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Abstract
The study of insect vision is of significant interest to engineers for inspiring
the design of future motion-sensitive smart sensor devices, for collision
avoidance applications. Although insects are relatively simple organisms
compared to vertebrates, they are blessed with a very efficient visual system,
which enables them to navigate with great ease and accuracy. Biologically
inspired motion detection models are bound to replace the conventional
machine vision technology because of their simplicity and significant
advantages in a number of applications. The dominant model for insect
motion detection, first proposed by Hassentein and Reichardt in 1956, has
gained widespread acceptance in the invertebrate vision community. The
template model is another known model proposed later by Horridge in 1990,
which permits simple tracking techniques and lends itself easily to both
hardware and software. In this paper, we compare these two different
motion detecting strategies. It was found from the data obtained from the
intracellular recordings of the steady-state responses of wide-field neurons
in the hoverfly Volucella, that the shape of the curves obtained agree with the
theoretical predictions made by Dror. In order to compare this with the
template model, we carried out an experiment to obtain the velocity
response curves of the template model to the same image statistics. The
results lead us to believe that the fly motion detector emulates a modified
Reichardt correlator.

In the second part of the paper, modifications are made to the Reichardt
detector that improve its performance in velocity detection by reducing its
dependance on contrast and image structure. Our recent neurobiological
experiments suggest that adaptive mechanisms decrease the EMD
(elementary motion detector) dependence on pattern contrast and improve
reliability. So appropriate modelling of an adaptive feedback mechanism is
carried out to normalize contrast of input signals in order to improve the
reliability and robustness of velocity estimation.

1. Introduction

When we see a group of bees flying together, the first thing that
strikes us is their amazing ability to fly with such great speed

4 Author to whom any correspondence should be addressed.

without colliding into one another. The activities of insects
clearly reveal the extraordinary navigational skill they possess
despite the fact that they have a very simple visual system.
The study of the insect visual system has offered solutions
to problems of computational bottleneck and other problems
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faced by the conventional machine vision algorithms and has
led to many elegant strategies that can be profitably applied to
motion detection, velocity estimation and has even been used
in the design of collision avoidance sensors and autonomous
robots [1]. Research over several decades has revealed that
the visual system of insects is exquisitely sensitive to motion,
inspiring many models of motion detection.

The earliest and probably the most famous model of
motion detection inspired by biological systems was developed
by Reichardt and Hassentein [2] in 1956 after a series of
behavioural experiments examining the optomotor response of
insects. The Reichardt or correlation motion detector possess a
highly parallel architecture. Each elementary motion detector
(EMD) detects motion in a preferred direction by comparing a
signal from one receptor with a delayed signal from the other
receptor. The comparison is performed using a nonlinear,
multiplicative, interaction between the two channels. Two
EMDs tuned to opposite directions are combined to form a
bidirectional motion detector. The multiplicative interaction
employed in this detector is an excitory mechanism.

While the Reichardt correlator model employed multi-
plicative interaction as an excitory mechanism, Barlow and
Levick [3] pointed out that an inhibitory mechanism was also
capable of providing directionally selective motion detection.
They conducted experiments on rabbit retinal ganglion cells
that were stimulated not by a smooth motion but by a sequence
of discrete illumination steps in two neighbouring locations,
in either the preferred or null direction of the cell. Barlow and
Levick found that the response to the null direction sequence
was significantly reduced compared to the sum of the indi-
vidual responses, whereas responses to the preferred direction
sequence was roughly equal to the sum of individual responses.
The authors proposed a veto mechanism or ‘null-direction in-
hibition’ as the basis for direction selectivity.

Alternative mechanisms of inhibition have also been
proposed. One of the mechanisms known as lateral inhibition
was proposed by Hartline and Ratliff as a result of experiments
on the compound eye of limulus [4]. However, in order to
be able to model directional selectivity for motion detection,
nonlinear interactions are required. Hence a nonlinear version
of lateral inhibition, known as shunting inhibition, was
developed by Pinter [5] after studies on the neurochemistry
of visual cells.

The delay and compare models were derived from
behavioural and physiological studies of biological systems. A
second class of models is derived from spatio-temporal energy
characteristics of moving images—these models include those
using a Fourier domain description of moving images [6, 7]
while others consider time as another spatial dimension [8].

In 1990, after conducting many experimental studies on
the behaviour of the insect visual system, Horridge [9, 10]
proposed a simplified model of the insect visual system called
the template model. This empirical model compares the
contrast between two adjacent receptors, at two sampling
instances, to form a 2 × 2 template. These templates
can give simple directional information. Operations are
performed mainly between adjacent receptors, which make
this model easy to implement in a parallel architecture. Several
generations of insect vision chips based on the template model
have been developed by Moini et al [11–13].

Most of these spatio-temporal models, currently the
dominant models for motion detection in vertebrates, are
mathematically equivalent to correlator models [8]. Correlator
models have been applied to explain motion detection in
humans, birds and cats [14–16]. In the absence of additional
system components or assumptions, the raw output of a
basic Reichardt correlator provides an inaccurate, ambiguous
indication of image velocity [17]. Several authors have
proposed elaborations of the ‘basic’ Reichardt detector by
either adding temporal, spatial or spatio-temporal filters before
applying the input to the EMD cell [18, 19]. In one of
the most recent elaborations of this model, Dror [20] has
used various forms of spatial filtering, temporal filtering,
saturation, and integration within the motion detection system
to improve the performance of the correlator-based system in
response to many stimuli, including complex natural images.
Dror used experimental results from the fly visual system
to confirm these predictions. The fly is chosen as a model
organism here for both experiments, as well as computational
simulations, due to the abundance of behavioural, anatomical
and electrophysiological data available in relation to motion
detection.

In this study, we have conducted an experiment to compare
the response of the template model with the elaborated
Reichardt correlator using the same image statistics. Since
the Horridge model produces templates as its response, we
use the velocity versus the number of templates curve to
compare it with the experimental results obtained from the fly
HS neurons. The results show that Dror’s elaborated model
has more similarity with the response of the fly neurons. But
Dror’s model remains contrast dependent. Hence our work will
extend Dror’s model to include contrast adaptation, with the
aim of achieving ‘velocity constancy’ with respect to contrast.

2. A simple Reichardt correlator

Figure 1 shows a simplified version of the correlator model.
Receptors A and B are separated by an angular distance
�φ. The signal from A is temporally delayed by the low-
pass filter D before multiplication by the signal from B.
This multiplication produces a positive output in response to
rightward image motion. To achieve similar sensitivity to
leftward motion and to cancel excitation by stationary stimuli,
a parallel delay-and-multiply operation takes place with a delay
on the opposite arm. The outputs of the two multiplications are
subtracted to give a single time-dependent correlator output R.

Although the correlator is nonlinear, its response to
sinusoidal stimuli is of interest. If the input is a sinusoidal
grating that contains only a single frequency component, the
oscillations of the two subunits cancel and the correlator
produces a constant output. For any linear delay filter,
the output level depends separably on spatial and temporal
frequency [17]. If the delay filter D is a first-order low pass
with time constant T , as in most modelling studies, a sinusoid
of amplitude C and spatial frequency fs travelling to the right
at velocity v produces an output

R(t) = C2 ft

2πτ f 2
t + 1/(2πτ)2

sin(2π fs�φ) (1)
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Figure 1. The Reichardt correlator has two arms A and B. Each of
the two time-dependent inputs s1 and s2 has a fixed angular
separation �φ, and passes through a linear delay filter (D) before
being multiplied by the other, undelayed signal. The results of the
two correlations thus obtained ‘cor A’ and ‘cor B’ are subtracted to
produce a single output ‘cor’. An object moving to the right will
produce a positive output; an object moving to the left will produce
a negative output.

where ft = fsv is the temporal frequency of the input
signal [17]. At a given spatial frequency, the magnitude of
correlator output increases with temporal frequency up to an
optimum ft,opt = 1/(2πτ) and then decreases monotonically
as the velocity continues to increase. Output also varies with
the square of C, which specifies grating brightness or, in the
presence of preprocessing stages, grating contrast. A physical
luminance grating must have positive mean luminance, so
it will contain a dc component as well as an oscillatory
component. In this case, the output will oscillate about the
level given by equation (1).

3. Dror’s elaborated Reichardt correlator model

Although the simple correlator model produces more
meaningful estimates of velocity for natural images than for
arbitrary sinusoids, it suffers from two major shortcomings.
First, the standard deviation of the correlator output is large
relative to its mean, with relative error values ranging from
3.3 to 76 for natural images. Second, the simulated mean
correlator response of a simple correlator (with �φ = 1.08◦
and with a first-order delay filter of time constant τ =
35 ms) for most natural images peaks at a velocity in the
35◦–40◦ s−1 range [20]. Because the velocity range below
the peak response corresponds to the most probable range
of inputs, we assume that in the absence of contradictory
information a correlator response is interpreted as the lower
of the two putative velocities. Image velocities above the
peak will therefore be misinterpreted. A shorter delay
filter time constant would raise the peak response velocity,
but experimentally described time constants [21] are not
sufficiently low to account for the fact that insects may turn
and track targets at velocities up to hundreds of degrees per
second [22]. Dror has elaborated the basic Reichardt correlator
to include additional physiological components, which helps
to overcome these problems, raising the peak response velocity
and lowering the relative error of the correlator output.

Figure 2. Block diagram of an elaborated correlator model,
after [20]. T, D, H and M represent temporal filters; S is a spatial
filter; ρ and ξ are saturation functions (compressive nonlinearities).
The subunit subtraction may be unbalanced, with weights gpos and
gneg. The outputs of the various EMDs undergo two-dimensional
spatial integration (�), which may be non-uniform, with the
weights represented by wi . For simplicity, this figure omits a
number of demonstrated nonlinear and adaptive phenomena.

Figure 2 illustrates an elaborate correlator, including spatial
and temporal prefiltering, compressive nonlinearities, and
output integration [20].

4. The template model

The template model proposed by Horridge [9, 10] models the
function of the small field motion detection neurons in the
medulla. In the template model the temporal contrast of the
adjacent cells at consecutive instances is used to determine the
direction of motion of an object. For simplicity, only temporal
contrast at two instances and from two neighbouring cells is
considered.

The visual field is sampled spatially. Each sampling
channel detects changes in light intensity at two consecutive
sampling instances to show either an increase ↑, a decrease ↓ or
a no change –. The changed states are then spatially combined
between adjacent channels. Hence for a pair of adjacent
sampling channels, there are nine possible combinations: (– –),
(↑ –), (↑↑), (↑↓), (↓ –), (↓↓), (– ↓), (↓↑), (– ↑).

Since in any visual system directional motion is
accomplished as a spatio-temporal operation, the temporal
domain is included by associating the combinations obtained
at two consecutive sampling times t0 and t1, thus yielding 81
spatio-temporal combinations or templates. Thus the temporal
contrast of two neighbouring cells, at two sampling instances,
is combined to give simple motion measures called ‘templates’.

Out of these 81 templates, there are only 8 templates which
indicate coherent motion. The templates sensitive to coherent
motion are the ones in which one of the four entries indicated no
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Figure 3. Directionally motion sensitive templates.

change in intensity and the other three must identically either
increase or decrease in intensity. These templates are known
as directionally motion sensitive templates (DMSTs) [23] as
shown in figure 3. These templates possess the 3:1 diagonally
symmetric structure.

The template model is easily implemented in VLSI,
because the thresholding and template formation operations are
simple and can be carried out in parallel. The presence of only
three states reduces the bandwidth requirements compared to
other vision systems.

A series of ‘bugeye’ chips [11–13] based on the template
model has been implemented using greyscale photodetectors.
In these custom insect vision chips, the retina was modelled
using an array of on-chip photodetectors with dynamic range
control circuitry. This is replaced by a CMOS camera in our
prototype. It should be noted that the CMOS camera does not
have automatic gain control (AGC) circuitry at the pixel level,
but this feature is not essential for indoor controlled lighting
conditions.

The filtering operation in the lamina layer was
implemented using temporal differentiation in the custom
chips, whilst in our CMOS camera prototype this is performed
using simple frame differencing. The CMOS camera is
interfaced to a personal computer and the captured image
is stored in the buffers. The difference between the current
image in the current frame buffer and the previous image in
the previous frame buffer indicates changes in motion, which
are thresholded and stored as templates. Template generation
here is performed in software, whereas some custom chips
have template generation elements in the hardware. Thus
by comparing the templates obtained from frame differencing
with directionally sensitive motion templates, the direction of
motion of the moving object can be obtained. The time step
size between the frames or the frame interval can be adjusted.
But it is found that by keeping the frame interval low, more
frames can be captured, giving us more template information.
When the frame interval is high, a lot of frames and information
is lost. In our case, we have chosen a low frame interval of
60 ms as it was found to give the optimum results.

5. Comparison of velocity response curves

In order to test the relationships between image power spectra
and velocity response curves, a set of experiments was carried
out in which the recordings of steady-state responses of wide-
field neurons in a hoverfly to motion of broadband images

at different velocities were taken and compared with the
analytical and computational predictions. Male specimens
of the hoverfly Volucella were used for these experiments.
The HS (horizontal system) cells typically consist of three
horizontal cells termed north (HSN), equatorial (HSE), and
south (HSS) horizontal cells because their dendritic trees
cover the dorsal, medial and ventral regions of the lobula
plate, respectively, with corresponding physiological receptive
fields. In syrphids such as volucella, the HS system consists
of four neurons—an HSNE neuron in addition to the three
HS neurons mentioned. Here recordings from HSN, HSNE,
and HSE neurons are taken, which are tangential cells of
the horizontal system. Additional processing may occur
subsequent to or in parallel with the wide-field neurons, so
we are not necessarily measuring the fly’s actual perception
of velocity. However, because the wide-field neurons perform
extensive spatial integration and because recorded output is
averaged over time, the results are effectively velocity response
curves for wide-field neurons [24, 20]. It was found that
the shapes of these curves and their dependence on image
statistics agree with theoretical predictions. The response of
the model correlator is then compared to that of the Horridge
model using the same stimulus. Since the template model
is also developed from an EMD, we expect some similarity
in the results. The velocity response curves obtained with
a modelled correlator, the velocity response curves obtained
from the physiological recordings of the wide-field neurons
of the hoverfly and velocity response curve obtained from the
software implementation of the Horridge model are explained
clearly and compared in the subsections below.

5.1. Model correlator response

Figure 4 shows velocity response curves for a model correlator
predicted analytically from the power spectra of random
textures of different densities. This correlator model included
spatial blurring by the optics and temporal filtering by light-
adapted photoreceptors and LMCs. Saturation effects were
not included because the texels themselves provide a binary-
valued input signal. The exact shape of the curves and their
peak response velocities depend on a number of parameters
which are difficult to predict on the basis of available data
for these cells, such as the extent of temporal high-pass
filtering. Moreover, the predicted curves in this figure do not
take account of known nonlinear effects such as gain control.
However, several important features of the fly’s response
to the texels can be predicted with confidence. First, they
will have the same general shape as the curves predicted for
natural images, increasing monotonically up to a peak response
velocity and then falling off. Second, the velocity response
curves should shift to the left as the texture density increases.

5.2. Response of the wide-field neuron of the hoverfly

Figure 5 shows velocity response curves for one HSNE neuron
measured at six texture densities. The velocity response curves
show the expected shape, rising to a peak response at some
optimum velocity and then falling off again. The tuning
curves for broadband images have higher optimal velocities
than the corresponding tuning curves for sinusoidal gratings
of optimal spatial frequency. As texture density increases, the
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Figure 4. Angular velocity response curves for a model correlator
for random texture images of various densities, as predicted from
the power spectra. Like models used in previous simulations, the
correlator had an inter-receptor angle �φ = 1.05◦ and a first-order
delay filter with τ = 35 ms. It also included a spatial prefilter
corresponding to optic blurring and a temporal prefilter
corresponding to light-adapted LMCs, with impulse responses and
parameters. Each successive curve corresponds to a random texture
with double the density of the preceding one; these correspond to
five of the texture densities. These curves were calculated
theoretically. While the maximum response levels vary significantly
with density, each curve is normalized to a maximum value of 1.0 to
facilitate comparison with experimental data. Due to effects such as
contrast normalization and output saturation not included in this
model, these overall variations in magnitude are not expected to
match those recorded experimentally. From [20].

-0.5

0

0.5

1

re
sp

on
se

 (
no

rm
al

iz
ed

)

10 100 1000
velocity (°/s)

1.64 texels/° (n=3)

1.28 texels/°(n=8)

0.851 texels/° (n=11)

0.426 texels/° (n=8)

0.213 texels/° (n=8)

0.106 texels/° (n=8)

HSNE 170698

Figure 5. Velocity response curves measured at six different texture
densities for a single HSNE neuron. As the texture density increases,
the mean horizontal power spectrum of the texture field becomes
flatter and the velocity response curves shift to the left. The legend
indicates texture density and the number of measurements averaged
to obtain each point in the figure. The magnitude of responses of the
cell at different texture densities differed significantly, but the curves
presented here have been normalized for comparison. The n value
gives the number of trials performed for each case. From [20].
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Figure 6. Optimum velocity as a function of texture density for
several neurons. The optimal velocity is the velocity of pattern
motion for which the neuron gives a maximum steady-state
response; this velocity generally decreases as the texture density
increases, in agreement with theoretical predictions. Neuron 080698
HSNE exhibited anomalous behaviour, while a noisy velocity
response curve led to a single anomalous measurement for neuron
120698 HSN at the second lowest texture density. The legend
indicates the type of each neuron. The two thick solid lines indicate
two sets of recordings from the neuron whose velocity response
curves are shown in this figure. In order to reduce the effects of
measurement noise, we estimated the velocity optimum for each cell
at each texture density as the velocity optimum of a second-order
thin-plate spline fit to the velocity response curve on a logarithmic
velocity axis. The amplitude of the curve corresponding to
analytical predictions is highly sensitive to the properties of the
high-pass temporal prefilter. A slightly weaker high-pass temporal
prefilter or the addition of a realistic high-pass spatial prefilter
would decrease the predicted response velocities into the range of
those observed experimentally. From [20].

shift left at the very highest densities, as the image power
spectrum becomes almost completely flat in the relevant
frequency range. The model predicts qualitative aspects of the
recorded data surprisingly well, given that model parameters
were literature values for typical large hoverflies and were not
tuned to the cell in question. The data of figure 5 represent
a particularly successful recording session lasting over 2 h,
during which response curves at a wide range of densities
were measured and test protocols were repeated twice at most
densities. Neurons in other animals gave similar results, but
typically with more noise due to shorter recording sessions.

Figure 6 indicates the relationship between texture density
and optimum velocity for a number of HS cells from several
flies, as well as analytical predictions. With one anomaly,
all cells show the expected decrease of optimum velocity
with increasing density. The velocity optima do differ
systematically from cell to cell. At any given texture density,
some neurons have optimal velocities 50% greater than those
of others. These systematic variations between cells may
reflect real variations in physiology; for example, temporal
prefiltering might vary between organisms or regions of the
visual field, which could explain the differences shown.
Alternatively, the variations may be due to differences in the
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response. The shape of the curve obtained differs to the response
obtained from a Reichardt correlator or HSNE neuron of the fly. A
number of reasons could be attributed to this. The implementation
of the Horridge model here is a discrete-time model, whereas the
Reichardt correlator is an analogue model. It could also be due to
the noise introduced from the camera and during the analogue to
digital conversion, and it could also be due to the motion blur caused
by the camera.

recordings, such as the position of the screen relative to the
receptive field. Velocity tuning curves as well as spatial
and temporal frequency tuning curves were compared for
HSE, HSNE, and HSN neurons, but no significant systematic
differences were found.

5.3. Horridge template model response

We have set up an experiment to compare the velocity response
curve of the Reichardt correlator with that of the Horridge
model. In this experiment, the camera was placed in the centre
of a hollow cylinder with random horizontal texture elements
(‘texels’) printed on a horizontal roll of paper stuck inside.
The cylinder is motor controlled and the angular speed of the
cylinder can be adjusted by changing the voltage supply to
the motor. Our program then counts the number of templates
produced by detecting the motion of the texels. By varying
the texture density parameter, texels of different sizes can
be produced. The experiment is repeated with each texture
density. Since the response of the Horridge model is in the
form of templates, the velocity response curve in this case is
the velocity versus template count curve, which is plotted for
each texel density.

Our program counts the number of templates produced
and does it more accurately at lower velocities than at higher
velocities. This is expected because here we use the forward
tracking method [25] to track the templates and to determine
their velocity. Theoretically, this method is more useful in the
case of slow motion or at low velocities as the velocity of a
slowly moving object is updated at each sampling instant [26].
Hence, in our program, we expect the response to decrease at
very high velocities as there are chances of losing or missing
the templates, due to the fast motion of the texels.

Figure 7 shows the velocity response curves measured at
five texture densities using the template model algorithm. The
template model detects the motion of objects as edges. When
the texel density is low, the texels are bigger and fewer in
number, hence there is a smaller number of edges and thereby
fewer templates at low velocities. However, as the texel density
increases, the number of edges detected and the number of
templates increases, resulting in the curve shifting to the left,
showing similarity in response to the response of the HSNE
neuron. As the velocity increases, it is seen that the response
increases then begins to fall. This is due to the blurring effect
caused by the fast motion of the texels. The higher the texel
density, the lower the velocity at which the blur occurs. But as
we increase the velocity, more texels pass in front of the camera
at a shorter rate, resulting in an increase of the response again
and then a further increase in velocity causes more motion blur,
resulting in decrease of response.

Although the Horridge model is essentially a discrete-
time model, the front end of the true Horridge model does a
continuous-time differentiation and then the signal is digitized.
However, in the set-up with the texels and video camera, that
implementation of the Horridge model is fully discrete-time.
That could be the reason why the results show variations with
the Reichardt model and the experiments done on the fly. But
since the template model is basically developed from an EMD,
which is the minimum prerequisite for directionally selective
motion detection in a visual system, we expect the curves to be
similar and we see that the curves do agree to some extent with
the Reichardt correlator, in the way that they show increase in
response as velocity increases up to an optimum velocity and
then the response starts to fall off and in the way the curves
shift to the left as the texel density increases.

In the template model, experimental results show that a
moving object (or edge) consistently causes the same motion
sensitive template to occur at subsequent time steps, and
at positions corresponding to the displacement of the edge
relative to the detector [25]. The angular velocity may be
estimated by evaluating the ratio of the displacement of a
motion sensitive template to the time between the template’s
occurrences. In figure 8, the horizontal axis represents the
angular velocity measured using a tachometer and the vertical
axis represents the velocity measured, by tracking of the
templates, using the template model algorithm. At lower
velocities it is seen that the algorithm gives a nearly correct
measure of the velocity as the curve coincides with the ideal
response, but as the velocity increases the blurring of the
texels causes the response to deviate from the ideal line. The
slight deviation of the response from the correct value at lower
velocities is expected due to the presence of noise in the
system. Different noise reduction techniques and filters could
be included to reduce its effect [27]. But at higher velocities,
because of the blurring of the texels, the edges are not clearly
identified, causing the deviation of the response from the ideal
line. It is seen that it gets worse at higher texel densities, as
there are more edges, and at high velocities they pass the screen
at a faster rate, and that, along with the blurring, causes a loss
of templates.
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5.4. Discussion

This comparative study analyses the important aspects of
accurately estimating the local image velocity using a
Reichardt correlator and a template model. It is found that
both these models give a correct estimate of velocity at low
velocities but their efficiency decreases at higher velocities.
It also proves that experimentally supported elaborations of
the basic Reichardt correlator enhance its reliability as a
velocity estimator. Since the basic principle of a template
model is the same as the Reichardt correlator, the elaborated
Reichardt correlator and the template model produce similar
response. This result has been verified by the data obtained
from the experiments done on the wide-field neurons of the
hoverfly which qualitatively matches the above two results
in several important aspects. But it is observed that there
is greater similarity with the elaborated Reichardt correlator
response than with the template model result, which leads us to
believe that the Reichardt correlator model is more biomimetic.
However, it may be of interest in the future to elaborate the
Horridge model itself, in order to make a fairer comparison.

6. Extension of Dror’s model

Dror has demonstrated that the addition of spatial and temporal
filtering, saturation, integration and adaptation in a correlator-
based system can improve its performance as a reliable velocity
estimator. In the second part of this paper, we further
investigate and expand his model to improve the correlator
performance. The elaborated version of our EMD model with
spatial and temporal prefiltering is shown in figure 9. First, the
EMD correlator model for the early stage of motion detection
in insects is elaborated to mimic the properties of the fly visual
system. Then based on motion adaptation studies done on
the insect visual system [21, 28], contrast gain reduction is
implemented using a feedback mechanism. It is found that the

Figure 9. The elaborated version of the fly EMD model with spatial
and temporal prefiltering. Spatial filtering is done using a Gaussian
filter of half width 2◦ and temporal filtering is done with the
difference of log-normal filters. Motion is detected locally by a
correlation method and is pooled so as to enable wide-field motion
detection.

resulting adaptive feedback EMD array model is successful in
making the response less sensitive to contrast.

7. Our elaborated motion detector model

In our experiments, we use natural images like the image shown
in figure 11 as our stimuli. Recent work has shown that certain
image statistics are highly predictable in the natural world [29–
31] and that the biological visual system is optimized to
take advantage of these statistics [32]. Hence natural images
photographed from favoured hovering positions of the hoverfly
are used. Then the edges of the images are wrapped to form a
panoramic image, which is given as a stimulus to our fly EMD
model. A panorama is formed by ‘warping’ 12 image ‘tiles’
at 30◦ intervals to remove lens distribution and then wrapping
its ends together. This is done using Apple Quicktime VR
software on a Macintosh computer. The resulting image has
a width of 8352 pixels and height of 1264 pixels. Spatial
prefiltering is implemented by two-dimensional convolution
of the image with a Gaussian kernel of half width (standard
deviation) 2◦, which approximates the acceptance function of a
typical fly photoreceptor [33]. Only the luminance (grey scale)
information is taken from the image using the green channel
since photoreceptors are green sensitive. The spatially low-
pass filtered image is illustrated in figure 12. The distance
between two ommatidia in an insect eye is between 1◦ and
1.5◦. Since the insect is looking at an image of 360◦ with 8352
pixels in it, if we consider the inter-ommatidial angle as 1.5◦,
there will be a total of 240 ommatidia looking at the image. So
there will be an array of typically 240 EMDs working together
to detect motion as shown in figure 10.

The image in figure 12 is temporally filtered with a
difference of log-normal filter to copy the response of the
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Figure 10. The elaborated EMD array. In our EMD array model, an array of 240 elaborated EMDs is used to detect motion. The input
stimulus given is an image of width 8352 pixels, and considering the inter-ommatidial angle as 1.5◦ there will be typically 240 ommatidia
(EMDs) working together to detect motion. The output of these EMDs is pooled to enable wide-field motion detection.

Figure 11. The panoramic natural image given as stimulus to the EMD model. A panorama of the image is formed by ‘warping’ 12 image
tiles at 30◦ intervals to remove lens distortions and then by wrapping its ends together using Apple Quicktime VR software on a Macintosh
computer.

(This figure is in colour only in the electronic version)
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Figure 12. The natural image is prefiltered using a spatial low-pass filter, imitating the characteristics of the photoreceptor. The spatial filter
used here is a Gaussian filter of half width (standard deviation) 2◦.
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Figure 13. A single row of the image animated at a constant
velocity of 200◦ s−1 and sampled onto an array of 240 ommatidia.

lamina monopolar cells [34–36]. The temporally prefiltered
image is converted to a space–time matrix as shown in figure 13
based on desired velocity, which is then simulated along the
height of the image in pixels. The height of the image is also
divided into 36 ommatidia by calculating the pixels per degree
and keeping the inter-ommatidial angle as 1.5◦.

Then this spatio-temporally prefiltered image is given to
the EMD array, which correlates the inputs to give an array of
outputs as done in the insect eye [37, 38]. Then the EMD array
model copies the lobula by averaging the outputs to produce an
average EMD response. The simulations are first performed
with a constant velocity of 200◦ s−1 per second and the input–
output responses of a single EMD row from the total array
is shown in figure 14. Then the simulations are repeated by
increasing the velocity in steps as shown in figure 15(a) and the
spatial average or the average response of all the EMD rows is
shown in figure 15(b).

420



Man-made velocity estimators based on insect vision

0 200 400 600 800 1000 1200
– 200

0

200

400

600

800

R
es

p
o

n
se

Time steps in ms

Input s1
Input s2
Delayed input s1d
Delayed input s2d

0 200 400 600 800 1000 1200
–1

0

1

2

3

4
x 10

5

R
es

p
o

n
se

Time steps in ms

Response of Correlator A
Response of correlator B
Average correlator response

Figure 14. The input and the output simulated responses of a single EMD row from the modelled array moving with constant velocity of
200◦ s−1. Refer to figure 2 for explanation of each component. Note that the EMD output as a function of time is highly variable, and is
maximal whenever high contrast features move across the EMD inputs (s1, s2).

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time steps in ms Time steps in ms

V
el

o
ci

ty
 in

 d
eg

re
es

 p
er

 s
ec

o
n

d

0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
ea

n
 c

o
rr

el
at

o
r 

re
sp

o
n

se

 – 50

0

50

100

150

200
(a) (b)

Figure 15. (a) To test motion adapted responses, we increased the velocity stepwise, with interleaved bursts of adapting motion (constant
speed). The velocity is increased in steps with time. (b) The mean correlator simulated response of the EMD array model to a natural image
moving with velocity increasing in steps across the EMD array.

8. Contrast adaptation

Recent studies by Harris et al (1999) [21] on motion adaptation
in the fly reveal that motion adaptation induces a profound
decrease in contrast sensitivity of fly motion sensitive cells
via two proposed mechanisms, a local direction sensitive
after potential and a local direction insensitive contrast gain
reduction. We propose that this gain reduction may serve to
reduce sensitivity to image contrast, as well as reducing the
tendency of the motion detectors to saturate.

In the correlation model of motion detection, each
correlator contains an expansive nonlinearity (multiplication).
This would make the correlator output particularly sensitive to
the magnitude of input signals and so potentially vulnerable to
saturation. The after-potential and the gain reduction serve to

release the motion pathway from this saturation, allowing us
to maintain a wide sensitivity across a wide range of stimulus
conditions. The after-potential acts antagonistically to recent
activity in the cell, repositioning the cell’s responses within
the available signalling range. By analogy with the retina,
this type of subtractive mechanism may exploit correlations
in continuous signals, reduce redundancy and maintain the
operations of synapses in favourable regions of their input–
output functions.

Similarly the gain reduction component of adaptation
scales down the magnitude of signals in the motion pathway.
If the correlator nonlinearity is to be protected from saturation
the gain control should act on the inputs. Furthermore,
since the output of the correlators depends on the spatio-
temporal correlation between the input signals as well as their
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Figure 16. Block diagram of a feedback adaptive EMD model. In
this model, the output of the correlator is rectified and low-pass
filtered and is fed back to control the gain of the EMD inputs.

magnitude, the gain control would be best regulated by the
magnitude of the correlator output, not the magnitude of the
inputs. This is consistent with the observation that adaptation
is recruited by motion but not flicker. The gain reduction
mechanism will be recruited strongly when either the mean
or the variance of the stimulus velocity distribution becomes
large.

8.1. Experimental verification

As described in section 5, a set of experiments was carried
out in which the recordings of steady-state responses of wide-
field neurons in a hoverfly to motion of broadband images
at different velocities were taken and compared with the
analytical and computational predictions. It was found that the
shapes of these curves and their dependence on image statistics
agree with theoretical predictions [39].

The results of the experiments suggested that while the
system behaves like a simple Reichardt correlator at low
contrasts, these curves support the presence of some form of
contrast gain control at higher contrasts. This invariance with
contrast is characteristic of the motion-adapted system; the
unadapted system exhibits larger variations of the response
level with stimulus contrast. From a practical point of view,
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Figure 17. The input and the output simulated responses of one row of EMDs from the adaptive EMD array in response to the test sequence
illustrated in figure 15(a).

the invariance of the motion-adapted velocity response curve
with overall image contrast implies that mean correlator output
may indeed provide an accurate estimate of velocity for a wide
range of natural images [20].

9. Contrast gain reduction—feedback adaptive
EMD model

In our elaborated Reichardt correlator array model, in order to
reduce the dependancy of the response to changes in contrast
and spatial frequency and to get a more accurate estimate of
velocity, contrast gain reduction is implemented by a feedback
adaptive process as in figure 16. The gain of the EMD
inputs is reduced by a signal derived from the rectified and
low-pass filtered outputs of a local EMD pool with different
local preferred direction, fed back to control the gain of the
EMD inputs. The model was inspired by recent observation
of contrast-dependent gain reduction in the responses of HS
neurons following motion stimulation. The model captures
several aspects of the adaptive phenomena observed in the
biological system. In particular, the adaptation is strongest
when the local motion detector output is the largest, conferring
a robustness in adaptation to motion signals as opposed to
static flicker or noise applied to the inputs. This matches data
obtained from the electrophysiological experiments, which
show that motion stimuli are much more effective at recruiting
adaptive gain than other stimuli. Secondly, the adaptive
mechanisms remain independent of the direction of local
motion, despite the selectivity for motion as the source of
adaptation. Figure 17 shows the input and the output simulated
responses of one row of EMDs from the adaptive EMD array
in response to the test sequence illustrated in figure 15(a).

In order to test the performance of this adaptive EMD
array, we have compared the responses of the non-adapted
elaborated EMD array with the adaptive elaborated EMD array
at three different contrasts. From the graphs (figures 18 and 19)
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Figure 18. The simulated mean correlator response of an
unadaptive EMD array at three different contrasts. The response of
the elaborated EMD array without including the adaptive feedback
loop is noted at three different contrasts (1, 0.5 and 0.1). It is clearly
seen from the graph that there is huge variation of the response with
contrast.

it is very clear that the adaptive feedback mechanism has
resulted in decreasing the contrast sensitivity of the model,
compared with an otherwise similar model that lacks adaptive
feedback. It is also found that the adaptation is stronger at
higher velocities and at higher contrasts.

10. Conclusion and future work

In this paper, a comparative study of the velocity estimation
by the template model with the Reichardt correlator model
is performed. The experimental results reveal that Dror’s
elaborated correlator model has more similarity with the curves
obtained from the fly HS neurons. In order to improve its
performance, Dror’s model is then extended and we present
a preliminary implementation of an adaptive EMD array
model to take account of recent neurobiological research on
the fly visual system. This model leads to contrast gain
reduction at local EMDs as observed in fly HS neurons [28].
In our model, this gain reduction is achieved by direct
feedback of local EMD outputs. An alternative mechanism
in which the feedback signal gates a feedforward contrast
normalization [40] provides an alternative explanation for the
physiological data. Ongoing physiological experiments in our
laboratory aim to test predictions of both models and thus to
establish whether either of these models is fully consistent with
motion adaptation mechanisms in the fly visual systems.

The present model demonstrates that a feedback gain
control is capable of reducing the dependence of EMD output
on contrast in natural images. Although the model does
not, in its present form, achieve ‘velocity constancy’ with
respect to contrast, as implied by pilot experiments on the
fly HS neurons [28], we have deliberately simplified this
model to exclude known additional nonlinearities of the fly
vision, including logarithmic encoding of luminance and
response saturation. Since earlier work already showed
that these additional elaborations improve velocity coding by
EMDs [20, 39], the inclusion of such components in future
models may serve to achieve substantial improvements in
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Figure 19. The simulated mean correlator response of an adaptive
EMD array at three different contrasts. The response of the
elaborated EMD array including the adaptive feedback loop is noted
at three different contrasts (1, 0.5 and 0.1). The adaptive feedback
mechanism helps in decreasing the dependence of the response to
contrast.

performance of an adaptive EMD over earlier versions of the
Reichardt correlator.
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