
Information Entropy and Parrondo's
Discrete-Time Ratchet

Gregory P. Harmer*, Derek Abbott*, Peter G. Taylor"1",
Charles E. M. Pearce^" and Juan M. R. Parrondo^

* Centre for Biomedical Engineering (CBME) and
Department of Electrical and Electronic Engineering^,

University of Adelaide, Adelaide SA 5005, Australia
^Department of Applied Mathematics,

University of Adelaide, Adelaide SA 5005, Australia
$Dept. Fisica Atomica, Nuclear y Molecular2,

Universidad Complutense, Madrid, Spain

Abstract. Parrondo's paradox involves two losing games of chance. The paradox
is that a winning situation is produced when the two games are played in a random
sequence in accordance with fixed probabilities. In this paper we investigate the rela-
tionship between these parameters and the entropy rates of the games.

INTRODUCTION

The apparent paradox that two losing games A and B can produce a winning
outcome when played in a random sequence in accordance with fixed probabilities
was devised by Parrondo as a pedagogical illustration of the Brownian ratchet [1].

It has recently come to the attention of the authors that a similar phenomenon
was studied by Pinsky and Scheutzow [2]. They showed that a positive-recurrent
diffusion process can be constructed by switching between a finite number of diffu-
sion processes according to a Markov chain in such a way that the random diffusion,
that is produced by following the sample path of the Markov chain, is almost surely
transient. Similarly, a transient diffusion process can be constructed by switching
between a finite number of diffusion processes in such a way that the random dif-
fusion is almost surely positive-recurrent.

In this paper, we show how an analysis of Parrondo's games can be linked to
information theory. A discrete-time Markov chain analysis is used to find the
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parameter space where the paradox of Parrondo's games exists. We investigate
how this relates to the entropy rates of the games.

PARRONDO'S GAMES

Game A, which is described by (1) below, is straightforward and is given by the
outcome of tossing a biased coin or taking a step in a random walk with drift.

Game A: P[winning] = p , ,
P[losing] = l-p. ^ >

Game B is more complicated and can be described by a game in which one can
either win or lose one unit of capital. If the present capital is a multiple of M, then
the chance of winning is pi, otherwise it is p^- That is, we have (2) below.

Game B: P [winning(capital mod M = 0] = pi
P [losing | capital mod M = 0] = 1 — pi
P [winning | capital mod M ^ 0] = P2
P [losing | capital mod M ^ 0] = 1 — p2-

(2)

A convenient parameterization is given in terms of a biasing parameter e via the
transformation p = p' — £, pi = p[ — e and p<i = p'2 — e.

SIMULATION RESULTS

Using Parrondo's original parameter values, p' = 1/2, p{ = 1/10, p'2 = 3/4,
M = 3 and e = 0.005 [1], we simulated games A and B individually 100 times
each and averaged the outcomes over many trials. Based upon this evidence, we
concluded that both are losing, that is, after playing 100 games, on average we
finish with less capital than we started with. We then simulated the situation in
which we play two games of A, then two of B, two of A, and so on. The result
was that, on average, we now win. Furthermore, we also win on average under the
scenario in which we switch randomly between games A and B. Figure 1 shows the
average progress when playing games A and B individually, as well as switching
periodically or randomly. We refer to the game that is produced by randomly
switching between games A and B as game C.

ANALYSIS

By regarding the current capital as the state of a discrete-time Markov chain, it
can be shown that the paradox exists if the conditions

lz£> l i P-ftX!-*)'-^ and '1-*"1
M-?'"-<l (3)
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FIGURE 1. The progress of playing games
A and B. Simulations were performed by play-
ing game A a times, game B b times, and so on
until a total of 100 games were played. This
is represented by [a, 6]. The results were aver-
aged from 50 000 trials using Parrondo's orig-
inal numbers with e — 0.005.
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FIGURE 2. The relation between the fair-
ness of the games and the entropy. The bot-
tom three curves are the final capital after the
100th game has been played and the top three
lines are the entropy rates. Simulations were
performed by playing 100 games and averag-
ing over 250 000 trials.

are met for games A, B and C respectively (see [3]). Here qi = jp + (1 —
and q2 = jp + (1 — 7)^2 are the winning probabilities of game C when the capital
is (respectively is not) a multiple of M, 7 is the probability of playing game A,
and 1 — 7 is the probability of playing game B at each time point of game C. If
the inequalities become equalities all the games are fair. For game A this occurs
only when p = 1/2. For each value of pi in game B there is a p^ for which fairness
occurs. For pi = 1/2, that value is p% = 1/2.

ENTROPY

Now let us think of the sequences of wins and losses of the games in terms
of information theory. Denote by Xj the random variable which represents the
outcome at time point j when playing any of the games A, B or C. If the game
wins at the jth time point, then Xj = 1, if it loses then Xj = 0.

For game A, the sequence X^X^... is an ergodic stationary sequence. In the
case of games B and C, the sequence X^ X^ . . . is not stationary but we can regard
it to be so after an initial period. Hence, by the Shannon-MacMillan-Breiman
Theorem (see, for example, Durrett [4], page 314),

almost surely, where

H = Jirn E [- logp(Xn\Xn^,..., X0)]

is the entropy rate of the sequence and P(XQ, . . . , xn_i) =
xn-i) is the probability measure of the sequence.

(4)

(5)

— XQ, - - - ,Xn-i =
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In the current situation it is convenient to take logarithms with respect to base
2. For the case of game A, the right hand side of equation (5) reduces to

HA = H(p) = -plogp -(1-p) log(l -p) 0<p<l. (6)

The random variables Xj for games B and C are correlated and so the expressions
for their entropy rates are more complicated. To find the entropy rates of game B,
we need to calculate the equilibrium probabilities IT? that the capital is congruent
to i modulo M for i = {1,..., M}. For K = B or C the right hand side of equation
(5) then becomes, using the appropriate probabilities,

HK = [l-^]H(p2)+^H(Pl), (7)

For both games B and C, we can calculate the entropy rates as if the random
variables Xj were independent. For K = B or C this results in

fff = #([!-Tr&pz+TrEpO. (8)

The argument of H on the right hand side of (8) is simply the stationary probability
of producing a 1 at a given time point of game B. Since H(p) is concave, it is easy
to see that Hf > HB and fff > Hc'.

The entropy rate is a measure of how ordered a sequence is, the higher the entropy
rate, the less order there is. Thus HA is maximized when p = 1/2. Given this, we
might expect the entropy rate of a game to be related to the fairness of the game.
A fair game, one that has a net gain of zero, is likely to have have an equal number
of wins and losses, hence Os and Is in the chain. It might be reasonable to expect
that this is the most unordered state and has a maximal value for its entropy rate.

From the Shannon-MacMillan-Breiman Theorem, it follows that, by taking n
large enough, we can get an estimate of the entropy rate of a stochastic process
which generates a sequence from a sample path of that sequence via the left hand
side of equation (4). We did this for the sample paths generated by the simulations
reported above, using expressions (6) and (8). The average values of these estimates
are plotted along with with the average gain in capital for the various games in
Figure 2. Note that the entropy rates found in Figure 2 are calculated, not taking
correlations into account. The effects of taking correlation into account will be
dealt with in following section.

ENTROPY AND PARAMETER SPACE

In this section we explore the relations between the entropy rates generated from
Parrondo's games and how they relate to each other and the parameter space. As
we noted above, the successive values of Xj in games B and C are correlated, as
can be seen from a simple case. If pi = 0.9 and p% = 0.1, then most of the time
the capital will oscillate between two adjacent values. That is, given that we are in
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FIGURE 3. Entropy rates and parameter spaces: (a) game A; (b) uncorrelated entropy rate
HB, which agrees with simulations; (c) correlated entropy rate HB.

one state, we can predict with high probability which state we will be in next and
which digit will be generated next. Hence there is high correlation, even though
there are approximately the same numbers of Os and Is.

Game A is simple, winning or losing depends only on p, and its entropy rate can
be calculated directly from (6) (see Figure 3a). The maximum of the entropy rate
curve occurs at p = 1/2: to the left we lose, to the right we win.

The condition for winning or losing game B depends on the parameters pi and
P2 (for a given value of M). The uncorrelated entropy rates Hf are shown in
Figure 3b, while Figure 3c shows the correlated entropy rates HB. The fairness of
the game is actually reflected by Hf. When Hf = 1, the game is fair, shown by
the thick line along the ridge in Figure 3b. This agrees with (3).

H°

FIGURE 4. Entropy rates and the parameter space for game C: (a) this surface divides the
winning and losing volumes; (b) comparing the correlated (Hc) and uncorrelated (Hf) entropy
rates; (c) comparing the entropy rates HB and Hc when p = 1/2.

Even though Hf = I occurs for all fair games, we can have HB < 1 for a fair
game (see [5]). From Figure 3c, we can conclude that the usual entropy rate of a
game allowing for correlations is not related in any simple way to fairness.

For game C, the parameter space is dependent on the three parameters p, pi and
P2 (for given 7 and M). The plane separating winning and losing games is described
by (3), shown in Figure 4a. By plotting the three parameter spaces together we find
an enclosed three-dimensional region within which games A and B both lose but
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game C wins (see [6]). That is, Parrondo's games are paradoxical in that region.
The entropy rates for game C are set naturally in four dimensions, which make

them difficult to visualize. However the same traits can be carried from games A
and B to game C. As before Hf = I occurs for all the fair games and we can verify
that Hf > Hc as shown in Figure 4b when p = 1/2.

Comparing the entropy rates from games B and C with (considered as sources),
when p = 1/2, Hc > HB as shown in Figure 4c. If p ^ 1/2 then for some values of
Pi and p2 H° < HB. This makes sense if we consider game C to be game B plus
another source. If this other source is completely random (p = 1/2), then we are
only adding disorder to game B, and cannot decrease the entropy rate.

CONCLUSION
We calculated the entropy rates of the games. It was revealed that the uncorre-

lated entropy rates are closely related to the parameter space. In particular, the
games are fair when the uncorrelated entropy rates are 1. In fact, it is easy to see
that measuring the uncorrelated entropy rate is just another way of counting the
proportion of zeros and ones, and that the uncorrelated entropy rate is maximized
when zeros and ones occur in equal proportion. The entropy rates allowing for
correlations do not have a simple relation with the fairness of the games.

One way to think of this is as a new paradox in terms of uncorrelated entropy
rates: with e = 0, games A and B separately create sequences with maximum
uncorrelated entropy rate. However the mixing of A and B creates a sequence with
a smaller uncorrelated entropy rate.

This paradox does, however, have a very easy solution: there is no reason to think
that mixing games with maximal uncorrelated entropy rate should produce another
game with maximal uncorrelated entropy rate in the presence of correlation.
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