, the mean square
deviation Jk → 0 is convergent.
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Next, we discuss the convergence time of the adaptive algorithm. In order to obtain the fastest

convergence time, we need to maximize the term of ‖Pk−1yk‖2/ςk in equation (A 1). Since Pk−1 is a
symmetric positive semi-definite matrix, thus we have the normal form

Pk−1 = QΛk−1Q�, (A 5)

with the normalized orthonormal matrix QQ� = I and the eigenvalue matrix Λk−1 = diag[λ1, λ2, . . . , λN].
Then, we can rewrite the term

y�
k P�

k−1Pk−1yk

y�
k Pk−1yk

= y�
k QΛk−1Q�QΛk−1Q�yk

y�
k QΛk−1Q�yk

= z�
k Λ2

k−1zk

z�
k Λk−1zk

, (A 6)

with zk = Q�yk. Using the Rayleigh quotient, we obtain

0 ≤ λmin ≤ z�
k Λ2

k−1zk

z�
k Λk−1zk

≤ λmax ≤ tr(y�
k P�

k−1Pk−1yk)

ςk + δ
= ςk

ςk + δ
≤ 1, (A 7)

with λmin = min{λ1, λ2, . . . , λN} and λmax = max{λ1, λ2, . . . , λN}. Thus, the convergence time is related to
both the output vector yk and the weight error covariance matrix Pk−1.

In practice, we choose the unit matrix P0 = I, thus the initial mean square deviation J0 = tr(P0) = N.
From equation (A 4), we find J1 = N − ‖y1‖2/(‖y1‖2 + δ) ≈ N − 1. For each recursion step k and from
equation (A 7), we assume Jk ≈ N − k. Therefore, the fastest convergence time is about N times sampling
time �t, i.e. the recursion step k = N. The larger the parallel array size N is, the longer the convergent
time is. We must note that this is an ideal assumption of convergence time N�t, and the experimental
results of figure 2 show that the intrinsic time scale for the adaptive algorithm is larger than N�t.
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