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ABSTRACT

This paper describes a study conducted into the limit on spectral resolution due to the dynamic range of a T-ray
spectrometer. The pulsed nature of terahertz time-domain spectroscopy (THz-TDS) sets a fundamental limit
on its spectral resolution. The spectral resolution of THz-TDS can be improved by increasing the duration of
the temporal measurement, but is limited by the dynamic range of the system in the time-domain. This paper
presents calculations and experimental results relating the temporal dynamic range of a THz-TDS system to its
spectral resolution. We discuss three typical pulsed terahertz sources in terms of their dynamic range and hence
achievable spectral resolution.
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1. INTRODUCTION

1.1. Motivation

T-ray Time-Domain Spectroscopy (TDS) is an innovative sensing and imaging technology for generating elec-
tromagnetic radiation at terahertz (THz) frequencies. The T-ray band is defined as 0.1 to 10 THz. T-ray
spectroscopy provides information unavailable through conventional methods, such as microwave and X-ray
techniques. To optimise T-ray spectroscopy, efforts have been made to extend the bandwidth1, 2 and improve
the signal-to-noise-ratio (SNR) of T-ray systems.3, 4

A desirable characteristic of any spectroscopy measurement is high spectral resolution, which is critical for
observing resonances with narrow line widths, associated with distinct energy transitions at T-ray frequencies.5

Molecular absorption resonances have linewidths of approximately 1 to 3 GHz (1 to 3 cm−1) for vapour rotational
modes6 or vibrational modes in simple biomolecules.7

This paper reviews the fundamental dependencies of spectral resolution in TDS and shows how a typical
T-ray system is fundamentally limited by its SNR, or more specifically the dynamic range (the ratio of T-ray
signal to probe beam noise).

1.2. Previous studies

In T-ray TDS, the spectrum is calculated by a numerical Fast Fourier Transformation (FFT) from the measured
temporal waveform, y(t). The measured waveform is a series of N discrete values y(n) sampled at time intervals
of ts seconds, that is,

y(n) = y(t = nts), n = 0 . . . N.

The spectrum is also a discrete set of values,

Y (k) = FFT(y(n)), k = 0 . . . N.
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From Fourier theory, a higher spectral resolution ∆f is obtained by extending the temporal measurement
window T , which corresponds to the scanning distance – that is

∆f ≈ 1
T

, (1)

where T = (N − 1)ts.

The duration of the temporal measurement window is limited by one of three experimental considerations:
(i) the repetition rate flaser of the laser source (used to generate and detect T-ray pulses), (ii) the length of
the scanning delay stage L that translates into a scanning duration T , and (iii) the amount of noise in the
measurement.

The time duration between consecutive pulses, 1/flaser, can be improved upon by using a lower repetition
rate laser amplifier rather than higher repetition rate laser oscillator.

The length L of the scanning delay can be extended by using alternative time scanning methods to replace
distance scanning.

The limitation due to noise in the measurement is the most difficult to overcome, and therefore tends to be
the fundamental limitation on frequency resolution in T-ray spectroscopy measurements.

The noise in T-ray TDS arises from two sources, fluctuations in the T-ray radiation NT (t) and fluctuations in
the laser probe beam NB(t).8 The contributions of these noise sources, and their dependence on the temporal
measurement duration, are described in Sec. 2. The physical sources of T-ray noise and probe beam noise are
discussed in other publications.6

1.3. Objective summary

In this paper, the spectral resolution of time-domain spectroscopy is shown to be limited by the temporal dynamic
range of a T-ray spectrometer, which is fundamentally limited by the dynamic range, or signal-to-noise ratio
(SNR) caused by the laser probe beam.

The relationship between the dynamic range and the achievable frequency resolution is demonstrated with
calculations and experimental data.

2. THEORY

In T-ray spectroscopy, the temporal waveform of the T-ray pulse y(t) is sampled at temporal intervals of ts over
a range of T .

Any sampled T-ray waveform includes the electric field of T-ray radiation ET (t), noise due to fluctuations in
the T-ray field NT (t) and background noise from the T-ray detection (probe) beam, NB(t):

y(t) = ET (t) + NT (t) + NB(t). (2)

In T-ray TDS, the time-domain waveform y(t) is measured at a series of points from t = 0 to t = T . The
waveform samples are uniformly spaced by a time ts over the duration T = (N − 1)ts, where N is the total
number of samples. The waveform is therefore represented by the discrete series:

y(n) = ET (n) + NT (n) + NB(n), (3)

for n = 0 to N − 1.

The electric field of the T-ray radiation, ET , occurs as a pulse, with a duration τ of approximately τ ≈ 1 to
10 ps. The pulse has a sharp rise time and decay in the first few ps, followed by a low amplitude decay. The exact
form of the T-ray pulse depends on the T-ray emitter, the most common of which are Photoconductive Dipole
Antennas (PDAs), semiconductor wafers exhibiting Surface Current Generation (SCG), and electro-optic crystals
exhibiting Optical Rectification (OR). Equations that model the shape of these generated T-ray waveforms are
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Table 1: The temporal waveform of the T-ray pulse depends mainly on the generation and detection mechanism
and varies from one T-ray spectrometer to another. The waveforms may be simulated using several
simple formulas. This Table lists the temporal waveforms (ET (t)) for T-ray pulses generated by three
common sources of pulsed T-ray radiation: (i) a Photoconductive Antenna (PCA), which has a bi-polar
waveform; (ii) an unbiased semiconductor and Surface Current Generation (SCG), which has a unipolar
waveform; and (iii) Optical Rectification (OR), which has a decaying oscillation. In these models, A is
the maximum amplitude of the T-ray field (in A.U. or Volts), τ represents the pulse duration (in s), t
is time (in s), and ω0 is the oscillation frequency (in rad/s) and a is the decay constant (a function of
τ) of generated beam in OR. (These equations are taken from Ref. 8.)

T-ray source Model generated waveform

PCA 2A t
τ2 exp(−t2/τ2)

SCG 2A
τ2 exp(−t2/τ2) − 4A t2

τ4 exp(−t2/τ2)

OR A sin(ω0t) exp(−at), t > 0
0, t ≤ 0

Table 2: This Table lists the temporal spectra (ET (ω)) for T-ray pulses generated by three common sources of
pulsed T-ray radiation: (i) Photoconductive Antenna (PCA), (ii) Surface Current Generation (SCG),
and (iii) Optical Rectification (OR). These equations are obtained by Fourier theory from the time-
domain pulse models in Table 1. In these models, A is the maximum amplitude of the T-ray field (in
A.U. or Volts), τ represents the pulse duration (in s), ω is frequency (in rad/s), and ω0 is the oscillation
frequency (in rad/s) and a is the decay constant (a function of τ) of generated beam in OR. (These
equations are taken from Ref. 8.)

T-ray source Model generated spectra

PCA A ωτ√
2

exp(−ω2τ2/4)

SCG A ω2τ√
2

exp(−ω2τ2/4)

OR A
√

ω2
0

[a2+(ω0−ω)2][a2+(ω0+ω)2]

listed Table 1, and an example simulated PCA waveform is shown in Fig. 1. The energy of ET is concentrated
in the initial part of the pulse, t ≈ τ , as shown in the example energy waveform in Fig. 2.

Currently, T-ray radiation for most systems is generated by photo-switching9 or Optical Rectification.10 The
temporal waveform of the T-ray pulse generated by photo-switching may be described as either bipolar (with
an outer electrical field) or unipolar (with an inner electrical field). The temporal waveform of the T-ray pulse
generated by Optical Rectification (OR) is considered as a damped oscillation.
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The noise in the T-ray beam, NT , is caused by fluctuations in T-ray generation, due to pump beam noise.
This noise has a zero mean, a 1/f spectral distribution and is proportional to the T-ray electric field at each
moment in time, NT (t) ∝ ET (t). As it is proportional to the T-ray electric field, the energy in the T-ray noise is
concentrated in the same duration, that is t ≈ τ . For short measurement durations, the noise in the T-ray beam
dominates the noise in the probe laser beam. However, for large values of T , the noise in the probe beam makes
a larger contribution. This paper is a study of SNR for large values of T , thus the effect of NT can be neglected
in comparison to the effect of NB .

The noise in the laser probe beam, NB , is directly due to laser fluctuations and is zero-mean, Gaussian white
noise with a variance of σB . Unlike NT , the noise in the probe beam is not dependent on the T-ray power. For
large T , the contribution of probe beam noise dominates the T-ray noise.

The dynamic range is the ratio of the T-ray signal to the probe beam noise,

dynamic range =
NB

ET
. (4)

The two contributions to the dynamic range, ET and NB , are shown in Fig. 1 as waveforms in the time-
domain. The T-ray pulse has a high initial amplitude that quickly dies away. The probe beam noise has a low
but constant amplitude and a Gaussian probability distribution.

Time-domain samples, n
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Figure 1: This Figure shows a portion of a simulated T-ray signal ET and accompanying probe beam noise
NB . The T-ray waveform shows a sharp rise and fall, while the probe beam noise shows a lower but
constant amplitude with a Gaussian probability distribution. These waveforms were simulated using
the time-domain equation for a PCA pulse in Table 1 and the randn random Gaussian noise generation
function in Matlab. The parameters for this simulation are shown in Table 3.

The contribution of ET is greater than NB or NT at small values of T (when T is approximately equal to the
signal duration τ). However, at large values of T , the contribution of NB begins to dominate. The contribution
of NT falls in proportion to ET , so for low values of ET at large t, NB dominates.
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Table 3: The parameters used in the simulation are listed in Col. 1, and the values used in this simulation are in
Col. 2. The simulated pulse from a PCA was modelled using the equation in Table 1. The values listed
in this table are similar to those used in T-ray experiments. The dynamic range is the ratio of T-ray
pulse amplitude to probe beam noise amplitude. The stage scan length is the distance travelled by the
delay state in a T-ray spectrometer L that would create a scan time of T ; the 1/2 factor is caused by
the optical delay being double the physical translation of the stage.

Parameter Symbol Value
Dynamic range A/σB−t 10 V/V
Pulse duration τ 5 ps
Sample separation ts 66.67 fs
No. of samples N 16,384 (214) points
Scan time T = ts(N − 1) 1.09 ns
Stage scan length L = T c0/2 16.3 cm

The contributions of ET and NB can be compared in terms of energy. Figure 2, the energy waveform,
shows that for large values of t, the noise in the probe beam makes a larger contribution to the energy in the
measurement than the signal ET . This result shows that increasing the value of T will lead to an eventual
reduction in overall signal-to-noise ratio. Thus the fundamental limit on spectral resolution in T-ray TDS,
∆f ≈ 1/T , is caused by the probe beam noise.
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Figure 2: The plots of probe beam noise energy |NB |2 and T-ray signal energy |ET |2 show the energy in the
signal and beam noise as a function of time n = t/ts. The T-ray signal has most of its energy in
the initial part of the pulse, with very little energy remaining for larger times. The average energy in
the probe beam noise is constant over time. These plots are obtained by taking the amplitude of the
waveforms in Fig. 1.
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The limit of acceptable SNR in an experiment depends on the measurement being made, but there will be
some limit beyond which the signal of interest is obscured.

The SNR in an experiment can be quantified in the time domain by comparing the total sum of the signal
energy

∑N−1
0 |ET |2 to the sum of the noise energy

∑N−1
0

(|NT |2 + |NB |2). As a larger value of T is chosen, the
total contribution due to NB will rise while the signal power remains approximately constant. At some point
the accumulated noise energy (from the probe beam) will be greater than the accumulated T-ray energy, and
the average frequency signal will be obscured by noise.

The cumulative contributions of T-ray power and probe beam noise can be compared by summing the energy
over each scan: Fig. 3 shows the total signal and noise energies as a function of increasing T .
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Figure 3: The plots in this graph show the accumulation of energy over a measurement time n = t/ts: ac-
cumulated probe beam noise energy

∑n−1
0 |NB |2, and accumulated T-ray signal energy

∑n−1
0 |ET |2.

These simulated graphs are obtained by numerically integrating the graphs in Fig. 2, but the time
scale has been extended to show the point where the accumulated probe beam noise energy equals the
accumulated T-ray signal energy: at this point the average signal-to-noise ratio (due to probe beam
noise) = 1. The vertical axis values have been scaled down by 106 for clarity.

The point in Fig. 3 where the two curves cross corresponds to the duration at which the total T-ray signal
energy equals the total noise energy in the probe beam. Thus, at the cross-over point, the average SNR of the
T-ray spectrum is 1.0.

The average SNR of a spectroscopy measurement depends on the temporal measurement duration T . However,
T-ray TDS is typically used to study specific frequency ranges, depending on the frequencies of interest – for
example, specific absorption modes in gas molecules, or the dielectric constant of a material in a specific frequency
range. To show the SNR of a measurement in a specific frequency range, and how it depends on T , the spectra
of a T-ray pulse (in this case simulated from a PCA) and the probe beam noise are shown in Fig. 4. This Figure
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shows that the SNR of the spectrum is different for different frequencies, thus the average SNR (as calculated in
the time domain) is less important than the SNR at a specific frequency of interest.
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Figure 4: This graph shows a portion of the sampled (amplitude) spectra of the T-ray signal ET (k) and the
probe beam noise NB(k). Most of the T-ray energy lies in a narrow part of the spectrum while the
Gaussian white probe beam noise is distributed equally across all frequencies, thus the SNR of interest
depends on the frequency range of interest. The spectra in this graph were obtained using a numerical
Fast Fourier Transform (FFT) in Matlab of the temporal waveforms in Fig. 1.

In T-ray TDS, the spectrum of T-ray pulse energy, ET (ω), is represented by a discrete frequency domain data
series, ET (k), where k = 0 to N −1. The frequency spacing of the points, ∆f , equals 1/T (from Fourier theory).
The T-ray signal power at a given frequency, for example f1, can be seen through measurement (using the FFT,
as in Fig. 4) or calculation (using the expressions in Table 1) of the spectrum of the T-ray pulse, ET (ω = 2πf1).

From Fourier theory, it can be shown that the mean of the probe beam noise in the frequency domain, and
its variance σ2

B−ω, depend on the variance in the time domain, σ2
B−t, and the number of points in the FFT, N11:

σ2
B−ω = N σ2

B−t. (5)

From the discussion of an increased contribution from probe beam noise for long scanning times, it is not
surprising that the mean level of the noise, and its variance, are proportional to N , as shown in Eq. (5).

The maximum frequency resolution of a measurement at a frequency of interest, for example f1, is determined
by the length of T , which is in turn determined by the acceptable SNR at f1 in the frequency spectrum.

For a sample with a material absorption of strength M(ω), an SNR of at least 1/M(ω) is required. For a
time-domain probe beam of variance of σ2

B−t (which can be measured), the maximum frequency resolution at
f1 will be given by

∆fmin(f1) = 1/Tmax,
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where Tmax is the value of T such that the T-ray signal energy at f1 equals M(ω = 2πf1)–times the noise energy
at f1, that is,

|ET (f1)|2 =
1

M(f1)
N σ2

B−t. (6)

Thus since N = T/ts,

Tmax =
ts |ET (f1)|2 M(f1)

σ2
B−t

. (7)

An example limit on ∆f , using Eq. (7) with realistic experimental quantities, is given in Sec. 4.

The dependence of the SNR at a frequency of interest (f1) can be expressed as a function of T :

SNR(f1) =
ET (f1)
σB−ω

=
√

ts ET (f1)√
T σB−t

. (8)

For a given time-domain probe beam variance σ2
B−t and sampling interval ts, the signal-to-noise ratio at a

given frequency is inversely proportional to the square root of the scanning range T . This result is confirmed
experimentally in the following Section.

3. EXPERIMENTS

To demonstrate experimentally the relationship between the dynamic range in the frequency domain and temporal
scanning range, a T-ray waveform was measured using a femtosecond laser and a 2-mm-thick ZnTe crystal.12

The emitted T-ray wave was collimated and focused by two parabolic mirrors and detected using Electro-Optic
Sampling (EOS) by a 5-mm-thick ZnTe crystal.10 The entire T-ray beam path was purged by dry air and the
humidity was limited to less than 6%; water vapour absorption was not considered to be significant in these
experiments. The delay stage resolution in the experiment was 10 µm (66.67 fs) and the temporal measurement
dynamic range was 1000.

A series of T-ray spectra were extracted by numerical Fourier transform (FFT) of the temporal waveforms
in the range of 0 to 2nT0, where T0 = 8.53 ps and n = 0, 1, · · · 11. That is, 12 measurements were made, each
with a duration ranging from 0 to 2nT0. The different duration measurements were designed to measure different
amounts of background noise.

4. RESULTS

The signal-to-noise ratio at the frequency with the maximum amplitude (f1) is presented as a function of temporal
scanning range in Fig. 5. The solid dots are experimental data and the curve is fitted by Eq. (8). The SNR in
the frequency domain is inversely proportional to the square root of the temporal scan duration, as predicted by
the theory in Sec. 2.
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Figure 5: This graph shows the variation of the SNR of T-ray TDS at one frequency as a function of the temporal
scanning range T . The frequency chosen for these measurements was the frequency that had the highest
amplitude. The solid dots are experimental data and the curve is fitted the calculated results from Eq.
(8), thus confirming its accuracy. The experimental conditions are described in Sec. 3. The spectral
resolution ∆f is also shown in this graph, and is inversely proportional to the scanning range T .
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For a generated T-ray spectrum from a PCA, such as in Fig. 4, the spectral shape can be modelled using the
equation for a PCA in Table 2,

ET (ω) = A
ωτ√

2
exp−ω2τ2/4. (9)

From Eq. (9), Eq. (7), and ∆f = 1/Tmax, the best frequency resolution for a sample with absorption M(ω)
can be expressed as

∆fmin =
1

Tmax

= σ2
B−t/

(√
2tsM(f1) A π f1 τ exp[−π2 f2

1 τ2]
)2

. (10)

For example, for a sample with M(f1) = 1% at a frequency of interest f1 = 0.18 THz, probed with a T-ray
spectrometer (sampled at ts = 66.67 fs) using a PCA emitter (pulse duration τ = 5 ps, spectrum from Table
2) and a measured dynamic range A/σB−t = 106, the highest spectral resolution of the T-ray spectrometer is
approximately 0.8 GHz.

5. CONCLUSION

In summary, this paper has demonstrated that the spectral resolution of T-ray spectroscopy depends not only
on the duration of the sampled time-domain waveform y(t), but more fundamentally on the dynamic range of
the T-ray spectrometer. A high dynamic range system is required for high-resolution spectroscopy.

For a typical spectroscopy system limited by probe beam noise, an achievable resolution of approximately 0.8
GHz is achievable at around 0.5 THz. This compares favourably to molecular linewidths, which are of the order
of 1 GHz. For higher frequency measurements, broadband T-ray generation using Surface Current Generation
(SCG) or Optical Rectification (OR) is required.13, 14

5.1. Future work

For high-resolution T-ray spectroscopy, the ratio of T-ray power to laser probe beam power must be maximised.
Research is ongoing into high-power T-ray sources based on PCAs15 and electron beams.16 Noise in the probe
beam can be reduced by using stable solid-state-pumped ultrafast lasers,17 by hard-limiting the output power
of the laser18 and by using longer integration times (signal averaging).
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