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ABSTRACT

It is possible to have two games that are losing when played in isolation but that, because of some form of
feedback, produce a winning game when played alternately or even in a random mixture. This effect is known as
Parrondo’s paradox. Quantum mechanics provides novel methods of combining two games through interference
and entanglement. Two models of quantum Parrondo’s games have been published and these are reviewed here.
We speculate on a model of a quantum Parrondo’s game using entanglement. Such games could find a use in
the development of algorithms for quantum computers.
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1. INTRODUCTION

The idea of a ratchet and pawl driven in one direction by the Brownian fluctuations of gas molecules, in violation
of the second law of thermodynamics, was first proposed at the beginning of the 20th century and later revisited
by Feynman.1 Although it was shown that this could not function as a perpetual motion machine, it has inspired
the idea of the Brownian ratchet. Drawing a link between games of chance and Brownian ratchets gave rise to
the idea of Parrondo’s games or Parrondo’s paradox2, 3 where a losing game can be turned into a winning one
by combining it with a second losing game that acts as a source of “noise.” The noise disrupts the feedback that
caused the first game to be losing. A game is losing or winning depending on whether the expectation value of
its payoff over a long series of games is negative or positive, respectively. The classical Parrondo’s game is cast
in the form of a gambling game utilizing a set of biased coins.2–6 The source of “noise” is the toss of a single
biased coin that is marginally losing, while the other game depends on two or more biased coins, the choice of
which is determined by the game situation in the form of, for example, dependence on total capital,2–5 history
dependent rules,6, 7 or spatial neighbor dependence.8 For a recent review of Parrondo’s games see Harmer et
al.9

There has been recent interest in reformulating the classical theory of games into the quantum realm,10–14 in
order to better study unsolved problems in quantum information, communication and computation.15 Quantum
strategies can exploit both superposition and entanglement of states. Applications for quantum game theory have
been proposed in evolutionary biology16–18 and economics19, 20 as well as the traditional game theory problems
such as the prisoners’ dilemma,11, 13, 16, 21, 22 the battle of the sexes,23, 24 and the Monty Hall problem.25–27

In quantum games the actions of the players are encoded by a qubit, with the basis states |0〉 and |1〉
corresponding to the classical moves. The quantum players have at their disposal instruments for manipulating
their qubit without causing decoherence. That is, a move by a quantum player corresponds to acting with a
unitary operator on their qubit. By entangling the initial states of the two qubits interesting effects can be
obtained.

Meyer and Blumer28 were the first to combine the ideas of quantum game theory and Parrondo’s paradox in
an attempt to create a quantum Parrondo’s game using a quantum lattice gas automaton. The history dependent
Parrondo’s game of Parrondo et al 6 has been quantized directly by replacing the rotation of a bit, representing
a toss of a classical coin, by an SU(2) operation on a qubit.29, 30 Parrondo’s games have also been linked

Further author information: (Send correspondence to A. P. Flitney.)
A. P. Flitney: E-mail: aflitney@physics.adelaide.edu.au
D. Abbott: E-mail: dabbott@eleceng.adelaide.edu.au

Nano- and Microtechnology: Materials, Processes, Packaging, and Systems, Dinesh K. Sood, 
Ajay P. Malshe, Ryutaro Maeda, Editors, Proceedings of SPIE Vol. 4936 (2002) 

© 2002 SPIE · 0277-786X/02/$15.00

58



to the creation of quantum algorithms.31 In section 2 and 3 we present summaries of the history dependent
and capital dependent Parrondo’s games and review their quantum analogues. In section 4 we present some
additional results with Meyer and Blumer’s scheme and speculate on future directions.

2. A HISTORY DEPENDENT QUANTUM PARRONDO’S GAME

In the classical history dependent Parrondo’s paradox, game A is the toss of a single biased coin with winning
probability p < 1/2, while game B is a collection of biased coins, the selection of which is dependent on the
results of previous games. In order to achieve ratcheting, the history dependent game needs the feedback from at
least the last two results. Thus, game B has four possible coins, B1, B2, B3, and B4, with winning probabilities
p1, p2, p3 and p4, respectively. The choice of coin is determined by the results of the two previous games as
indicated in Fig. 1. An example of probabilities that give rise to a Parrondo’s paradox is

p1 = 7/10− ε,

p2 = p3 = 1/4− ε,

p4 = 9/10− ε,

(1)

for a small positive parameter ε. With p < 1/2, game A is clearly a losing game, while game B has been shown
to losing for any ε > 0.6 However, combinations of A and B, including selecting the game to be played at each
step at random, produce a game with a positive expected payoff. The effect can also be obtained by combining
two history dependent games.7

The quantum generalization of game A is the the application of an SU(2) operation on a qubit:

Â(θ, γ, δ) =
(

e−i(γ+δ)/2 cos θ −e−i(γ−δ)/2 sin θ
ei(γ−δ)/2 sin θ ei(γ+δ)/2 cos θ

)
, (2)
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❆

1− p p
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game B
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✁
✁
✁❆

❆
❆
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lost, won
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✁
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❆
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1− p3 p3
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B4

✁
✁
✁❆

❆
❆

1− p4 p4

lose win

Figure 1. Winning and losing probabilities for game A and the history dependent game B. Adapted from Flitney et
al.30
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where θ ∈ [0, π/2] and γ, δ ∈ [0, 2π]. Game B consists of four SU(2) operations, each of the form of Eq. (2):

B̂(φ1, α1, β1, φ2, α2, β2, φ3, α3, β3, φ4, α4, β4) =




A(φ1, α1, β1) 0 0 0
0 A(φ2, α2, β2) 0 0
0 0 A(φ3, α3, β3) 0
0 0 0 A(φ4, α4, β4)


 .

(3)

This operator acts upon the state |ψ(t − 2)〉 ⊗ |ψ(t − 1)〉 ⊗ |ψ(t)〉, where |ψ(t − 1)〉 and |ψ(t − 2)〉 represent the
results of the two previous games and |ψ(t)〉 is the initial state of the target qubit which is altered by the action
of B̂. The B̂ operator consists of four control-control SU(2) operations as indicated in Fig. 2.

B̂ =
B̂1 B̂2 B̂3 B̂4

❡

❡

❡

✉

✉

❡

✉

✉
❡

✉

= control bit needs to be 0

= control bit needs to be 1

✲
time

Figure 2. In the history dependent quantum Parrondo game, B̂ consists of four control-control rotations depending on
the four possible states of the two control qubits.

The information flow in an alternating succession of games A and B is shown in Fig. 3. If the initial state is
|ψi〉 = |00 . . . 0〉 the quantum game gives no results that cannot be obtained classically. To see quantum effects
we require the possibility of interference. By choosing the maximally entangled initial state,

|ψm
i 〉 = 1√

2
( |00 . . . 0〉 + |11 . . . 1〉 ), (4)

we produce interference effectively between two different games, those with initial states |00 . . . 0〉 and |11 . . . 1〉.
The payoff (i.e., the count of the number of 1’s in the final state) is dependent on the phases βi, i = 1 . . . 4. By
judicious selection of the phases the payoff can either be enhanced or diminished. For a sample of results see
Flitney et al.30

|ψi〉

Â

Â
B̂

B̂
. . .

Â
B̂

|ψf 〉

�

�

�

�

�

�

✲
time

Figure 3. The information flow in qubits (solid lines) in an alternating sequence of A and B. A measurement on |ψf 〉 is
taken on completion of the sequence of games to determine the payoff. Figure adapted from Flitney et al.30

3. QUANTUM PARRONDO AS A LATTICE GAS AUTOMATON

In capital dependent Parrondo’s games, game A is again the toss of a single biased coin with winning probability
p = 1/2− ε, but game B utilizes two coins whose use depends on the total capital of the player as follows: coin
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game A

✁
✁
✁❆

❆
❆

1− p p

lose win

game B

capital divisible by 3

B1

✁
✁
✁❆

❆
❆

1− p1 p1

lose win

otherwise

B2

✁
✁
✁❆

❆
❆

1− p2 p2

lose win

Figure 4: Winning and losing probabilities for game A and the capital dependent game B.

B1 with winning probability p1 is used if the capital is divisible by three, otherwise B2 is used with winning
probability p2. This is shown schematically in Fig. 4. By adjusting the probabilities p1 and p2, for example

p1 = 1/10− ε, p2 = 3/4− ε, ε > 0, (5)

we get a net loss over time.2–4 Although the weighted average of the winning probabilities is positive, the “bad”
coin is used more often than the one-third of the time that we might naively expect. By interspersing game A
with game B this effect is broken and the combination can now be winning, provided the net positive effect of
game B exceeds the negative effect of game A. Some examples of the expected payoff after one hundred games
is given in Fig. 5

In Meyer and Blumer’s quantum version of this game28 the capital corresponds to a discretization of the
position of a particle undergoing Brownian motion in one dimension under the action of some potential. A
potential with a constant gradient sloping towards negative x produces the effect of game A, while game B
corresponds to a tilted sawtooth potential. The quantum “coin” is a two state system such as a spin–1

2 particle,
in a superposition of the |↑〉 and |↓〉 states, the eigenstates of σz. The quantum analogue of an unbiased coin flip

is a unitary transformation represented by the matrix 1√
2

(
1 i

i 1

)
. Let |x〉 correspond to the gambling capital,

and | ↑〉 and | ↓〉 indicate a win or a loss, respectively. That is, one play in the game is effected by the unitary
transformation

|x, ↓〉 → 1√
2
(|x − 1, ↓〉 + i|x + 1, ↑〉) ,

|x, ↑〉 → 1√
2
(i|x − 1, ↓〉 + |x + 1, ↑〉) .

(6)

The initial state is chosen to be 1√
2
(|0, ↑〉+ |0, ↓〉) so the particle begins with no particular momentum bias and

an unbiased game A produces no net drift∗. The effect of the potentials are implemented by multiplication by an
x-dependent phase factor.32 The quantum version of the games is the unbiased transition in Eq. (6) multiplied
by a phase e−iV (x), where for game A and B, respectively,

VA(x) = αx,

VB(x) = β(1− 1
2
(x mod 3)) + VA(x).

(7)

Game A has a negative expected payoff for α > 0. The expected payoff is periodic with period 2π/α, returning
to zero after this time. However, for an arbitrary time, 〈x〉 < 0, so we conclude that A is a losing game. The

∗In Travaglione and Milburn34 an unbiased quantum random walk is created by using the Hadamard operator, repre-

sented by 1√
2

(
1 1

1 −1

)
, and starting with the initial state 1√

2
(|0, ↓〉+ i|0, ↑〉). The two schemes are equivalent.
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situation is similar for game B. Choosing α = 2π/5000 and β = π/3 gives results for the individual games
comparable (within a factor of two) to the classical games with the probabilities of Eq. (5). A and B are losing
individually but, for example, the combination BAAAA is winning, demonstrating a quantum version of the
Parrondo paradox (see Fig. 6).

4. DISCUSSION AND CONCLUSION

Apart from the cyclical nature of the expectation values for games A and B, this quantum model of Parrondo’s
paradox differs from its classical counter-part in a number of ways:

• For times small compared with the period of game A, the deviation of the expectation value of the winning
combinations from that of the individual games is quadratic compared to linear in the classical case.

• Fewer combinations of A and B give rise to a reversal of fortune (see Fig. 7). In particular, mixing A and
B using a fair coin does not yield a winning game.

• The effect holds for a broad range of α and β. (see Fig. 8).

• There is sensitivity to initial conditions. For example, playing B first prior to the sequences AAAAB turns
a losing sequence into a winning one, an effect not seen in the classical game where such a change merely
results in the same trend with an offset.

The stated model uses interference to combine the two games. By choosing a combination of the games A
and B that produced constructive interference in the positive x-direction, a net movement of the particle in that
direction is achieved. In quantum mechanics we can also utilize entanglement to produce non-classical outcomes.
We can explore the following model. Consider the positions of two spin-12 particles undergoing Brownian motion
under the effect of a one-dimensional potential, as in the previous section. We shall let the positions |x1〉 and
|x2〉 of these particles evolve by Eq. (6) and the position dependent phase factors of Eq. (7). By choosing to
initially entangle the spins of the two particles we can get qualitatively new behavior. That is, the initial state
is taken to be 1√

2
(|00, ↑↑〉 + |00, ↓↓〉). In the absence of a potential to bias the movement of the particles the

expectation value of the particle positions remains zero, as we would expect. Instead, if one particle is subject to
potential VA(x) and the other to VB(x), the situation is similar to playing A and B alternately, except that the
coupling between the games in this case is through entanglement of the particle spins. The scheme remains to
be explored, but initial results are unspectacular. The nature of the initial state ensures that any net movement
in either direction is minimized resulting in 〈x1〉 ≈ 〈x2〉 ≈ 0.

The history dependent quantum Parrondo’s game of Flitney et al 30 is able to utilize the additional degrees of
freedom, permitted by the introduction of phase factors, to enhance payoffs. Only short sequences of games have
been studied with this scheme and for some sequences, for example AAB, the quantum enhancement disappears
over longer runs. The scheme could be extended to incorporate the combination of two history dependent games,
as is done classically by Kay and Johnson.7

Lee and Johnson’s approach31 to quantum algorithms is interesting. In this, A and B represent a partioning
of the operations in Grover’s search algorithm. Neither step alone is efficient, but the original algorithm is
recreated by randomly combining A and B, thus giving a constructive role to randomness in the creation of
quantum algorithms.

Classical systems where two losing games can be combined to produce a net winning payoff are known. One
of these games can be thought of as noise that disrupts the negative bias of the other, thus giving a constructive
role to noise. Quantum mechanical analogues of these systems can also produce interesting effects. Selective
constructive interference as well as entanglement can be utilized for combining games. We have indicated some
possible models of quantum Parrondo’s games.
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Figure 5. For the classical capital dependent Parrondo’s game, the expected gain from playing various sequences of A
and B with p = 1/2− ε for game A, and p1 = 1/10− ε and p2 = 3/4− ε for game B, where ε = 0.005. Random refers to
selecting A or B at each play using a fair coin.
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Figure 6. For the quantum capital dependent Parrondo’s game, the expectation value of the gain from playing various
sequences of A and B with α = 2π/5000 and β = π/3. Random refers to selecting A or B at each play using a fair coin.
The results for the this are the average of the expectation values over 500 runs.
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Figure 7. For the quantum capital dependent Parrondo’s game, the expectation value of the gain after 100 games by
repeating a sequence of a games of A followed by b games of B, with α = 2π/5000 and β = π/3. For example, a = 4,
b = 1 represents the sequence AAAAB repeated 20 times, giving a total of 100 games.
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Figure 8. For the quantum capital dependent Parrondo’s game, the expectation value of the gain after 100 games using
the sequence (a) AABB or (b) BAAAA, for various values of α and β. The curves are for α = 0, α = π/5000, α = π/2500,
α = π/1250, and α = π/625.
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