
Exploring tradeoffs in pleiotropy and redundancy using
evolutionary computing

Matthew J. Berrymana, Wei-Li Khooa, Hiep Nguyena, Erin O’Neillb, Andrew Allisona, and
Derek Abbotta

aCentre for Biomedical Engineering and
School of Electrical and Electronic Engineering,
The University of Adelaide, SA 5005, Australia.

bDept. of Human Physiology,
University of Newcastle,

Callaghan, NSW 2308, Australia.

ABSTRACT

Evolutionary computation algorithms are increasingly being used to solve optimization problems as they have
many advantages over traditional optimization algorithms. In this paper we use evolutionary computation to
study the trade-off between pleiotropy and redundancy in a client-server based network. Pleiotropy is a term
used to describe components that perform multiple tasks, while redundancy refers to multiple components
performing one same task. Pleiotropy reduces cost but lacks robustness, while redundancy increases network
reliability but is more costly, as together, pleiotropy and redundancy build flexibility and robustness into
systems. Therefore it is desirable to have a network that contains a balance between pleiotropy and redundancy.
We explore how factors such as link failure probability, repair rates, and the size of the network influence the
design choices that we explore using genetic algorithms.

Keywords: pleiotropy, redundancy, genetic algorithms, computer networks

1. INTRODUCTION

Evolutionary computation involves using solution space search procedures inspired by biological evolution.1

These search procedures use ideas from biological evolution such as mating, fitness, and natural selection.
Individuals undergo natural selection, whereby organisms with the most favorable traits are more successful in
having offspring. Genetic algorithms (GAs) rely on describing systems in terms of their traits (or phenotype)
and then a fitness function (or how well they reproduce). Then we can evolve better solutions (with a
higher fitness function) by allowing transfer of hereditary characteristics (genes) to the next generation for fit
functions. The idea of applying such biological concepts to evolutionary computing was originates with John
Holland in his seminal paper on the topic of adaptive systems.2

Evolutionary computational techniques such as genetic algorithms have many advantages over traditional
optimization algorithms. Current optimization algorithms require many assumptions to be made about the
problem, for example with gradient-based searches, the requirement is that the function be smooth and differ-
entiable. Evolutionary algorithms require no such assumptions, only requiring a way of measuring the “fitness”
of a solution.3 With each succeeding generation, the algorithm tries to better fulfill the specifications de-
scribed by the fitness function. The other advantage is adaptability to a changing problem. For example with
traditional optimization procedures, any change in the specification or problem constraints requires solving
the problem from the start. This is not necessary with evolutionary algorithms where one can continue the

Send correspondence to Derek Abbott
E-mail: dabbott@eleceng.adelaide.edu.au, Telephone: +61 8 8303 5748

BioMEMS and Nanotechnology, edited by Dan V. Nicolau, Uwe R. Muller,
John M. Dell, Proceedings of SPIE Vol. 5275 (SPIE, Bellingham, WA, 2004)
0277-786X/04/$15 · doi: 10.1117/12.548001

49







3.1. Network structure
The network consists of a set of servers, a set of clients (which can also function as routers), and a set of links
between those various nodes. A graph data structure is used to represent the network, with each node (client
or server) in the graph having the following properties:

• node label, “C” for a client (including routers) or “S” for a server

• node ID, which also serves as a grid reference of the node for display in a GUI

• node failure rate, a value between zero and one giving the probability of failure per time step

• current state, working or non-working

• number of time steps since failure, zero if working

• details of the inbound and outbound network connections.

The edges, the links in the network, have the following properties:

• link label indicating whether the link is a link between clients (including routers) or between a client or
router to a server

• edge ID, which also serves as a pair of grid references for display in a GUI

• edge failure rate, a value between zero and one giving the probability of failure

• current state, working or non-working

• number of time steps since failure, zero if working.

3.2. Network construction and maintenance
We initially start with a set of clients (C) and servers (S), with no links. The positions of the clients and
servers are set at random, with a minimum spacing between them. Each client i ∈ C is assigned a traffic value,
Ti, at random (0 < Ti < Tmax), which indicates the amount of traffic requested by the client that is to be
transmitted across the network. Each server j ∈ S has a fixed amount Ts of traffic it can serve. We define a
utilization parameter,

U =

∑

i∈C
Ti

|S|Ts
, (1)

describing how well the servers are able to deliver their available load to the clients. If the utilization is less
than 0.75, then more links are added at random to carry the extra server capacity to clients. If, on the other
hand, the utilization is greater than 0.85 then either links are removed (reducing the amount of traffic that is
able to be requested from servers) or more servers are added. The network thus evolves by starting without
any connections, and through mutations including:

• adding links to increase U

• removing links to decrease U

• adding servers to decrease U

• links failing

• links being repaired.

An example of an evolved network is shown in Figure 4.

Having established a network, we then need to measure its fitness.

52     Proc. of SPIE Vol. 5275



Figure 4. This figure shows an example of an evolved network, with clients and servers and a set of links between
them. The clients and servers have been positioned at random, with a minimum spacing to avoid clutter.

3.3. Fitness and cost functions
The aim is to find an optimal network, which minimizes cost (P ) and maximizes reliability (R). With this in
mind, we define our fitness function, F , to be:

F =
R

P
, (2)

where the cost function, P , is defined to be the total sum of all the edge lengths of the network. Each node
is assigned an x and y-coordinate, therefore the edge length, is the length of the straight line connecting the
2 nodes. The reliability function, R, is defined as the probability that a connection can be made between any
two points. In order to calculate this probability, we randomly pick N pairs of points in the network. For
each pair picked we check whether a path exists between those two points. We compute R from the number
of pairs for which a path exists divided by N , the total number of pairs examined.

3.4. Redundancy and pleiotropy functions
We define the overall measure of redundancy for the whole network as

D =

∑

i∈C
Oi

|S| , (3)

where D is the redundancy, Oi the out degree or number of links out of client i ∈ C, and S the set of servers.
Similarly, the overall measure of pleiotropy is

L =

∑

i∈S
Ii

|C| , (4)

where L is the pleiotropy, Ii the in degree or number of links into server i ∈ S, and C the set of clients.

Proc. of SPIE Vol. 5275     53



3.5. Genetic algorithm
Using the fitness function, we evaluate each network (represented as described above) using the fitness function.
We then use two different strategies for evolving the network:

1. In this strategy we set a variable number of offspring per generation, and at each step pick the single
fittest network to reproduce by mutations to create that many offspring, and repeat the process.

2. The second strategy involves creating a fixed number (10) offspring at each step, by picking the fittest
two networks and producing five offspring from each.

We do not consider any mating or crossover between the two due to the complexity of defining a mating
operation for networks, and only mutate networks to produce offspring. Crossover would allow a much faster
evolution and result in more stability once a fitness plateau is reached.20

4. RESULTS

4.1. Overview
We used both GA strategies to build a network for a number of different link failure probabilities and repair
rates, and evaluated the performance of the strategies, and found the best network parameters to use. Using
these network parameters, we then used the best GA strategy to find the best network possible. Note that
our GA, since it currently lacks mating and crossover, is more like a Monte-Carlo method for finding the best
network than a true GA.

4.2. Varying failure probability
We tested the both GA evolution strategies with the link failure probability set to two values, 0.01 per time
step, representing a reasonable failure probability given regular network construction, and 0.001, representing
a low failure probability given a high quality network construction. Figure 5 shows the evolution of a solution
to each of these link failure probabilities using both GA strategies, with an optimal solution being reached in
about 50 generations, after that the random mutations and random link additions or removals result in noise
about the optimum solution, as the GA has reached a fitness plateau. The 50 generation mark was common
to all our results, thus our tables show the mean and standard deviation of only the network generations
occurring after generation 50. Using the first GA strategy results in a higher network reliability and lower
cost, because it allows more variation at each iteration and can thus climb to a higher fitness (reliability/cost)
plateau.

Table 1. This table shows the mean and standard deviation, over generations 50-150 of the GA, of the cost and
reliability functions for both GA strategies, and for link failure probabilities 0.01 and 0.001. We use generations 50-150
as by generation 50 the GA has optimized the network to a fitness plateau, as evident in Figure 5. Note that our
measure of reliability has a maximum achievable value of one. The results indicate no significant difference between the
reliabilities of the two failure probabilities, however there is some significant difference between the costs, with strategy
two performing better for a lower failure probability (t-test, confidence level of 95%)

failure prob. = 0.01 failure prob. = 0.001

Mean reliability, strategy one 0.988 0.979

SD reliability, strategy one 0.012 0.028

Mean reliability, strategy two 0.974 0.948

SD reliability, strategy two 0.025 0.040

Mean cost ($ ’000s), strategy one 244.7 246.1

SD cost ($ ’000s), strategy one 11.7 10.0

Mean cost ($ ’000s), strategy two 277.4 228.3

SD cost ($ ’000s), strategy two 24.0 19.2

54     Proc. of SPIE Vol. 5275



0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generat ons

R
el

ia
bi

ity

Low link failure probability
High ink fa lure probabil ty

(a) This figure shows the relia-
bility measure for GA strategy
one for link failure probabilities
of low (0.001) and high (0.01)

0 50 100 150
0

0.5

1

1.5

2

2.5

3
x 10

5

Generations

C
os

t

Low link failure probab lity
High link failure probability

(b) This figure shows the cost
measure for GA strategy one for
link failure probabilities of low
(0.001) and high (0.01)

0 50 100 150
0

2

4

6

8

10

12

14

16

Generations

R
ed

un
da

nc
y

P
le

ot
ro

py

Low ink failure probability
High link fa lure probabil ty

(c) This figure shows the redun-
dancy/pleiotropy measure for
GA strategy one for link failure
probabilities of low (0.001) and
high (0.01)

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generat ons

R
e

ia
bi

lt
y

Low link failure probability
High ink fa lure probabil ty

(d) This figure shows the relia-
bility measure for GA strategy
two for link failure probabilities
of low (0.001) and high (0.01)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Generations

C
os

t

Low link failure probab lity
High link failure probability

(e) This figure shows the cost
measure for GA strategy two for
link failure probabilities of low
(0.001) and high (0.01)

0 50 100 150
0

2

4

6

8

10

12

14

16

18

20

Generations

R
ed

un
da

nc
y/

P
ei

ot
ro

py

Low ink failure probability
High link fa lure probabil ty

(f) This figure shows the redun-
dancy/pleiotropy measure for
GA strategy two for link failure
probabilities of low (0.001) and
high (0.01)

Figure 5. These graphs show the cost, reliability, and redundancy/pleiotropy functions for both GA strategies and for
two link failure probabilities, 0.01 and 0.001. Initial spikes in the graph are caused by sampling error when there are
only a few links in the network with which to calculate the measures.

Proc. of SPIE Vol. 5275     55



4.3. Varying repair rate
We tested the both GA evolution strategies with the link repair time set to repair times of 2, 10, and 50
generations, representing ideal, average, and worst case repair processes. Figure 6 shows the evolution of
a solution to each of these repair times using both GA strategies, again we find an optimal solution being
reached in 50 generations, after that the random mutations and random link additions or removals result in
noise about the optimum solution. Using the first GA strategy results in a higher network reliability and lower
cost, because it allows more variation at each iteration and can thus climb to a higher fitness (reliability/cost)
plateau.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generat ons

R
e

ia
bi

ity

2 repair generations
10 repair generations
50 repair generations

(a) This figure shows the reliabil-
ity measure for GA strategy one
for varying repair rates.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Generations

C
os

t

2 repair generations
10 repair generations
50 repair generations

(b) This figure shows the cost
measure for GA strategy one for
varying repair rates.

0 50 100 150
0

2

4

6

8

10

12

14

16

18

20

Generations

R
ed

un
da

nc
y/

P
ei

ot
ro

py

2 repair generations
10 repair generations
50 repair generations

(c) This figure shows the redun-
dancy/pleiotropy measure for
GA strategy one for varying re-
pair rates.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generat ons

R
el

ia
bi

ity

2 repair generations
10 repair generations
50 repair generations

(d) This figure shows the reliabil-
ity measure for GA strategy two
for varying repair rates.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Generations

C
os

t

2 repair generations
10 repair generations
50 repair generations

(e) This figure shows the cost
measure for GA strategy two for
varying repair rates.

0 50 100 150
0

5

10

15

20

25

Generations

R
ed

un
da

nc
y

P
le

ot
ro

py

2 repair generations
10 repair generations
50 repair generations

(f) This figure shows the redun-
dancy/pleiotropy measure for
GA strategy two for varying re-
pair rates.

Figure 6. These graphs show the cost, reliability, and redundancy/pleiotropy functions for both GA strategies and for
varying repair rates. The repair process fixes links after 2, 10 or 50 generations as selected by the user of the software.
Initial spikes in the graph are caused by sampling error when there are only a few links in the network with which to
calculate the measures.

4.4. Number of offspring for GA strategy one
Here we considered what happens if we change the number of offspring produced at each step of GA strategy
one. The results are shown in Table 3, indicating that 10 offspring produces the fittest network.

56     Proc. of SPIE Vol. 5275



Table 2. This table shows the mean and standard deviation, over generations 50-150 of the GA, of the cost and
reliability functions for both GA strategies, and varying repair rates (2, 10, and 50 generations). We use generations
50-150 as by generation 50 the GA has optimized the network to a fitness plateau, as evident in Figure 6. Note that
our measure of reliability has a maximum achievable value of one. Here there is a significant difference as we go from
2 to 50 generations (t-test, confidence level of 95%).

2 generations 10 generations 50 generations

Mean reliability, strategy one 0.973 0.902 0.679

SD reliability, strategy one 0.034 0.054 0.072

Mean reliability, strategy two 0.956 0.901 0.661

SD reliability, strategy two 0.045 0.055 0.073

Mean cost ($ ’000s), strategy one 240.5 288.3 162.1

SD cost ($ ’000s), strategy one 17.8 51.8 25.5

Mean cost ($ ’000s), strategy two 266.4 253.1 194.0

SD cost ($ ’000s), strategy two 14.8 35.2 33.5

Table 3. This table shows the mean and standard deviation, over generations 50-150 of the GA, of the cost and
reliability functions for GA strategy one, and varying number of offspring (10, 20, and 50). We use generations 50-150
as by generation 50 the GA has optimized the network to a fitness plateau (not shown). Note that our measure of
reliability has a maximum achievable value of one.

10 offspring 20 offspring 50 offspring

Mean reliability 0.957 0.910 0.901

SD reliability 0.039 0.050 0.060

Mean cost ($ ’000s 254.1 274.7 249.4

SD cost ($ ’000s) 35.7 34.6 36.2

5. CONCLUSIONS

Genetic algorithms rapidly converge on optimal real-world network design solutions, where both cost and
reliability are important. Pleiotropy helps reduce the cost, and redundancy improves the reliability and
network traffic flows. For the parameters and methods considered, we found that strategy one found the best
networks (in terms of R/C, so lowest cost and highest reliability) for a range of link failure and repair rates.
This was due to more variance at each generation, allowing the network to climb to a higher fitness plateau.
Furthermore, we found that strategy one works best when 10 offspring are produced from the fittest network
at each generation, higher numbers of offspring tend to add too much variance to the process.

In future work we propose using the GA on not just the network layout but to include the failure and repair
rates in the “genome”. A basic implementation of crossover would allow for much better network designs.20

Making the fitness function as a summation of a set of local fitness functions for individual clients would
provide a faster and more accurate way of measuring the fitness.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from The University of Adelaide. Erin ONeill would like to thank Chris
Bryant for helpful discussions of this work. Erin O’Neill is supported by ARC Grant No. A00103779.

REFERENCES
1. P. Winston, Artificial Intelligence, 3rd Ed., Addison Wesley, 1993.
2. J. Holland, “Outline for a logical theory of adaptive systems,” Journal of the Association for Computing

Machinery 9(3), pp. 297–314, 1962.
3. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.
4. D. Fogel, “What is evolutionary computation,” IEEE Spectrum 37(2), 2000.

Proc. of SPIE Vol. 5275     57



5. M. Mitchell, J. Holland, and S. Forrest, “When will a genetic algorithm outperform hill climbing,” in
Advances in Neural Information Processing Systems, J. Cowan, G. Tesauro, and J. Alspector, eds., 6,
pp. 51–58, Morgan Kaufmann Publishers, Inc., 1994.

6. M. Mitchell and S. Forrest, “Fitness landscapes: royal road functions,” in Handbook of Evolutionary
Computation, T. Bäck, D. Fogel, and Z. Michalewicz, eds., pp. B.2.7.5:1–25, Oxford University Press,
1997.

7. R. Belew, J. McInerney, and N. Schraudolph, “Evolving networks: using the genetic algorithm with
connectionist learning,” in Proc. Second Conference on Artificial Life, C. Langton, C. Taylor, J. Farmer,
and S. Rasmussen, eds., pp. 511–547, Addison-Wesley, 1991.

8. F. Gruau and D. Whitley, “Adding learning to the cellular development of neural networks: Evolution
and the baldwin effect,” Evolutionary Computation 1(3), pp. 213–233, 1993.

9. I. de Falco, A. Iazzetta, P. Natale, and E. Tarantino, “Evolutionary neural networks for nonlinear dynamics
modeling,” Lecture notes in computer science 1498, pp. 593–602, 1998.

10. A. Abuali, W. Wainwright, and D. Schoenfeld, “Determinant factorization: a new encoding scheme for
spanning trees applied to the probabilistic minimum spanning tree problem,” in Proc. Fifth Intl. Conf.
on Genetic Algorithms, pp. 470–477, 1995.

11. H. Sayoud and K. Takahashi, “Designing communication network topologies using steady-state genetic
algorithms,” IEEE Communications Letters 5(3), pp. 113–115, 2001.

12. T. Hoo, A. Ting, E. O’Neill, A. Allison, and D. Abbott, “Real life: a cellular automaton for investigating
competition between pleiotropy and redundancy,” in Proc. SPIE: Electronics and Structures for MEMS
II, N. Bergmann, ed., 4591, pp. 380–389, 2001.

13. S. Coppersmith, R. Black, and L. Kadanoff, “Analysis of a population genetics model with mutations,
selection, and pleiotropy,” J. Statistical Physics 97, pp. 429–457, 1999.

14. M. Morange, “Gene function,” C.R. Acad. Sci. III 323, pp. 1147–1153, 2000.
15. Y. Collette, A. Gilles, P. Pontarotti, and D. Olive, “A co-evolution perspective of the TNFSF and TNFRSF

families in the immune system,” Trends in Immunology 24, pp. 387–394, July 2003.
16. B. Magor and K. Magor, “Evolution of effectors and receptors of innate immunity,” Developmental and

Comparative Immunology 25, pp. 651–682, 2001.
17. L. Coussens and Z. Werb, “Inflammation and cancer,” Nature 420, pp. 860–867, 2002.
18. D. Mann, “Stress-activated cytokines and the heart: from adaptation to maladaptation,” Annual Review

of Physiology 65, pp. 81–101, 2003.
19. M. Palladino, F. Bahjat, E. Theodorakis, and L. Moldawer, “Anti-TNF-α therapies: the next generation,”

Nature Reviews Drug Discovery 2, pp. 736–746, 2003.
20. J. Holland, Hidden Order: How Adaptation Builds Complexity, Perseus Books, 1995.

58     Proc. of SPIE Vol. 5275


