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ABSTRACT

In recent years, there has been renewed interest in Threshold Logic (TL), mainly as a result of the development
of a number of successful implementations of TL gates in silicon. Threshold Logic enables, in some instances, the
design of digital integrated circuits with a significantly reduced transistor count and area. This paper addresses the
important problem of designing technologically feasible parallel (m,n) counters using TL for binary multiplication.
A number of counter design techniques are reviewed and some novel parallel counter designs are presented that allow
the design of area efficient 32-bit multiplier partial product reduction circuits.
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1. INTRODUCTION

As the demand for higher performance very large scale integration processors with increased sophistication grows,
continuing research is focused on improving the performance, area efficiency, and functionality of the arithmetic units
contained therein. Low power dissipation and area have become major issues demanded by the high performance
processor market in order to meet the high density requirements of advanced VLSI processors.

Threshold logic (TL) was introduced over four decades ago, and over the years has promised much in terms of
reduced logic depth and gate count compared to traditional AND-OR-NOT logic-gate based design. However, lack
of efficient physical realizations has meant that TL has, until recently, had little impact on VLSI. Efficient TL gate
realizations have recently become available!® and applications based on TL gates have demonstrated their potential
to achieve high operating speed and significantly reduced area compared to conventional logic.” However, no large
scale designs based on TL have been designed and implemented.

This paper presents a number of threshold logic parallel counter networks for application in 32-bit multiplier
design. Section 2 gives a brief overview of threshold logic, followed by a description of parallel counters in Section 3.
Section 4 contains the main results of this work and includes an overview of previous work related to parallel counter
design, a description of two new proposed (15,4) counter networks, a discussion of the cost of the various designs and
their application to the design of 32-bit partial product reduction circuits. A brief conclusion is given in Section 5.

2. THRESHOLD LOGIC

A threshold logic gate is functionally similar to a hard limiting neuron. The gate takes n binary inputs X;,X»,..., X,
and produces a single binary output Y, as shown in Fig. 1. A linear weighted sum of the binary inputs is computed
followed by a thresholding operation.
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Figure 1. Threshold Gate Model

The Boolean function computed by such a gate is called a threshold function and it is specified by the gate
threshold T' and the weights wy,wa,. .. ,w,, where w; is the weight corresponding to the ith input variable X;. The
output Y is given by

L i Y wiXs>T
Y= { 0, otherwise. )

This function can be written in a more compact form using the sgn notation as

Y = sgn (i wiXi - T) , (2)

=1
where the sgn function is defined as sgn(z) = 1if x > 0 and sgn(z) =0 if z < 0.

Any threshold function can be computed with positive integral weights and a positive real threshold, and all
Boolean functions can be realized by a threshold gate network of depth at most two.® A TL gate can be programmed
to realize many distinct Boolean functions by adjusting the threshold T'. For example, an n-input TL gate with T =n
will realize an n-input AND gate and by setting T = n/2, the gate computes a majority function. This versatility
means that TL offers a significantly increased computational capability over conventional AND-OR-NOT logic.
Significantly reduced area and increased circuit speed can therefore be obtained, especially in applications requiring
a large number of input variables, such as arithmetic.

3. THRESHOLD LOGIC PARALLEL COUNTERS

An (m,n) binary counter is a combinatorial network which generates a binary coded output vector of length n which
corresponds to the number, or count, of logic 1’s in the m-bit input vector. Usually n = logy(m + 1) and such
counters are referred to as saturated. The full adder is a particular case of a counter with 3 inputs and 2 outputs,
thus it is a (3,2) counter.

The concept of parallel counters was originally proposed by Dadda® who also developed a scheme for interconnect-
ing small counters to design counters with a larger number of inputs.!® In conventional logic, higher order counters,
such as (7,3), (15,4) or (31,5), have traditionally been implemented by using trees of (3,2) counters because of the
disadvantages of a direct implementation.!! However, counters consisting of such full adder trees have a relatively
high delay and grow rapidly with input vector size in terms of the required number of full adders. Swartzlander'?
reported the number of full adders for an m-input population counter as m — log,m. It would be ideal if it were
possible to design area efficient higher order counters which could operate at much higher speeds than the same
counters built using trees of full adders.!® Threshold logic allows us to do exactly this.

There are a number of TL based counter designs. The known networks for implementing counters are based on
networks devised for computing symmetric functions such as parity. These include designs by Muroga,® Kautz!*
and Minnick.!® It was later observed that the intermediate outputs available in the Kautz network for computing
parity could be used as generalized counter outputs.!®

We will refer to these networks as the Muroga, Kautz and Minnick counters. They differ in the number of
threshold gates, network depth, maximum fan-in and maximum sum of weights per gate. The maximum sum of
weights is important as it sets the minimum signal difference (voltage difference in voltage mode gates, current
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difference in current mode gates) which is required to be resolved by the sense amplifier in the TL gate in a given
technology and under the presence of device mismatch and circuit noise.

The counter based on Muroga’s network has a delay of 2 gates but is more expensive in terms of gate number.
Furthermore, even though the primary inputs are only required in the input layer, the larger number of input layer
gates results in an increased interconnect overhead compared to the Kautz and Minnick designs.

The Kautz counter is the most area efficient, considering interconnection, weight size and gate number require-
ments. However, the Kautz counter has a logarithmic worst case delay as a function of the number of inputs, ie. the
(7,3) counter has a depth of 3, the (15,4) has a depth 4 and so on. This means that circuits based on this counter,
while being compact, have a relatively high delay. The most significant output bit always has a delay of one threshold
gate.

The Minnick counter worst case delay for all outputs is equal to two threshold gates and is independent of the
order of the counter. The most significant output always has a delay of one threshold gate, and the design offers
improved gate count compared to the Muroga counter. However, depending on the particular gate implementation
used, unlike the Muroga network, it may exhibit timing hazards.

A different approach to counter design was claimed to have been developed in.1” This approach is based on a
sorter circuit followed by one layer of threshold gates to obtain the counter outputs. This circuit is in fact equivalent
in structure to the Muroga counter reported earlier. While it was shown to have improved speed over a conventional
logic full adder based design for the case of a (15,4) counter, its logic depth is the same, its interconnect requirement
is significantly higher and its gate count is almost double that of the Minnick counter.

As an illustrative example, Fig. 2 shows the truth table and TL network for the (7,3) Minnick counter. The input
v consists of the seven input bit lines, each having a weight of 1, and is denoted by a thick black line to differentiate
it from the single bit lines.
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Figure 2. The (7,3) counter truth table and the Minnick TL network

4. PROPOSED THRESHOLD LOGIC COUNTER NETWORKS

The aim of this section is to develop a range of counters which may be considered to lie in-between the ends of the
counter topology spectrum ranging from the Minnick design to Kautz. We focus on small counters which are feasible
to implement in the currently available CMOS processes. Typically, the available precision with which the weights
are implemented in VLSI is of the order of 4 to 6 bits!® for an analog implementation, and for this reason we limit
the maximum sum of weights inputs per TL gate to approximately 30.

The objective will be to develop binary counters which can be used in conjunction with the known Minnick
and Kautz networks to design near area optimal 32-bit multiplier partial product matrix reduction schemes, given a
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Table 1. Comparison of the various designs for saturated (3,2), (7,3) and (15,4) counters.

TL Gate Count Sum of Sum of Maximum Sum of Cost
Non I/P Weights | I/P Weights | Weights per Gate

(3,2) Muroga 5 3 12 3 5g + 15w
Kautz 2 2 6 5 29 + 8w
Minnick 2 2 6 5 29 + 8w

(7,3) Muroga 12 10 70 7 129 + 80w
Kautz 3 10 21 13 3g + 31w
Minnick 5 10 35 13 5g + 45w

(15,4) Muroga 25 25 330 15 259 + 355w
Kautz 4 34 60 29 49 + 94w
Minnick 10 34 150 29 10g + 184w
(1,2,2,3] 6 34 90 29 6g + 124w
(1,2,3,3] 6 50 90 29 6g + 140w

particular CMOS TL gate implementation. Counters which trade off network depth against gate count and fan-in can
be used off the critical path of the partial product reduction tree, there by reducing the overall area of the multiplier
without a penalty in latency. The following sections show the known existing topologies for counters which have a
maximum of 29 inputs per TL gate, including the Minnick and Kautz networks, and the proposed in-between (15,4)
counters.

4.1. Depth 2 (3,2), (7,3) and (15,4) Counters

Figures 3(a)-(c) show the saturated depth 2 Minnick counters up to 15 inputs. The delay of the most significant
output bit is always one TL gate, and all other outputs have a delay of 2 gates. For the (7,3) Minnick counter, the
delay for each output is denoted by [1,2,2].

4.2. Logarithmic Depth (7,3) and (15,4) Counters

Figures 4(a)-(b) show the saturated logarithmic depth Kautz counters up to 15 inputs. The (3,2) Kautz counter is
identical to the (3,2) Minnick counter. The (7,3) Kautz counter has the [1,2,3] delay profile, and the (15,4) Kautz
counter has the [1,2,3,4] delay profile.

4.3. Proposed Depth 3 (15,4) Counters

In addition to the depth 2 and logarithmic depth counters, it is possible to devise networks by using a hybrid
approach. Figure 5(a) shows the proposed (15,4) counter with a [1,2,2,3] delay profile. This means that the output
Os is generated after 1 gate delay, outputs O4 and O, are generated after 2 delays and the O; output after 3 delays.
The O, and O4 outputs are generated as in the Minnick counter in Figure 3(c) and the least significant output bit
0, is generated in Kautz fashion as in Figure 4(b) using O,, O4 and Os. Figure 5(b) shows the (15,4) counter with
[1,2,3,3] delay profile. This counter computes the outputs O, O2 and O4 in Minnick fashion based on the value of
Os. Both counters have a maximum sum of weights equal to 29, but the [1,2,2,3] counter has a total of 34 non-1/0
weights, compared to 50 for the [1,2,3,3] design. Other counters such as [1,3,3,3] and [1,3,2,3] are possible but would
not reduce the gate count, thus increasing delay with no reduction in cost and will therefore be ignored.

Because the hybrid designs have a reduced cost compared to the (15,4) Minnick networks, they are useful in
reducing the gate count and area wherever 3 gate delay counters do not increase the critical path delay of the overall
network, and where the 4 gate delays of the Kautz design would do so. The cost of each of the counters designs will
be evaluated and compared in the next section.

4.4. Cost Evaluation and Comparison of Counter Schemes

Table 1 compares the various counter designs for up to 15 inputs in terms of gate count, sum of non-input weights
and the maximum sum of weights per gate.
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Figure 3. Minnick counter networks. (a) Depth 2 (3,2) counter with [1,2] delay profile, (b) depth 2 (7,3) counter
with [{1,2,2] delay profile and (c) depth 2 (15,4) counter with [1,2,2,2] delay profile.
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Figure 4. Kautz counter networks. (a) Depth 3 (7,3) counter with [1,2,3] delay profile and (b) depth 4 (15,4)
counter with [1,2,3,4] delay profile.
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Figure 5. Hybrid counter networks. (a) Depth 3 (15,4) counter with [1,2,2,3] delay profile and (b) depth 3 (15,4)

counter with [1,2,3,3] delay profile.
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In order to determine the area cost of each of the counter networks, it is necessary to define a cost function which
accounts for interconnect, weight area and the area of the sense amplifier component of each TL gate area. The
area of the sense amplifier component will be referred to as the gate area, and does not include the area required to
implement the weights. Unlike conventional AND-OR-NOT logic, total TL circuit size is not easily related to the
number of gates as, in addition to interconnect, the area of TL circuits depends on the number of inputs as well as
the weight size. The contribution of each component to the total cost depends on the CMOS technology and the
gate design. Given these considerations, a reasonable definition of a suitable cost function, C, is a follows:

C = Zgatesxg + Z’LU]/pX’LUl + zwnonI/waQ: )

where g, w; and ws are technology and circuit dependent parameters which account for the relative contribution
of the gates, input weights, hidden layer weights and interconnect, respectively. The factor wy,p refers to the number
of input layer unit weights and wpons,p refers to number of hidden layer unit weights. Typically the input and hidden
layer weights will contribute equally to area and thus w;=ws(=w), which means that a unit input weight occupies
the same area as a hidden layer unit weight. However, certain gate designs, especially capacitive differential type
gates,!%20 are particularly well suited to the area efficient implementation of counter networks and allow the input
weights to be shared, thus reducing the total cost. ‘

Given the definition in Equation (3), the cost for each counter is evaluated in terms of the g and w parameters
in the final column of Table 1. As discussed previously, the parameters ¢ and w and therefore the cost depend on
the particular circuit design and technology used in the implementation of the TL gate. For example, in a 0.35um,
4M-2P STTL?® implementation without input weight sharing, the area occupied by 10 weight forming capacitors is
equal to the area of one gate, so that g = 10w. In this case the (15,4) Minnick counter occupies 2.1 times more area
than (15,4) Kautz but has 2 gates less worst case delay. Similar calculations can be performed to compare cost for
other technologies and implementations.

4.5. Application of Counters to 32-bit Partial Product Reduction

One of the important applications of counters is the reduction of the partial product matrix (PPM) in parallel
multipliers. The bits forming the columns of the matrix are the inputs to a succession of counters which reduce the
matrix to two rows. These two words are then added using a fast carry-propagate adder to produce the final result
of the multiplication. The majority of the delay and area of multipliers is associated with the reduction of the PPM.

One possible reduction of the partial product matrix for a 32x32 direct multiplication of unsigned numbers is
shown in Fig. 6. The partial product matrix in the top of the figure consists of 32 rows, each containing 32 bits, and
is generated using an array of AND gates.

In the reduction scheme shown, Stage I employs the (15,4), (7,3) counters and full adders to reduce the matrix
to that shown in Stage II. Stage II has a maximum column height of 10 bits and is further reduced by using (15,4),
(7,3) and (3,2) counters to obtain the matrix of height 4 shown in Stage III. Finally, two rows are obtained by using
conventional CMOS (4:2) compressors in Stage III. These two rows are usually the inputs to a fast carry-propagate
adder (not shown) which calculates the final product. The reason for using the conventional CMOS compressors is
that they will typically achieve the reduction of Stage III in less area than would be possible when using either TL
counters or TL compressors.

During the reduction process, not all inputs in each counter are used, and the unused inputs are simply connected
to logic 0. It is therefore possible to reduce the number of TL gates in some of the counters in the proposed scheme.
For example, when using a (15,4) counter to add a column of 10 bits, the outputs of the input layer gates with
thresholds of 12 and 14 will be zero and need not be computed. Furthermore, Kautz counters and the [1,2,2,3]
counter can be used off the critical path (there are a number of critical paths) to reduce the total area. The possible
area optimizations obtained by removing unnecessary TL gates in such counters, as well as the cost evaluation of
such 32-bit multiplication schemes is the subject of ongoing work.

5. CONCLUSIONS

Various threshold logic parallel counter networks for application in 32-bit multiplier design were reviewed and two
new (15,4) counters which trade delay for gate count, were proposed. A brief discussion of the cost of the various
designs and their application to the design of 32-bit partial product reduction circuits was also presented.
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Figure 6. One possible reduction scheme for 32x 32 partial product matrix
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