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ABSTRACT

Consider an array of parallel comparators (threshold devices) receiving the same input signal, but subject to
independent noise, where the output from each device is summed to give an overall output. Such an array is a
good model of a number of nonlinear systems including flash analogue to digital converters, sonar arrays and
parallel neurons. Recently, this system was analysed by Stocks in terms of information theory, who showed
that under certain conditions the transmitted information through the array is maximised for non-zero noise.
This phenomenon was termed Suprathreshold Stochastic Resonance (SSR). In this paper we give further results
related to the maximisation of the transmitted information in this system.
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1. INTRODUCTION

The problem we examine in this paper is to maximise the information flow through the array of N comparators
(threshold devices) shown in Figure 1. All comparators receive the same input signal, x and the i–th device is
subject to independent continuously valued additive noise, ηi (i = 1, .., N). The output from each comparator
is unity if the input signal plus the noise is greater than the threshold, θi, of that device and zero otherwise.
The outputs from each comparator are summed to give the overall output signal, y. Hence, y is a discrete signal
taking on integer values from 0 to N and can be considered as the number of devices that are currently “on”.

Such arrays can model various devices such as flash analog to digital converters (ADCs)1 (when the thresholds
are uniformly distributed across the signal space), DIMUS (Digital Multibeam Steering) sonar arrays, in the “on
target” position2, 3 or a summing network of N FitzHugh-Nagumo neurons.4

In recent work, Stocks analysed this system using Shannon information theory. For the case of all thresh-
olds set equal to the mean, it was shown that the maximum transmitted information (also known as mutual
information, i.e. the information, in bits per sample, about the input contained in the output) has a maximum
for nonzero noise. This phenomenon was termed Suprathreshold Stochastic Resonance (SSR).5–7 Conventional
Stochastic Resonance (SR) occurs when a nonlinear system is optimised by a nonzero value of noise.8 For a
single threshold SR only occurs for subthreshold signals. By contrast, SSR occurs for any magnitude of signal,
due to the presence of more than one threshold. More recently, the principle of SSR has been applied to cochlear
implants.9, 10
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Figure 1. Array of N summing comparators. Each comparator receives the same input signal, x, and is subject to
independent additive noise, ηi. The output from comparator i is zero if the sum of the signal and noise is greater than
that comparator’s thresholds, θi. The overall output, y, is the sum of the individual comparator outputs.

However, although there is a maximal nonzero noise value for the case of all thresholds equal to the signal
mean, such a threshold setting does not necessarily maximise the transmitted information. For example, in the
noiseless case, the transmitted information is maximised when all output states are equally probable, and is
equal to log2 (N + 1) bits per sample. However in the noiseless case with all thresholds equal to the signal mean,
the transmitted information is only one bit per sample. In this paper we use a genetic algorithm to solve the
problem of finding the thresholds that maximise the transmitted information for a given noise value.

2. CALCULATING INFORMATION TRANSMITTED THROUGH THE ARRAY

The output of device i is given by

yi =
{

1 if x+ ηi > θi,
0 otherwise.

Hence, the output of the array is y =
∑N

i=1 yi. We consider the array to be an information channel. The
transmitted information I through a channel is given by the entropy H(y) of the output less the conditional
entropy H(y|x) of the output given the input as

I = H(y)−H(y|x). (1)

As noted by Stocks,5 H(y|x) can be interpreted as the amount of encoded information about the input signal
lost through the channel. Since the input to the array is continuously valued and the output is discretely valued,
we can consider the channel to be semi–continuous.11 The transmitted information through such a channel is
given by

I = −
N∑

n=0

Q(n) log2Q(n)−
(
−

∫ ∞

−∞
P (x)

N∑
n=0

P (n|x) log2 P (n|x)dx
)
, (2)

where P (x) is the probability density of the input signal x, Q(n) is the probability of the output signal y being
equal to n (n = 0, 1, . . . , N) and P (n|x) the conditional probability that the output is n given the input is x.5–7

We have also the equation

Q(n) =
∫ ∞

−∞
P (n|x)P (x)dx (3)

relating Q(n) and P (n|x). Hence, the transmitted information can be expressed in terms of only P (x) and
P (n|x). In turn, P (n|x) is determined by P (x) and the channel characteristics, that is, the number N of
threshold devices, the values θi of the thresholds and the noise probability density R(η).
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Following the notation of Stocks,5 let P1|x,i be the probability of device i being “on” (that is, signal plus
noise exceeding the threshold θi), given the input signal x. Then

P1|x,i =
∫ ∞

θi−x

R(η)dη = 1− FR(θi − x) (i = 1, .., N). (4)

where FR is the cumulative distribution function of the noise.

2.1. Numerical calculation of I

We will obtain results for the transmitted information plotted against noise intensity, σ = σr/σp, where σr is
the noise standard deviation and σp is the signal standard deviation.

To obtain I numerically, it is necessary to perform some numerical integration. The simplest form of numerical
integration is to approximate the signal density function by a discrete version, with resolution ∆x� 1/N . Hence,
if in the case of the continuous density function P (x) we have a ≤ x ≤ b, then discretisation with resolution ∆x
gives discrete values x = a+ i∆x, i = 0, 1, .., (b− a)/∆x.

Then the above equations then become

I = −
N∑

n=0

Q(n) log2Q(n)−
(
−∆x

∑
x

P (x)
N∑

n=0

P (n|x) log2 P (n|x)
)
, (5)

where
Q(n) = ∆x

∑
x

P (n|x)P (x). (6)

For an input distribution such as the uniform distribution, where x ∈ [a, b], we only need to define the resolution.
However for a distribution which has infinite bounds, such as a Gaussian, we need to restrict the upper and lower
bounds of x. We will set these to be a multiple, w, of the standard deviation, σp, that is x ∈ [−wσp, wσp], and
then discretise to a resolution of ∆x.

Given a noise density and threshold value, P1|x,i can be calculated numerically for any value of x from (4).12

Assuming P1|x,i has been calculated for desired values of x, a convenient way of numerically calculating the
probabilities P (n|x) for a given number N of devices is as follows. Let T k

n|x denote the probability that n of the
devices (n = 1, . . . , k) are “on”, given x. Then T 1

0|x = 1 − P1|x,1 and T 1
1|x = P1|x,1 and we have the recursive

formulæ

T k+1
0|x = (1− P1|x,k+1)T k

0|x,

T k+1
n|x = P1|x,k+1T

k
n−1|x + (1− P1|x,k+1)T k

n|x (n = 1, .., k),

T k+1
k+1|x = P1|x,k+1T

k
k|x. (7)

We have P (n|x) given by TN
n|x. An alternative evaluation is the coefficient of zn in the power series expansion of

N∏
i=1

[
1− P1|x,i + zP1|x,i

]
.

In particular, when the thresholds all have the same value, then each P1|x,i has the same value P1|x and we have
the binomial distribution

P (n|x) =
(
N

n

)
(P1|x)n(1− P1|x)N−n (0 ≤ n ≤ N).

Thus, for any arbitrary threshold settings and signal and noise probability distributions, P (n|x) can be easily
calculated from (4) and (7) and therefore the transmitted information can be calculated from (5) and (6).
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3. FINDING THE OPTIMAL THRESHOLD CONFIGURATION

The problem of interest here is to find the threshold settings that optimise the transmitted information through
the array. This problem is an optimisation problem and can be described in the notation of optimisation as an
unconstrained nonlinear program:

Maximise I = −
N∑

n=0

Q(n) log2Q(n)−
(
−

∫ ∞

−∞
P (x)

N∑
n=0

P (n|x) log2 P (n|x)dx
)
,

where Q(n) and P (n|x) are functions of P1|x,i,

and P1|x,i =
∫ ∞

θi−x

R(η)dη = 1− FR(θi − x) (i = 1, .., N),

subject to: θi ∈ R.

Note that the order of the thresholds is unimportant, that is there are no constraints of the form θj ≤ θk.

3.1. The noiseless case

For the case where all comparators are noiseless H(y|x) is zero, since the output of the array is completely
deterministic given the input. Therefore, from (1), the transmitted information is simply the entropy H(y) of
the output signal. Maximizing the output entropy is achieved by ensuring all output states are equally probable,
that is, Q(n) = 1/(N +1) for all n.13 In this case, from (2), the transmitted information is given by log2(N +1)
bits per sample and θi = F−1

P

(
i

N+1

)
, (i = 0, .., N), where F−1

P is the inverse cumulative distribution function

of the input signal.12

3.2. Nonzero noise

When there is a finite noise power added to the signal at each comparator, the problem of optimising the
transmitted information becomes difficult. There are now N independent variables (each threshold, θi) and a
highly nonlinear cost function, I. If we were to constrain each value of θi to be a multiple of some small value, say
0.01, and let the upper and lower bounds of a threshold be less than a certain multiple of the standard deviation of
the input signal, then the solution space becomes finite, and the problem becomes a constrained integer program.
In such a case it is theoretically possible to enumerate every possible combination of N thresholds in the set of
possible thresholds, and record the combination that maximises the information. However such a technique is
impractical, as the number of combinations to check increases combinatorially with increasing N since if there
are m possible individual threshold settings, then the number of possible combinations of N thresholds is (mN ).

Fortunately, unconstrained optimisation problems are easily amenable to heuristic algorithms, that is, algo-
rithms which do not guarantee optimal solutions but should return a range of good, near optimal, solutions.

The simplest way to attempt to optimise the transmitted information is to choose all N thresholds randomly,
and then calculate the transmitted information. Performing such a random selection of thresholds a large number
of times and then recording the thresholds that give the highest transmitted information will hopefully provide
a good solution.

However it is possible to improve on this, by assuming that a better solution can be obtained by restricting
the search of possible thresholds to a local neighbourhood of the threshold settings in an already good solution.
Two examples of such random search algorithms are simulated annealing, and genetic algorithms.

4. GENETIC ALGORITHMS

A technique that has been widely used in many sorts of combinatorial optimisation problems is that of genetic
algorithms. Genetic algorithms are a method based on an analogy with genetic evolution. In general, an initial
population of different feasible solutions is generated. Then at each time step of the algorithm, the cost function
associated with each solution is calculated, which we will call the solutions score. Some of the lowest scoring
solutions are discarded, and their place taken by newly created solutions, formed by merging some random
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combination of two or more of the higher scoring solutions. Some of these newly created solutions are mutated
by random changes, and a new generation is thus formed. The idea is that after a large number of generations, the
population of solutions should evolve towards the optimal solution. Genetic algorithms exist in many forms, and
have been applied successfully to a wide range of problems despite the non-existence of a rigorous mathematical
proof for their convergence.14

4.1. Applying a genetic algorithm to the optimal quantisation problem

We assume that we are only interested in signal and noise distributions which have zero-mean, even probability
densities, so that by symmetry the maximum transmitted information must occur when half the thresholds are
the negative of the other half. We will consider only the positive threshold values, which we will label as being
from 1 to N̄ .. There are three main parts to applying a genetic algorithm to this problem:

• an algorithm for calculating the cost function (in this case the transmitted information), for arbitrary signal
and noise probability density functions, and arbitrary threshold settings,

• a method for discarding poor solutions, and combining good solutions for the next generation, and

• a method for mutating solutions for the next generation.

We already have an algorithm for the first part. Given signal and noise densities, and threshold settings,
P1|x,i can be calculated for a sufficiently small resolution of x and we then make use of the iterative formula (7)
to calculate P (n|x) for those values of x. Then the cost function (transmitted information), I, can be calculated
from (5) and (6).

Given a population of S solutions, the method we have used for the second part is to take the top t percent of
solutions, and discard the rest. These t solutions are then combined to form a new population of S solutions as
follows. Recall that we are only interested in the positive thresholds, due to symmetry. Two randomly selected
solution from the t are selected and their thresholds are sorted into ascending order. Then we randomly select j
of the thresholds for the new solution to come from the first randomly selected solution, and the other N̄−j come
from the second randomly selected solution. This is repeated S times to form a new population of S solutions.

The third part of the algorithm is to mutate the new S solutions. We have chosen to mutate all N̄ thresholds
for each of the S solutions. This is done by selecting a normally distributed random number and adding it to the
threshold value. The variance of this number is set to be quite small, so that generally only small mutations occur.
Intuitively, it is expected that the mean of the cost function increases with each generation. Also intuitively,
decreasing the variance of the mutation of the thresholds with each generation will help the algorithm converge
towards an optimum solution. We also ensure that no mutation allows a threshold to become negative.

To obtain a graph of maximum information against noise intensity, σ, the algorithm can be run for Y values
of σ with G generations at each value. The order of complexity of calculating the transmitted information in
this case is O(N̄/∆x).

Hence the overall algorithm has an order of complexity of O(Y.G.N̄/∆x). Increasing the accuracy of the
algorithm can be achieved by increasing G, or by decreasing ∆x. In either case, the runtime of the algorithm
increases linearly. If N̄ or Y is increased, the algorithm runtime also increases linearly. Hence, good solutions
can be expected in a finite time, unlike an enumeration algorithm, where the runtime increases combinatorially
with N̄ .

5. GENETIC ALGORITHM RESULTS

All the results presented in this section use Gaussian signal and noise distributions. It has been found that
for Gaussian signal and noise, a resolution of integration (∆x) of 0.01, with the Gaussian signal bounded by
[−3σp, 3σp], gives sufficient accuracy.
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5.1. Benchmark threshold settings

A useful benchmark is to set the thresholds to the optimal noiseless thresholds for all values of σ. The transmitted
information for this case is shown by the solid line in Figure 2 (where all plots are for N = 5). Note that for
σ = 0, I = log2(N + 1) as expected. A second benchmark is to set all thresholds equal to the signal mean. This
is shown by the dotted line in Figure 2. Note that for σ = 0, I = 1 as expected. For the thresholds set to the
optimal noiseless values, the transmitted information decreases monotonically with increasing σ, and when all
thresholds are set to zero, the SSR effect occurs, with a convex curve, and a maximum I for non zero noise.

As a means of verification of our genetic algorithm, we first applied an algorithm where all N thresholds were
chosen completely randomly 10000 times, for values of σ between 0.001 and 1.4. The results for N = 5 can be
seen in Figure 2 (indicated by an “o”). The highest value of I obtained for each value of sigma was very close
to the I for the optimal noiseless thresholds, until a point near σ = 0.55. At this point the highest value of I
obtained for the random thresholds was very close to that of I for all thresholds equal to zero. It is difficult to
see from this plot, but I for all thresholds equal to zero is never exceeded by I for random thresholds once σ
increases past the cross-over point near σ = 0.55.
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Figure 2. Noise intensity, σ, against transmitted information, I, for N = 5. The solid line is for thresholds distributed
optimally for zero noise, the dotted line is for all thresholds equal to zero, and the circles show the maximum transmitted
information found from 10000 random threshold selections.

Figure 3 shows the values of the thresholds that gave the maximum value of I, for each value of σ. Note the
general trend of two positive thresholds and two negative thresholds, with a central threshold close to zero, until
σ increases past about 0.7, in which case all thresholds become close to zero.

A graph of the value of N against the value of σ where the cross over point occurs (that is, where the curve
for I with the thresholds set to the optimal noiseless values decreases below the curve for I obtained with all
thresholds equal to zero) is shown in Figure 4. It can be seen that the cross over value of σ increases with
increasing N .

Note from Figure 4 that for N = 5, the cross over point is between σ = 0.53 and σ = 0.54. This is verified
in Figure 2.
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Figure 3. Noise intensity, σ, against the values of the randomly chosen threshold settings that gave the maximum
transmitted information from 10000 random selections, for N = 5.
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Figure 4. Number of thresholds, N , against the cross-over value of σ, that is, the value of σ where the curve for
the transmitted information obtained with thresholds distributed optimally for zero noise decreases below the curve for
transmitted information obtained with all thresholds set equal to zero. As N increases, the cross-over value of σ also
increases.

5.2. Genetic algorithm results
The results of the random selection of thresholds verify our assumption that only positive valued thresholds
need to be selected. One threshold can be set to zero, and half the rest to be the negative of the other half.
This means that mutations should only be allowed on the positive thresholds, and we cannot allow a threshold
to become negative. Also, since there is a smooth curve in the thresholds with increasing σ, a good initial
population for the next value of σ should be the best threshold settings found for the previous value of σ. Also,
once it is established that σ is large enough such that the optimum thresholds have moved into the regime where
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all positive thresholds are equal, the algorithm should then decide that this is the case, and only one positive
threshold needs be selected. Furthermore, once it is established that σ is large enough such that all thresholds
at zero is the optimal setting, the algorithm can stop.

The genetic algorithm results presented here were obtained for ∆x = 0.01, G = 10 generations, a population
size of S = 1000, where the top t = 1.0 percent (i.e. 10) of solutions in each generation are kept. The variance
of the mutations was set to be 0.1, divided by the generation number, so that the average mutation size became
smaller with each generation.

5.2.1. N=5

For each value of σ, the genetic algorithm found threshold settings that increased the maximum value of I
over value of I from the benchmark where the thresholds were set to optimise the noiseless information. These
threshold settings are shown in Figure 5. Note that the curve is much smoother than that for the randomly
chosen thresholds in Figure 3. However, although there was an improvement it was fairly negligible; in the order
of 10−4 bits per sample. The improvement is shown in Figure 6.
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Figure 5. Noise intensity, σ, against the values of the optimal threshold settings found by the genetic algorithm for
N = 5.

We were able to verify these results for the case of N = 5. Since N is small, and we only need to find two
positive thresholds, it is feasible to find the optimal solution by quantising the possible threshold values and
iterating all possible combinations of these to find the maximum value of I for each value of sigma. If we allow
m possible threshold values, then such an algorithm requires (m2 ) calculations of the transmitted information.
Performing this algorithm for the case N = 5 showed that the solutions obtained by the genetic algorithm given
in Figure 5 are extremely close to the optimal solutions.

5.2.2. N = 15

The optimal thresholds found by the genetic algorithm are shown in Figure 7. Only the positive thresholds are
shown, as the rest of the thresholds is a mirror image. Note how above a certain value of σ, some thresholds
tend to converge to certain values. At σ = 0.4, approximately half the positive thresholds converge to zero and
approximately half to unity. At σ = 0.5, all the positive thresholds converge to a value near 0.6. In the latter
case, this means the array is acting as if it had only three thresholds with values +0.6, 0 and −0.6.

The region where the optimal setting is all thresholds equal to zero starts at a value between σ = 0.6 and 0.7.
For σ smaller than this value, the maximum amount of information gained by optimising the thresholds instead
of using the thresholds that maximise the noiseless information, is about 0.03 bits per sample. The maximum
information gain in the region where the optimal setting is all thresholds zero is about 0.07 bits per sample.
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5.2.3. N = 31

The results of the genetic algorithm for N = 31 showed similar behaviour to the case of N = 15. A larger
increase in I can be obtained, but this value is still very small; about 0.05 bits per sample in the first region,
and about 0.08 bits per sample in the second region.
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Figure 6. Noise intensity, σ, against the increase in transmitted information, I, gained by using the optimal threshold
settings for each value of σ found by the genetic algorithm, instead of the threshold settings that optimise the noiseless
transmitted information, for N = 5.

6. CONCLUSIONS

It is evident from the results given in this paper that there are two or three distinct regions in the curve of
maximum information against noise intensity. In the first region, for low values of σ, only very small improvements
in I can be gained by adjusting the thresholds from those that maximise the noiseless information. The second
main region is that where for large enough values of σ, all thresholds set to zero maximises I, although this does
not give a substantially large increase over the thresholds that maximise the noiseless information. In a small
intermediate region, either threshold setting will suffice.

We have also shown that a genetic algorithm approach to solving the optimal quantisation problem should
be applicable under general conditions for this problem.
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Figure 7. Noise intensity, σ, against the values of the positive optimal threshold settings found by the genetic algorithm
for N = 15.
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Figure 8. Noise intensity, σ, against the values of the positive optimal threshold settings found by the genetic algorithm
for N = 31.
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