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Abstract
This paper presents modelling and analysis of microactuators that are designed for implantable
bio-MEMS applications. Microactuators are considered to be a major component of
microvalves and micropumps. A novel interrogation methodology is implemented, which is
based on surface acoustic wave (SAW) devices and wireless transcutaneous RF communication.
This unique combination of technologies results in a novel microactuator that can be remotely
and securely interrogated by an RF system, with the advantage of no power requirements at the
actuator site. ANSYS based finite element analysis (FEA) is performed to model the
microactuator, and a Rayleigh–Ritz method based analytical model is developed to investigate
the validity of FEA results. During FEA, a 3D model of the microactuator is developed, and a
coupled-field analysis is carried out to model the electrostatic–solid interaction between the
microactuator and the SAW device. Consequently, detailed 3D modelling and transient results
are presented, and the low-powered microdisplacements at low frequencies are clearly
demonstrated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to the rapid growth in micro-electromechanical systems
(MEMS) technology, design, development, and realization
of miniature devices for biomedical implants have become
a reality. In particular, bio-MEMS based implantable total
drug delivery systems have shown the potential to offer
new paradigms in biomedicine and biology. Bio-MEMS
based micro-drug-delivery systems consist of various types
of MEMS devices such as microactuators, micropumps, mi-
crosensors, microvalves, microneedles, microfluidic channels,
and drug reservoirs.

Generally, microactuators take a critical role in commonly
used mechanical micropumps that form a fundamental and a
critical part of a drug delivery system. Such actuation sources
facilitate effective transfer of an accurate amount of fluid/drug
to a targeted location. The design of a suitable actuator device
to pump the fluid at the microscale, for accurate operation,

is of great importance. Many types of microactuators have
been developed to match different requirements for various
applications [1, 2].

However, the lack of availability of accurate and easy to
use, implantable and low-powered actuation mechanisms has
been identified as a significant problem [3]. Furthermore,
the ease of control of implantable biological devices would
be greatly improved by incorporation of wireless and secure
actuator systems with no battery attached to the device.

1.1. Wireless and secure interrogation

With the advancements in RF-MEMS and bio-MEMS
technologies, there is an increasing interest in designing
biotelemetry devices [4]. Currently, there are various implants
in use and in development [5, 6]. Remotely interrogated
implantable actuators and drug pumps have been developed for
pain relief applications such as for chronic pain due to cancer,
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Figure 4. Transformation of coordinate system using the X-convention. x1x2x3 is the structural coordinate system and XY Z is the crystal
coordinate system. x1 determines the wave propagation direction and x3 is normal to the crystal surface. Initially both of these axes are
parallel to each other. While the structural coordinate axes always remain same, the crystal axes XY Z are rotated by an angle φ around the Z
axis, then by an angle θ around the X axis and finally by an angle ψ once again around the Z axis. The direction cosines are derived based on
the Euler angles.

the piezoelectric matrix [e], and the permittivity matrix [ε]
respectively.

Equations (1)–(6) lead to a system of four coupled
equations, which are represented by equations (7) and (8).
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The relationship between mechanical displacement and
electric potential is considered in a semi-infinite, isotropic and
homogeneous linear elastic space. The piezoelectric crystal
cut ensures the Rayleigh wave propagates in the x1–x3 sagittal
plane as shown in figure 3.

The method of partial waves is used to solve the wave
propagation phenomenon for the SAW actuator model, as
it is a commonly used technique to analyse different SAW
modes on anisotropic substrates such as piezoelectrics [15–17].
The plane wave solutions of the form given in equations (9)
and (10) are considered for the mathematical modelling of this
device,

um
j (x1, x3, t) = αm

j eikbm x3 eik(x1−vt), (9)

�m(x1, x3, t) = αm
4 eikbm x3 eik(x1−vt), (10)

where the αm
j values are linear coefficients that depend on the

decaying constant bm , v is the phase velocity of the wave,
k (=2π/λ) is the wavevector, λ is the wavelength, i is the
standard imaginary unit (=√−1), m = 1–4 and j = 1–3.

Using equations (7)–(10), a linear system for the
coefficients αm

j can be obtained and solved. In solving these
equations, however, it is necessary to transform the material
parameters of the SAW substrate to match the coordinate
system of the problem, as discussed below.

5.2. Transformation of coordinates

In the equations of motion the material parameters are
expressed in terms of structural coordinate axes that are

selected for convenient boundary condition and excitation
requirements. However, the material parameters are presented
in the form of [c], [ε], and [e] matrices as was mentioned
in section 5.1, and these are expressed according to the
crystalline axes. Therefore, it is necessary to transform the
material parameters to match the coordinate system of the
problem. Generally, the parameters are transformed using a
transformation matrix [r]
[r]

=

⎡

⎢⎢⎢⎣

cosψ cosφ cosψ sinφ sinψ sin θ
− cos θ sinφ sinψ + cos θ cosφ sinψ

sinψ cos θ − sinψ sinφ cosψ sin θ
− cos θ sinφ cosψ + cos θ cosφ cosψ

sin θ sinφ − sin θ cosφ cos θ

⎤

⎥⎥⎥⎦

=
[ r11 r12 r13

r21 r22 r23

r31 r32 r33

]
.

Elements of this matrix are the direction cosines between the
crystalline axis and the problem axis [11, 18, 19]. As depicted
in figure 4, the X -convention is followed in this research for
specifying the order of rotation of the axes.

Once the transformation matrix is defined, the matrices
that define the crystal properties ([c], [ε], and [e]) are
transformed using the bond-transformation procedure [20].
The advantage associated with the this procedure, for stiffness
and compliance, is that bond transformation is directly applied
on stiffness or compliance constants given in abbreviated
subscript notation. The transformation laws of this procedure
can be shown as

[cr] = [MB][c][MT
B], (11)

[er] = [MB][e][rT], (12)

[εr] = [r][ε][rT], (13)
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where

[MB] =⎡
⎢⎢⎢⎢⎢⎣

r2
11 r2

12 r2
13 2r12r13 2r11r13 2r11r12

r2
21 r2

22 r2
23 2r22r23 2r21r23 2r21r22

r2
31 r2

32 r2
33 2r32r33 2r31r33 2r31r32

r21r31 r22r32 r23r33 r22r33 + r32r23 r21r33 + r31r23 r21r32 + r31r22

r11r31 r12r32 r13r33 r12r33 + r32r13 r31r13 + r11r33 r11r32 + r31r12

r11r21 r12r22 r13r23 r12r23 + r22r13 r11r23 + r21r13 r11r22 + r21r12

⎤
⎥⎥⎥⎥⎥⎦
.

is the bond-transformation matrix; [rT] denotes the transpose
of the matrix [r]. [cr] is the transformed stiffness matrix,
[er] is the transformed piezoelectric matrix, and [εr] is the
transformed permittivity matrix.

5.3. Calculations for a specific SAW substrate

In order to derive the specific plane wave equations for
a selected crystal, partial wave equations (9) and (10) are
substituted into equations (7) and (8) with the rotated material
parameters. As a result, the following eigenvalue problem can
be obtained.

M ·α = 0. (14)

Alternatively, the above equation can be written as
⎡

⎢⎣

m11 − ρv2 m12 m13 m14

m12 m22 − ρv2 m23 m24

m13 m23 m33 − ρv2 m34

m14 m24 m34 m44 − ρv2

⎤

⎥⎦

×
⎡
⎢⎣

α1

α2

α3

α4

⎤
⎥⎦ = 0. (15)

The matrix coefficients in equation (15) are shown below.

m11 = c55b2 + 2c15b + c11 ⇒ m11 = c55b2 + c11

m12 = c45b2 + (c14 + c56)b + c16 ⇒ m12 = (c14 + c56)b

m13 = c35b2 + (c13 + c55)b + c15 ⇒ m13 = (c13 + c55)b

m14 = e53b2 + (e51 + e13)b + e11 ⇒ m14 = (e51 + e13)b

m22 = c44b2 + 2c46b + c66 ⇒ m22 = c44b2 + c66

m23 = c34b2 + (c36 + c45)b + c56 ⇒ m23 = c34b2 + c56

m24 = e43b2 + (e41 + e63)b + e61 ⇒ m24 = e43b2 + e61

m33 = c33b2 + 2c35b + c55 ⇒ m33 = c33b2 + c55

m34 = e33b2 + (e31 + e53)b + e51 ⇒ m34 = e33b2 + e51

m44 = −(ε33b2 + 2ε13b + ε11) ⇒ m44 = −(ε33b2 + ε11).

In order to evaluate the non-trivial solution for equa-
tion (15), the eigenvalue problem, det(M) = 0, is required to
be solved. This results in a system of characteristic equations
for displacement amplitudes and electric potential in which the
phase velocity v of the wave is used as an unknown parameter.
In the general case, this system of characteristic equations is
reduced to an eighth order polynomial in the decaying constant
b for a given value of phase velocity. However, the resulting
roots of b are either purely real or complex conjugate pairs.
Since these roots leads to Rayleigh waves that decay with the
depth along x3, only the roots with negative imaginary parts are
accepted to be consistent with the physical meaning of wave
propagation in piezoelectric media [21, 22]. There are four

such roots for b (denoted as bm for m = 1–4), and for each
such value there exists a unique eigenvector αm . A general
solution is then obtained as a linear combination of partial
waves such that each wave decays almost to zero as it shifts into
the crystal depth at a distance of several wavelengths from the
surface (x3 = 0). The solution consists of three displacement
components u j ( j = 1–3) and the electric potential � as
described by equations (16) and (17).

u j(x1, x3, t) =
[∑

m

Cmα
m
j eikbm x3

]
eik(x1−vt), (16)

�(x1, x3, t) =
[∑

m

Cmα
m
4 eikbm x3

]
eik(x1−vt). (17)

The weighting coefficients Cm of these plane waves are chosen
to satisfy the mechanical and electrical boundary conditions at
the surface of the piezoelectric substrate specific to this SAW
based actuator model, which is discussed in detail in section 7,
after deriving an expression for the electric potential at the
output IDT using equation (17).

6. Electric potential at output IDT

In order to determine the electrostatic field generated between
the output IDT and the conductive plate, the evaluation of the
electric potential at the output IDT is required. Here, once
the plane wave equation is evaluated for the electric potential
wave in the SAW device (equation (17)), an analysis is carried
out to evaluate an expression for the electric potential at the
output IDT. In achieving this, the following assumptions and
simplification are made to the design apart from previously
mentioned simplifications.

(i) The crystal cut is best set for a SAW propagation in the x1

direction to allow an orthogonal interaction between the
SAW and the output IDT.

(ii) The IDT is oriented such that a SAW is generated in the
direction of maximum SAW propagation speed.

(iii) The SAW is assumed to pass the output IDT once,
and interact with no reflections caused by impedance
mismatches [21, 22].

(iv) The SAW interacts with the IDT in the near field where
the SAW can be treated as a travelling wave.

Due to the periodic nature of the propagating waves and
the placement of the IDTs, the analysis is initially carried
out only for a single period, and then extended to the whole
structure. The single period placement of the output IDT is
shown in figure 5.

As explained in figure 5, each finger in the IDT is assigned
a negative or positive value that is determined by the finger’s
connection to either a positive or negative bus bar. Therefore,
the output IDT fingers are represented as square waves with
the period defining the wavelength of the SAW and the duty
cycle defining the finger width [23]. This width is λ

4 for a
metallization ratio of 0.5. For the SAW based electrostatic
actuator model, initially a basic model of the IDT configuration
is used.
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Figure 5. Periodic IDT finger representation for one wavelength (λ)
with a metallization ratio of 1

2 .

While the output IDT is considered as a combination of
square waves, the SAW is defined as a propagating plane
wave as was elaborated in section 5.3. In order to obtain the
time response of the SAW interaction with the output IDT, a
cross-correlation is applied to the SAW and the IDT signals.
Cross-correlation is a method by which two different functions
are compared over time with one time-fixed function and one
time-shifted function. Within one wavelength of the IDT, the
analysis has to be carried out in two parts, considering the
space above the output IDT fingers (0 � x1 � λ

4 ∪ λ
2 � x1 �

3λ
4 ) and the space above the output IDT gap between fingers

( λ4 < x1 <
λ
2 ∪ 3λ

4 < x1 < λ). This is because the metal
based IDT fingers consist of an equipotential distribution for a
given time, and the gaps between the fingers consist of a space
varying electric potential distribution in the x1 direction.

IDT segment in range (0 � x1 � λ
4 ∪ λ

2 � x1 � 3λ
4 )

As shown in figure 6, analysis of a single IDT finger will
serve as the basis for the analysis for a single periodic structure
and then for the entire IDT structure. Therefore, the cross-
correlation between the SAW potential signal �(x1, x3, t) and
the first finger connected to the positive bus bar (0 � x1 � λ

4 )
can be expressed as

C+(x1, x3, t) = (� ∗ g(+))(x1, x3, t)

=
∫ T/4

0
�(x1, x3, t + τ ) · g(+)(τ ) dτ

=
√

2

kv
�

(
x1 − λ

8
, x3, t

)
. (18)

Here, g(+) represents the positive square wave of the finger as
can be seen from figure 6.

The electric potential at this IDT finger can be considered
as the average value of the correlated signal C+(x1, x3, t) over
the finger width fw, due to the equipotential nature of the metal
based fingers. As the metallization ratio is 0.5 in this analysis,
fw = λ/4 and this relates to T/4 in timescale, where T (=λ/v)
is the time period of the SAW. Therefore, the electric potential

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

0.8

1

Time x (λ/4υ)

g
(+)

SAW (t)
SAW (t–0.125)

Figure 6. Superimposition of the SAW and a single finger of the
output IDT. g(+) represents the equipotential behaviour of the
conductive finger. Two SAWs are T/8 apart from one another.

generated at the first finger connected to the positive bus bar
can be written as

V+(x1, x3, t) =
∫ λ/4

0
C+(x1, x3, t) dx1

= 2T

π2
�

(
λ

8
, x3, t

)
. (19)

By following an identical approach, the electric potential at the
finger connected to the negative bus bar ( λ2 � x1 � 3λ

4 ) can be
derived and the result can be written as

V−(x1, x3, t) = −2T

π2
�

(
λ

8
, x3, t

)
. (20)

IDT segment in range ( λ4 < x1 <
λ
2 ∪ 3λ

4 < x1 < λ).
Once the analysis is simplified by considering the

aforementioned assumptions and simplifications, the electric
potential at the gaps between the fingers can be considered to
consist of the same electric potential of the propagating SAW
as shown in equation (17). Therefore

Vgap(x1, x3, t) = �(x1, x3, t). (21)

Consequently, the total electric potential generated by a
single period of the output IDT can be derived, and graphically
elaborated in figure 7. Due to the periodic nature of the IDT,
the periodic expression can be easily extended to derive the
electric potential for the full output IDT. Therefore, for an
output IDT with Np finger pairs, the total electrostatic potential
at the output IDT can be expressed as

�(x1, x3, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


, for nλ � x1 � ( 1
4 + n)λ

�, for ( 1
4 + n)λ < x1 < ( 1

2 + n)λ

−
, for ( 1
2 + n)λ � x1 � ( 3

4 + n)λ

−�, for ( 3
4 + n)λ < x1 < (1 + n)λ

(22)
where 
 = V+(x1, x3, t) = 2T

π2�(
λ
8 , x3, t), � =

Vgap(x1, x3, t) = �(x1, x3, t), and n = 0, 1, 2, . . . , (Np − 1).
A boundary condition analysis is then carried out to

specify values for the weighting coefficients in equation (22).

7. Boundary condition analysis

The weighting coefficients in equations (16) and (17) need to
be determined based on the electrical and mechanical boundary

6
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(a) time = t
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0.8

1

Time x ( λ/4υ)

IDT Fingers
SAW (t–0.125)
Corr–SAW(t–0.125)

(b) time = t –T/8

Figure 7. Correlation between SAW electric potential and the output IDT of the SAW device. For a periodic IDT structure, one finger pair is
represented, hence one time period (T = λ/v) is considered. Equipotential IDT fingers are represented by square waves. (a) The electric
potential of the propagating SAW, SAW(t), is peaked at the centre of the output IDT fingers (considered at time t). (b) The electric potential
of the propagating SAW is T/8 s delayed compared to SAW(t). In both cases, the cross-correlated electric signal consists of equipotentials
across the IDT fingers.

conditions applicable for the SAW device based actuator
model.

Mechanical boundary conditions

The IDT mass at the output IDT is taken to be negligible for
simplicity, so that the mechanical force acting on the SAW
substrate can be discarded. Hence the surface is considered
to be mechanically free, and can be mathematically expressed
as ∑

j

T3 j = 0, (23)

where T is the mechanical stress tensor and j = 1–3.

Electrical boundary conditions

The conductive plate in the actuator model (figure 3) is placed
at a height h above the output IDT, and connected to the
common ground of the device. Therefore, the electric potential
approaches zero at x3 = h. The electric potential above the
SAW substrate satisfies Laplace’s equation, which results in an
exponentially decaying electric signal in the x3 direction, and
can be written as

�L (x1, x3, t) = [ALekx3 + BLe−kx3 ]eik(x1−vt), (24)

for AL and BL constants. Furthermore, the electric potential
and the electric flux density in the x3 direction are continuous
at the surface (x3 = 0) [11, 24], which can be mathematically
expressed as

�(x3 = 0−) = �(x3 = 0) = �(x3 = 0+),

D(x3 = 0−) = D(x3 = 0) = D(x3 = 0+).
(25)

Equations (22) and (25) are utilized to eliminate AL and
BL in equation (24). Due to the conductive plate, the
electric potential at x3 = h becomes zero. Therefore, from
equation (24),

�L(x1, h, t) = [ALekh + BLe−kh ]eik(x1−vt) = 0,

BL = −ALe2kh .
(26)

Once BL is eliminated, equation (24) can be rewritten as

�L(x1, x3, t) = AL [ekx3 − e2kh−kx3 ]eik(x1−vt). (27)

The electrical boundary condition at the surface of the substrate
(x3 = 0) is considered to evaluate AL . From the plane wave
equation (22) for electric potential and equation (27), and the
continuity equations (25), AL can be evaluated as follows:

�L(x1, 0, t) = �(x1, 0, t),

AL [1 − e2kh ]eik(x1−vt) =
[
∑

m

Cmα
m
4

]
eik(x1−vt),

and AL =
∑

m Cmα
m
4

[1 − e2kh ] .

(28)

The relationship between the electric flux density and the
electric field can be written as D = ε0 E . Considering this
relation along with equation (1), a relationship between the
electric flux density and the electric potential in the gap in the
x3 direction can be written as

D3(x1, x3, t) = −ε0
∂�L(x1, x3, t)

∂x3
. (29)

Hence, using the above equation, the electric flux density at
x3 = 0 is calculated and written as follows.

D3(x1, 0, t) = −kε0

∑
m Cmα

m
4 [1 + e2kh ]

[1 − e2kh ] eik(x1−vt). (30)

Additionally, another alternative expression for the electric flux
density at x3 = 0 can be obtained from equation (6). Therefore,

D3(x1, 0, t) =
∑

j

∑

k

e3 jk S jk +
∑

j

εS
3 j E j . (31)

Ultimately, by equating equations (30) and (31), another
eigenvalue problem is formulated, where the variables consist
of the weighting coefficients. The resulting boundary
conditions can be written out in matrix form as follows.

⎡

⎢⎣

G 0 H I

J 0 L N

0 P 0 0
Q 0 R Y

⎤

⎥⎦

⎡

⎢⎣

C1

C2

C3

C4

⎤

⎥⎦ = 0, (32)
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where

G = (c13 − c14b1)α1
1 + (−c14 + c11b1)α1

3 + (e13 − e22b1)α1
4

H = (c13 − c14b3)α3
1 + (−c14 + c11b3)α3

3 + (e13 − e22b3)α3
4

I = (c13 − c14b4)α4
1 + (−c14 + c11b4)α4

3 + (e13 − e22b4)α4
4

J = c44b1α1
1 + (c44 − c14b1)α1

3 + e51α
1
4

L = c44b3α3
1 + (c44 − c14b3)α3

3 + e51α
3
4

N = c44b4α4
1 + (c44 − c14b4)α4

3 + e51α
4
4

P = (c14 + c66b2)α2
2

Q = e51b1α1
1 + (e51 + e22b1)α1

3 − (ε11b1 + iε0X)α
1
4

R = e51b3α3
1 + (e51 + e22b3)α3

3 − (ε11b3 + iε0X)α
3
4

Y = e51b4α4
1 + (e51 + e22b4)α4

3 − (ε11b4 + iε0X)α
4
4

X = 1 + e2hk

1 − e2hk
.

Here the value of X depends on the position of the conductive
plate above the SAW device (h), and takes the value of
−1 for the case where the plate is at an infinite height
above the substrate (h −→ ∞). In this analysis, the
phase velocity is explicitly present in equations (16) and (17),
and implicitly present in the roots bm and in the linear
coefficients αm as mentioned before. Therefore, a suitable
value for phase velocity should be chosen for which the
determinant of the coefficients in the eigenvalue problem
presented in equation (32) vanishes, hence satisfying the
associated boundary conditions.

The above two eigenvalue problems presented in equa-
tions (15) and (32) are required to be solved simultaneously
using iterative numerical procedures. This is due to the implicit
dependence of decaying constants bm on phase velocity v, and
explicit dependence of eigenvectors of linear coefficients αm

on v. Once a suitable phase velocity is found, the weighting
coefficients Cm can be determined. As a result, a complete
solution is obtained for the electric potential at the output IDT
(equation (22)).

7.1. Electrostatic coupling equations

In electrostatic actuation, the electrostatic force applied on
two parallel plates can be described using the parallel plate
capacitor effect [1] as

F = 1

2

εA�2

(h − WP)
2 , (33)

where ε is the dielectric coefficient of the medium between the
plates, A is the effective plate area, WP(x1) is the instantaneous
deflection of the actuator in the x3 direction, h is the initial
plate spacing, and � is the applied electric potential between
the plates.

As is explained in section 4, an electrostatic force is
generated between the output IDT and the conductive plate,
due to the time varying electric potential at the output IDT.
To formulate this force, each finger gap is divided into Ns

subdivisions in the x1 direction, so that each subdivision has
a width of fw

Ns
and a length of fl (≈aperture of the IDT).

Combining equations (22) and (33), and after some algebraic

simplifications, the total resultant electrostatic force can be
evaluated as

F(tot) = Ct

(h − WP)
2

∑

j

[(
2T

π2

)2

�2

(
λ

8
, x3, t

)

+ �2

(
λ

4
+ jλ

4Ns
, x3, t

)]
(34)

for j = 1, 2, 3, . . . , Ns and Ct = ε0 fl fw Np

Ns
.

As the doubly clamped actuator is deflected due to
the applied electrostatic force, an elastic restoring force is
developed in the actuator. At equilibrium, the kinetic energy
becomes zero, and the actuator’s potential energy reaches a
maximum. Therefore, to determine the displacement achieved
by the actuator, the calculated electrostatic force and the elastic
restoring force need to be considered at their equilibrium
point [25, 26]. However, this becomes a complex problem
to solve since both the forces depend on the actuator’s
instantaneous displacement Wp(x1). Therefore, to obtain an
accurate solution for WP(x1), analytical methods or numerical
analysis methods such as FEM are required.

8. The Rayleigh–Ritz method

In order to prove the feasibility of the suggested design, and
compare with the FEA results to validate the design, a reduced
order model of the actuator is first built using the Rayleigh–
Ritz method. Following the minimum potential energy analysis
for a beam presented by Washizu [25], the total potential
energy of the actuator, modelled in the framework of the Euler–
Bernoulli theory, can be deduced. For a doubly clamped
actuator with a length of l, the total energy Eact of the actuator
under a pressure P can be written as

Eact = 1

2

∫ l

0
EI

(
∂2Wp

∂x1
2

)2

−
∫ l

0
PWp dx1, (35)

where E is the modulus of elasticity, WP(x1) is the lateral
displacement (in the x3 direction), and I is the moment
of inertia of the cross-section. Considering the relation
F = P A, where A is the effective actuator area,
the second integral component in equation (35) can be
rearranged using the electrostatic force, which is derived in
equation (34). Additionally, the displacement function Wp(x1)

must satisfy the essential homogeneous boundary conditions of
the actuator, which is presented as follows.

Wp(0) = Wp(l) = 0,

∂Wp

∂ t

∣∣∣∣
x1=0

= ∂Wp

∂ t

∣∣∣∣
x1=l

= 0.
(36)

Even though there exist various base functions that satisfy the
essential boundary conditions of the model, care was taken to
select a function with a better representation of the actuator
model [27]. Here, a base function for the actuator is selected as
in equation (37), with the only unknown being the coefficient
KP.

WP(x1) = KPx2
1(l − x1)

2. (37)
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(a) t = 0.2 μs

(c) t = 2.0 μs (d) t = 4.0 μs

(b) t = 1.0 μs

Figure 10. Deflection results for the actuator at various time steps during the transient analysis. Half-symmetry is exploited due to the
symmetrical nature of the model. The flexural behaviour is observed during the stabilization period.

The SOLID95 3D element type is used for the structural
model, and the electrostatic air gap is meshed using the
SOLID122 element type. To simplify the analysis and to
improve the simulation time and efficient CPU usage, the
performance of a thin conductive plate with a smaller width
was initially considered, and half-symmetry is exploited due to
the symmetrical nature of the model.

10. FEA simulations and results

10.1. Static analysis

During the analysis, to mimic the effect of the electric
potential wave generated at the output IDT, a set of interleaved
electrodes was used and every other electrode was coupled, so
that one set of electrodes acts as the positive bus bar and the
other as the negative bus bar. Material properties of silicon
were used for the doubly clamped conductive plate. The plate
dimensions were 1000 μm×2 μm×10 μm (L × H ×W ). The
air gap between the electrodes and the conductive plate h was

10 μm. For static analysis, a 10 V input voltage was applied to
the positive bus bar. The negative bus bar and the conductive
plate were connected to a common ground.

Initial FEA results are verified using the Rayleigh–
Ritz method based analytical model. Displacement versus
voltage results were plotted and are shown in figure 9. A
good correlation can be observed between the analytical and
simulation results for the microactuator. However, FEA results
demonstrate slightly lower displacements for a given voltage.
This is mainly because the full thickness of the actuator
was considered in the simulated 3D model in FEA, whereas
the actuator was modelled as a thin plate in the Rayleigh–
Ritz method based analytical model. Therefore, the higher
bending stiffness reduces the effective mid-beam displacement
in the FEA model. It should be noted that the actuator
displacement can be increased by reducing the gap between the
conductive plate and the output IDT, reducing the thickness of
the conductive plate, and reducing the stress level applied at
the actuator by optimizing the clamping mechanism.

10
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(a) Displacement. (b) Von Mises stress.

Figure 11. Deflection and Von Mises stress analysis results for the actuator performance at t = 8.0 μs (final step). The maximum Von Mises
stress in this scenario is 0.121 MPa, which is near the clamped edge.

Figure 12. Displacement versus time plot of the mid-beam. Analysis
carried out for 400 T , where T is the time period of the SAW signal.

10.2. Transient analysis

For transient analysis of the actuator, an AC sinusoidal wave
with a frequency of 50 MHz and a peak voltage of 10 V were
used to emulate the electric potential wave at the output IDT
as proven in equation (22). However, due to the constraints
introduced by factors such as node density and the CPU
processing power, transient simulations were performed for a
time range of 400 T during this analysis, where T is the time
period of the SAW.

Figures 10 and 11 depict transient analysis results. As a
thinner actuator is modelled in ANSYS, the flexural behaviour
of the actuator is first observed. As the time progresses,
the deflection profile of the actuator is found to be similar
to the profile obtained from the Rayleigh–Ritz method based
analysis.

Figure 11(b) depicts the contour plot of the Von Mises
stress distribution of the actuator. Here, the Von Mises stress
can be used to predict the yielding of any of the materials used,
under any loading condition. The maximum Von Mises stress
in this scenario is 0.121 MPa, which is much lower than the
yield strengths of the selected material. This demonstrates that
the actuator’s deflection is well within the elastic range of the
materials used.

Microdisplacements are successfully obtained using the
SAW actuator. Figure 12 shows the mid-beam and the quarter-
beam displacement variations over a simulation time of 400 T .
Based on the static analysis, however, it was shown that
displacements up to ∼3 μm can be achieved from this model.
As a result, it is proven that, even after 400 T , still the dynamic
displacement does not show any periodic nature but is in the
process of gaining more displacement. This demonstrates that
the actual operating frequency of the actuator is a very much
scaled down version of the SAW frequency.

11. Conclusion

A novel, wirelessly and securely interrogated, batteryless
and passive microactuator for bio-MEMS is discussed and
demonstrated in this paper. In designing the model, the
requirements imposed by the current and emerging biomedical
applications on these devices such as small size, passivity,
bio-compatibility, and remote interrogability are taken into
consideration. As a result the proposed device can be used
in the design of microvalves and micropumps for biomedical
applications such as drug delivery, DNA sequencing, and flow
cytometry, where the performance of the microactuator is
critical.

Theoretical analysis of the entire SAW based actuator
operation was carried out and boundary conditions applicable
for the presented design were used to derive the electric
potential wave forms, and hence the electrostatic field between
the SAW device and the actuator. The significance in the

11
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use of FEA to simulate and analyse complex scenarios, as an
alternative option to analytical modelling, is highlighted. Then,
detailed FEM was carried out and static analysis results were
generated using the ANSYS simulation tool, and compared
with the theoretical results obtained by Rayleigh–Ritz method.
A good correlation between the theoretical and simulated
displacement curves were observed.

Consequently, the dynamic behaviour of the SAW based
actuator was investigated using transient analysis. This is
more substantial in investigating the operating frequency of the
conductive plate. Since the SAW frequency is in the range
between 50 MHz and 1 GHz, it was crucial to verify the
effective operating frequency of the conductive plate. Because
of the time varying electrostatic field, it was found that the
oscillating frequency of the actuator is much less than the SAW
frequency, which is much desired for better control.

As potential future work, in addition to integrated device
fabrication, as a useful extension to current work, the multiple
code coupling method in the ANSYS-MFX solver combined
with ANSYS-CFX could be used to develop an implantable
micropump and simulate a complete electrostatic–structure–
fluid interaction problem, to optimize the design parameters
of such a device. This will allow a complete simulation model
that could be used to analyse similar microfluidic devices at
design stage, before fabrication.
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