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ABSTRACT

A number of signal processing and statistical methods can be used in analyzing either pieces of text or DNA
sequences. These techniques can be used in a number of ways, such as determining authorship of documents,
finding genes in DNA, and determining phylogenetic and linguistic trees. Signal processing methods such
as spectrograms provide useful new tools in the area of genomic information science. In particular, fractal
analysis of DNA “signals” has provided a new way of classifying organisms.
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1. INTRODUCTION

The Human Genome Project1 together with a number of other projects has produced the DNA sequences for
a large number of organisms, from humans and mice, to zebrafish, yeast, and over eighty bacteria. There has
been a great deal of work done in applying signal processing and statistical methods to DNA recently, and our
work has been looking at the application of these methods to not only DNA but in the field of text analysis
as well.

A number of interesting statistical techniques have been explored in recent times in the area of text analysis.
These attempt to answer questions regarding what the text is about (by extracting relevant keywords)2 or
relationships between texts or languages.3 In this paper we show significant results of analysis performed on
ancient Greek texts, and give a detailed explanation of an F-statistic method for keyword extraction we have
been developing.

In the field of DNA analysis, techniques such as the discrete Fourier transform4 and multifractal analysis5

have been explored. In this paper we present exciting new applications of those methods to the areas of
sequence analysis6 and phylogenetic trees7 (those showing the relationships between organisms) respectively.

2. TEXT ANALYSIS

2.1. Introduction to text analysis

In this section we explore new methods from two main areas of text analysis, namely stylography and keyword
extraction. Stylography or more general style analysis using statistical methods can highlight differences or
similarities between authors, and between languages. Although the idea of using statistical properties of texts
in extracting keywords and categorizing texts is not new,8, 9 here we use a new method of analyzing the
spacing between words for both determining style similarities and finding keywords. We begin by reviewing
the seminal work of Ortuño et al.,2 and then introduce a new keyword extraction technique based on an
F-statistic method.
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2.2. Stylography

Ortuño et al.2 suggest using standard deviation of the inter-word spacing to characterize word distributions
and extract keywords, as opposed to using a frequency count of each word. By inter-word spacing, we mean the
number of words in between successive occurrences of a keyword (non-inclusive), for example if the keyword
is “the”, then the spacing in “The cat sat on the mat” is three, and the spacing in “The cat is the best cat.”
is two as there are two and three words respectively between the two occurrences of the word “the”. Initial
results of plotting the standard deviation of word spacing for (almost) all the words in a given text against
the plot of those from other texts by the same author revealed an unexpected result; namely that works by
the same author have a similar distribution of inter-word spacings. A striking result is obtained when we plot
the gospels of Matthew and Luke, and the book of Acts from the Koine Greek New Testament. This suggests
a statistical approach to stylography could be taken, and we demonstrate the use of this for both texts by
known authors, and for texts where the historical authorship is unclear. The following method can be used
to give an indication of the similarity in style between two texts. We conjecture that this can give a valuable
insight into the authorship of texts.

Given a set of word spacings {x1, . . . , xn} for a given word, we compute the scaled standard deviation of
word spacings

σ̂ =
1
x̄

√√√√ n∑
i=1

(xi − x̄)2
n− 1

. (1)

We repeat this calculation for all the words in a text, giving us a set of standard deviations {σ̂1, . . . , σ̂m}.
In order to generate the graphs we then rank these σ̂j in order and plot standard deviation vs. log10 (rank).
We omit those words occurring five or fewer times as being statistically insignificant. The technique of using
inter-word spacing in this way and plotting the ranked standard deviations on a logarithmic scale was suggested
by Carpena et al.,10 however here we show some striking similarities between graphs of standard deviations
of words in texts by the same author. Figure 1 shows the result of applying this to the gospels of Matthew
and Luke, and the book of Acts. Note that we have used the Koine Greek sources for the New Testament11

to eliminate any changes in style due to translation. Figure 2 shows the similarity between works by Charles
Dickens (Great Expectations and Barnaby Rudge) and works by Thomas Hardy (Tess of the d’Urbervilles and
Far From the Madding Crowd). This illustrates that the technique is not restricted to only Greek texts.

2.3. Keyword extraction

Here we detail the method used by Ortuño et al.2 and introduce a new method for extracting keywords.

As per the standard deviation graphs, we determine the set of standard deviations of word spacings for all
the words in a text, {σ̂1, . . . , σ̂m}. Again, we rank the words from highest standard deviation from highest to
lowest, but keeping all the words. We thus obtain a list of words ranked from high relevance to low relevance.

Another method we have examined for keyword extraction is using the F-statistic on the word spacings,
assuming a geometric distribution. The F-statistic detects word-spacing with excess variance (relative to a
maximal-entropy or “geometric” distribution). The F-statistic behaves asymptotically like a Gaussian random
variable (when the number of inter-word spacing samples is large) with mean of 0 and variance of 1 so the
statistical tests for relevant keywords are very easy. Given the set of word spacings {x1, . . . , xn} we use the
F-statistic

1
2
ln(n)

(
s2

x̄(1 + x̄)
− 1

)
, (2)

where s is the normal sample standard deviation. Note the similarity between the F-statistic and the square of
the scaled standard deviation. Assuming the null hypothesis then we get a maximum likelihood estimate of the
parameter a in the geometric pdf p(x) = (1− a)(ax), and can hence estimate the variance of the distribution
and we compare this with the standard unbiased estimator for variance. The log(n) term is for scaling (to
deal with the accuracy of the F-statistic for different sample sizes). Other terms are corrections as detailed in
Abramowitz and Stegun.12
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Figure 1. The scaled standard deviation of the inter-word spacing (y-axis) for each word is ranked in descending order
on a logarithmic scale (x-axis). Using the original Koine Greek text, a remarkably close match is obtained between the
gospel of Luke and the book of Acts in the New Testament, which were written by the same author. For reference, a
curve of a different author is shown (the book of Matthew) illustrating a distinct difference (this is the upper curve).
Although the match between Luke and Acts deviates for a log rank < 1.2, this represents less than four per cent of the
total curve (due to the base-ten logarithmic scale). Note that uncommon words occurring less than 5 times in each
text are not included in the ranking, as their scaled standard deviation values are not significant.

Figure 2. Standard deviation vs. log(rank) for books by Charles Dickens and Thomas Hardy. For much of the length
of the plots the graphs for the Dickens texts are nearly coincident, and likewise for the pair of Hardy texts. Although
the plots are all quite different for the region 1 to 1.7, note that this apparently large region is quite small due the
logarithmic scale on the x-axis. The extra length on the plot for Barnarby Rudge is simply due to the larger number
of different words in this text when compared with the other three texts.
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Table 1. Rankings according to frequency, standard deviation and F-statistic for words in the The Hound of the
Baskervilles.

Rank Freq. word Freq. val. σ̂ word σ̂ val. F-stat. word F-stat. val.

1 the 3327 her 3.23 her 24.02

2 and 1628 hotel 3.11 she 17.83

3 of 1592 she 2.88 we 15.08

4 i 1465 mortimer 2.75 mortimer 14.54

5 to 1448 we 2.44 hotel 13.96

6 a 1306 hound 2.41 you 10.82

7 that 1133 body 2.38 hound 10.18

8 it 979 boot 2.31 charles 6.92

9 he 914 hugo 2.28 body 6.77

10 in 913 alley 2.19 barrymore 6.61

11 you 826 heir 2.15 boot 6.41

12 was 803 cab 2.13 i 6.08

13 his 689 high 2.13 hugo 5.84

14 is 622 miss 2.11 your 5.62

15 have 541 you 2.07 cab 5.38

Table 1 shows words from Sir Arthur Conan Doyle’s The Hound of the Baskervilles. As can be seen in
Table 1, the standard deviation and F-statistic methods are much better than a simple frequency count, which
tends only to pick out the conjunctive words.

Qualitative tests need to be carried out to establish whether the standard deviation or F-statistic method
performs best at extracting relevant keywords. We are currently working on a web search engine which ranks
pages by the score of the keywords the user is searching for (using any of the methods described above or a
combination of them).

3. DNA ANALYSIS

3.1. Introduction to DNA analysis

DNA is like text, but instead of coding for human thoughts it codes for the building blocks of all living things.
Here we present several new techniques for analyzing regions of DNA and classifying organisms based on their
whole genome. For the purposes of our analysis, we simply treat DNA as a long string with letters from an
alphabet A = a, t, c, g. We then map that alphabet into numerical sequences, and then use standard signal
processing and statistical methods to analyze those sequences.

The first method shows how color spectrograms give a visual feel for various properties of the DNA se-
quences. The second method then explores how multifractal methods and spacing methods like we have used
for text analysis above can be used in classifying bacteria.

3.2. Analysis of coding regions in DNA using color spectrograms

Color spectrograms are a useful tool in visualizing aspects of signals occurring in time, for example one can
see the noise present in the audio recording of the moon landing and then design an efficient filter to remove
it, using only the visual information provided in the spectrogram to determine the noise.

Distinguishing coding from non-coding regions is an important problem in genetics. Others such as
Bernaola-Galván et al. have explored entropy-based methods for separating the coding from the non-coding
regions.13 Can color spectrograms give a visual guide to these regions? Here we show some results which
suggest this is possible.
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Anastassiou4 has explored the use of color spectrograms in analyzing DNA sequences. As detailed further
in Anastassiou, for a sequence of bases numbered 1, . . . , n, . . . , N , we can define the following sequences:

xr[n] =
√

2
3 (2uT [n]− uC [n]− uG[n]),

xg[n] =
√

6
3 (uC [n]− uG[n]),

xb[n] = 1
3 (3uA[n]− uT [n]− uC [n]− uG[n]),

(3)

where uX [n] = 1 if the base at position n is X, zero otherwise. The sequences xr, xg, xb are used in generating
red, green, and blue color components of pixels (the squares) in the spectrograms. The mapping of a base
at position n, from the set {a, t, c, g} onto the sequences xr, xg, xb is done so as to maximize the differences
between the sequences at that position n, which results in more vivid colorings of the spectrogram. To color
the spectrogram we compute the discrete Fourier transform (DFT)

Xc[k] =
59∑

n=0

xc[l]e−2πjnk/60, (4)

for k = 1, . . . , 30 and where c represents one of the color sequences. Note we do not scale the DFT expression
in Eq. 4 with a 1/N term as usual, as we have to scale the resulting |Xc[k]| into the color component range
{0, . . . , 255}. We use a DFT block size of 60 as opposed to a power of two (which would enable us to use
the FFT algorithm to improve the computational complexity) since 60 has a large number of integer dividers,
some of which correspond to common repeat lengths in DNA, for example the frequency k = 20 corresponds
to the codon length 3 = 60/20. Repeats of length two and six are also common in sections of DNA, these have
frequencies of k = 60/2 = 30 and k = 60/2 = 30. These repeat lengths thus give rise to center-cell frequencies,
so there is no sidelobe leakage for these repeat lengths.

To illustrate the usefulness of this technique in identifying regions of DNA, we show in Figure 3 the color
spectrograms of DNA sequences in Staphylococcus aureus Mu5014 and Homo sapiens.1 Figure 3 suggests
there are differences in the spectrograms between coding regions of DNA and regions with both coding and
non-coding regions. The lack of fine-grained resolution of the spectrograms is problematic, and prevents easy
visualization of the borders between coding and non-coding regions.

3.3. Multifractal analysis

A method useful in comparing different organisms is to use a multifractal method. We use the fractal method
as detailed by Yu et al.15 namely to each possible substring s = s1 . . . sk, si ∈ A of DNA of length K, we
assign a unique set [xl, xr) given by

xl(s) =
K∑

i=1

xi

4i
, (5)

where

xi =




0, si = a,
1, si = c,
2, si = g,
3, si = t,

(6)

and
xr(s) = xl(s) +

1
4K
. (7)

Then

F (s) =
N(s)

L−K + 1
, (8)

Proc. of SPIE Vol. 4937     235



(a) Color spectrogram of a gene in
S. aureus

(b) Color spectrogram of a gene in
H. sapiens

Figure 3. Figure 3(a) shows the color spectrogram for a 1.8 kb region in the gyrA gene of S. aureus Mu50. Note the
band at a frequency k = 20, indicating a section with codons occurring repeatedly in a long sequence. This differs
to Figure 3(b), which shows a 1.8 kb region in the Q9BZA9 gene of H. sapiens, indicating less repetition of codons,
perhaps because of the presence of introns.

where N(s) is the number of occurrences of the substring s in the string of length L of the whole genome. The
fractal measure is then

µK(dx) = YK(x)dx, (9)

where
YK(x) = 4KFK(s), x ∈ [xl(s), xr(s)). (10)

The partition sum is

Zε(q) =




∑
µ(B) �=0

[µ(B)]q, q �= 1,

∑
µ(B) �=0

µ(B) lnµ(B), otherwise.
(11)

Here we run over all non-empty boxes B = [nε, (n + 1)ε) where ε is ε = 4−K and n = 1, . . . , 4K − 1. Since
µ(B) ∈ R and addition is commutative in the reals, the ordering of the µ(B) given by Eq. 6 is unimportant
in calculating Eq. 11. It is therefore unimportant in calculating the Rényi dimension Dq for q ∈ R, given by

Dq =




lim
ε→0

lnZε(q)
(q − 1) ln ε

, q �= 1,

lim
ε→0

Zε(q)
ln ε

, q = 1

(12)

Note that although the method used by Yu et al. doesn’t show long-range correlations in the DNA sequence, we
are considering the information content in the sequence and not the correlations. If you consider the case where
q = 1, then the Rényi dimension D1 is the same as the Shannon entropy.16 As differences in and similarities
in G+C content can indicate relationships between organisms,17 here we are using the Rényi dimensions
to determine if this is reflected in a useful way in an uneven distribution of the segments – the ordering is
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unimportant here, since we are only comparing the unevenness of the distribution, and not properties relating
to the ordering.

The multifractal D(q) plot for Campylobacter jejuni18 is shown in Figure 4. As with the Yu et al. we found
that a segment size ofK = 8 works best in classifying bacteria. The near linearity of theD(q) plot around q = 0
suggests that we can assign to each bacteria a point in R2 or R3 given by (D−1,D1) or (D−1,D1,D−2). Yu et
al. found that phylogenetically close bacteria are close in the two spaces. We use the space (D−1,D1,D−2) in
conjunction with the minimal-span tree algorithm19 to generate phylogenetic trees in the following subsection.

Figure 4. Multifractal Rényi Dimension plot (K=8) for the bacteria C. jejuni. Note that the value D1 is the Shannon
entropy of the genome for a symbol size of 8. The graph is relatively linear in the region [−2, 1] which suggest these
values of Dq can be used in vectors in a Euclidean space.

3.4. Phylogenetic trees

For each pair (x,y) of genomes, we compute the vectors in Euclidean R3 space

rx = (D−1(x),D1(x),D−2(x)) , (13)

and
ry = (D−1(y),D1(y),D−2(y)) . (14)

Then we compute the metric
d2xy = ‖ry − rx‖2 (15)

and use this in the minimal-span tree algorithm19 to generate binary phylogenetic trees. We have used this
approach to generate the phylogenetic tree for members of the proteo-bacteria and hyperthermophile families
of bacteria as shown in Figure 5(a).

Another method we have been exploring in relation to both text and DNA is a quantitative chi-squared
method which computes a metric with lower scores indicating a closer match. Similar to the inter-word spacing
technique for text, for DNA we compute a scaled standard deviation of spacing, in this case for codons. For
example, the spacing for the codon gat in the sequence gat agg gcg gat is two. Note we simply break the
sequence into groups of three bases, starting at the beginning, to form codons; while not correct in the sense

Proc. of SPIE Vol. 4937     237



of the true biology of gene reading we ignore this problem as we are only interested in large scale properties
of the sequence. We compute the scaled standard deviations as per Eq. 1.

This gives sets of variances of codon spacings for all the genomes, {σ̂2
11, . . . , σ̂

2
I1}, . . . , {σ̂2

1J , . . . , σ̂
2
IJ}, for

all possible codons, labelled i = 1, . . . ,M and genomes j = 1, . . . , J . Then we use a formula for χ2 as given in
Kullback20 for a pair of genomes (k, l) ∈ {1, . . . , J} × {1, . . . , J}.

χ2
kl =

1
NkNl

I∑
i=1

(
Nlσ̂

2
ik −Nkσ̂il

)2

σ̂2
ik + σ̂

2
il

, (16)

Nk =
I∑

i=1

σ̂2
ik, (17)

Nl =
I∑

i=1

σ̂2
il. (18)

We thus generate a set of χ2 values for each pair of genomes. As with the multifractal metric, the chi-squared
values can be combined with the minimal-span tree algorithm to produce a phylogenetic tree. For comparison
between the trees generated between the metric, see Figure 5

(a) Phylogenetic tree obtained using the mul-
tifractal metric

(b) Phylogenetic tree obtained using the
chi-squared metric

Figure 5. The result of applying the minimal-span tree algorithm to the mulitfractal distance metric in Eq. 15 is shown
for several members of the proteo-bacteria family in Fig. 5(a). Using the chi-squared metric in Eq. 16 instead results
in the tree shown in Fig. 5(b). The miniature bug icons represent the organisms we see today, the circles represent the
branches of the tree (where our software thinks the species diverged), and the numbers represent the metric scores used
to separate the families of bacteria at that point. Clearly the two H. pylori21 strains group together correctly for both
metrics. A comparison with trees obtained by a detailed analysis of proteins,7 indicates the Thermatoga maritima22

and Aquifex aeolicus23 as also closely related, and indeed these group together in our trees. Of the two trees, the one
using the chi-squared metric appears more correct when compared with ones generated from the more usual metrics
and tree algorithms used in the study of phylogenetic relationships.7, 24

4. CONCLUSIONS

We have presented a number of interesting methods for analyzing both text and DNA. The graphs of inter-
word spacing standard deviation highlight some interesting results, we are pursuing further work in extracting
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relevant features of the graphs. As we have mentioned, a web search engine is currently under development
to give a qualitative analysis of different keyword extraction techniques. The color spectrogram technique
shows promise, we are working on improving the color contrast between important features and the general
background colors.
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