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ABSTRACT

The implementation of wavelets in differing areas of signal processing has been a popular research area over the
last decade. However, utilising this technology in compressing two dimensional signals, such as digital images is
relatively new. Wavelet compression has many distinct advantages over earlier compression methods, the most
important of which is suitability to error protection as well as the ability to precisely truncate the compressed
bitstream to achieve a desired bit rate for transmission. In this paper some of the recently emerging technologies
pertaining to wavelet coding of images will be reviewed, particularly with the use of wireless channels. These
developments include techniques to filter images that have been degraded through the addition of noise as well
as reconstructing parts of images that have been lost as a result of the fading that characterises wireless mobile
environments.

Keywords: Wavelet transform, wireless channels, channel coding, edge reconstruction, de-noising.

1. INTRODUCTION

One of the most rapidly expanding technological areas in communications is telematics. This can be defined
as the use of computers or information systems to receive, store and distribute information over a distance
implementing the use of a mobile telecommunications system. The communication of images and video over
wireless environments in particular is one of the most popular subsets of telematics. This has applications in a
large field of areas including mobile handset communication, videoconferencing, telerobotics and telemedicine.
For wide acceptance of wireless image communication, fast transmission, low error rates, scalability for different
receiving devices and high subjective image quality is mandatory. One of the first steps in improving the
effectiveness of this communication is to facilitate the best possible type of image compression. JPEG (Joint
Picture Experts Group) established the first international standard for continuous tone, colour and monochrome
image compression in 1992. This technology involved using encoders and decoders that were DCT (Discrete
Cosine Transform) based, which is a type of two dimensional fourier transform. Unfortunately, this type of
transform results in images containing blocking artifacts - especially obvious at low bit rates, which is at present
an unavoidable constraint if the communication methodology is mobile and wireless. In recent years wavelet
based transform techniques, such as JPEG20001 have become a cutting edge technology in signal processing
and a favorable alternative to the DCT for image compression. Section 2.3 discusses the main improvements in
utilising this type of coding for wireless communication. Some work has been reviewed in Sections 3.1 to 3.3
that has involved expanding on applying wavelet image technologies for wireless communication.

2. IMPLEMENTING WAVELET CODING FOR IMAGES

2.1. What are Wavelets?

Similar to sinusoids used in Fourier analysis, wavelets are used as a type of basis function to represent arbitrary
functions. There are many different sorts of wavelets and the type used can vary with the application. Individual
wavelet functions are characterised by definition over a finite interval and a mean value of zero. Figure 1 is
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Figure 1: Time Representation of a generalised Wavelet

a generalised diagram of a wavelet. There are many types of wavelets, which can be smooth or compactly
supported. Wavelets may be based on mathematical or just simple filter expressions. Once the type of wavelet
(or mother wavelet) ψ(t) is established, it is possible to make translations and dilations to analyse signals in
frequency and time respectively. Graphically, this can be achieved by using short, high frequency wavelets to
obtain detailed time information and limited frequency information or by using long, low frequency wavelets
to obtain large frequency information and limited time information. This type of frequency-time trade off2

is illustrated in Figure 2. Many classes of functions can be represented by wavelets in a more compact way.

Figure 2: Time vs Frequency for Wavelet Transforms

This could include functions with discontinuities or sharp spikes that would typically take fewer wavelet basis
functions than sinusoids to obtain a comparable approximation. According to the paper by Mallatt and Hwang,
referenced at,3 this makes wavelets useful in data compression.

2.2. The Discrete Wavelet Transform (DWT)

For the purposes of digital signal processing (DSP), wavelets are represented by a series of samples as in Fig-
ure 3. When a wavelet transform is applied, the wavelet sequence is convolved across the signal sequence being

Figure 3: Discrete time representation of a generalised wavelet

transformed. Analogous to the fourier transform, this is the means of obtaining wavelet coefficients.4 From a
mathematical perspective, discrete-time wavelets have the general form:

ψ(a,b)(t) =
1√
a
ψ(
t− b

a
) (1)

The variables a and b are used to scale and expand the wavelet, ψ. a is used to scale the wavelet (by powers of
two) width and b is used to translate the wavelet in integer amounts. To analyse data at different resolutions a
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scaling function w(t) is used in conjunction with the base (or mother) wavelet:

W (t) =
N−2∑

k=−1

(−1)kCkψ(2t+ k) (2)

In equation , Ck are the wavelet coefficients which satisfy the constraints

N−1∑

k=0

Ck = 2 and
N−1∑

k=0

CkCb = 2δb,0 (3)

In this case, δ is the delta function and b is the location index. This allows for the defining coefficients to be
varied according to the wavelet system used.5

2.3. Comparing DCT and Wavelet-Based Image Coding

According to a paper by Xiong, Ramchandran, Orchard and Zhang,6 for a fair comparison between DCT and
wavelet-based image coding it is important to weigh the complexity and performance. It is well established that
the hardware and software implementations of the DCT is much simpler than that using the wavelet transform.
The simplest algorithm for the two-dimensional 8×8 DCT involves only 54 multiplications,7 however calculating
the discrete wavelet transform depends on the length of the wavelet filters, involving at least one multiplication
per coefficient. This would be an important factor to consider if mobile hand held devices with limited battery
capacity are used to encode or decode the images by computing the inverse wavelet transform. Despite an obvious
increase in system complexity, wavelet compression offers two main advantages over the DCT. These include:

• Improved Scalability - This is because the wavelet transform process can be repeated for as many
iterations as needed. As the decoder operates inversely to the encoder, decoding can cease if entire resolution
of the original image is not required. The decoder used performs the inverse process, whereby higher
frequency information is superimposed on lower frequency image data. The decoder can stop any time if
needed, as full resolution of the original image may not be required This would again be dependent on the
resolution of the display device being used.

• Higher efficiency at low bit rates - Artifacts generated by removing high spacial frequency information
are not as easily noticed as those generated using the DCT,1 where level differences frequently occur
between adjacent 8× 8 DCT blocks as causing abrupt changes in image intensity. As there are much more
smooth transitions between coded blocks, low bit rate wavelet coded images are less objectionable to the
viewer. This means that fewer basis functions are required for comparable image quality utilising the DCT.
The few remaining wavelet coefficients can be quantised and organised implementing a procedure called
Embedded Zerotree Wavelet encoding (EZW), developed by J. Shapiro in 1993,8 which compactly codes
these coefficients.

2.4. The Tree Structure and Subband Coding

When implemented on images, a wavelet transform transforms data from the space domain to the joint space-
scale domain. Consequently in order to compress the transformed image it is necessary to code the coefficient
values as well as their position in space. As a result of the transform, it is convenient to represent images using
a tree structure because of the subsampling that takes place during the transform. This process is referred to
as subband coding and takes place by dilating and translating a specific wavelet such that it has the effect of a
filter. This takes place in the following way:

1. The image is filtered horizontally by convolving it with the high pass filter, that extracts high spatial
frequency information and high detail.

2. The image is separately convolved horizontally with a complementary low-pass filter, which removes high
frequency information leaving low frequencies.
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3. This results in two sub-images that contain high or low horizontal frequency information.

4. These two sub-images can then be convolved with each of the filters separately, to obtain four sub-images.
This process is illustrated in Figure 4.

5. This process is repeated for the sub-image block containing low horizontal and low vertical frequencies (LL)
to obtain higher band decomposition filter trees. From an image perspective, this process is also conveyed
in Figure 5.5, 9

Figure 4: Dividing image into four sub-images

Figure 5: Relations between wavelet coefficients in different subbands

For the case of JPEG2000, the new international wavelet-based still image coding standard, the wavelet transform
process is applied on 8 × 8 tiles.10 This transformation can be visualised in Figure 6. The resultant wavelet
coefficients are quantised and can then be source encoded using arithmetic coding after implementing embedded
zerotree scanning. This process facilitates the natural coding of the wavelet coefficient values as well as their
position in space.
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Figure 6: Division of Image Components and 2-D DWT

3. IMAGE DENOISING AND RECONSTRUCTION TECHNIQUES USING
WAVELETS

3.1. Image Denoising

Despite being more suitable to low bit rate environments, such as mobile channels, the addition of noise to
wavelet-based images can still present itself as a problem. As a result, it is desirable to remove the noise if
possible.
At the most basic level, additive noise to an image can effectively be suppressed by thresholding the wavelet
coefficients. The principle behind this is that small wavelet coefficients are most likely to be due to noise,
where as large coefficients typically represent important signal features.11 Some more recent wavelet based
denoising techniques make use of the image context12 as well as the spatial correlations between image wavelet
coefficients.13 Denoising based on the context of the image is discussed in Section 3.1.1.

3.1.1. Image Denoising based on Image Context

This idea was presented by Chang et al ,12 and is based on the important tradeoff between keeping key signal
features and removing noisy wavelet coefficients. This technique involves choosing adaptive thresholds so that it
can be possible to distinguish between coefficients that are mainly due to the signal and those due to noise. This is
unlike the approach presented by Donoho et al ,11 that involved a consistent threshold value. Because continuous
tone images (such as photographs) have changing characteristics, the wavelet decomposition makes it possible to
differentiate these areas. High energy areas typically represent image features containing sharp variations such
as edges and textures, resulting in large wavelet coefficients. Low energy areas represent image features that
correspond to smooth regions, typically containing small wavelet coefficients. This can be verified in the wavelet
decomposition of Barbara 7, where white pixels represent large wavelet coefficients, and black signifies smooth
regions containing small coefficients. When noise is added, it has the effect of increasing the average value of
the wavelet coefficients. Smooth areas in particular would contain wavelet coefficients dominated by noise. As a
consequence, it would be desirable to remove most of these coefficients. However in regions where there are edges
and textures, wavelet coefficients have more energy due to the signal than as a result of additive noise, which
may not be visible in these areas anyway. As a result it is convenient to keep these coefficients to ensure that
important image information is retained. Chang et al12 distinguished between the low and high energy regions
and changed the wavelet coefficients using a spatially adaptive thresholding technique. This involved modelling
each wavelet coefficient as a realisation from a given probability distribution. This typically took the form of a
generalised Gaussian distribution.

3.2. Edge Reconstruction for Low Bit-Rate Wavelet-Compressed Images

As discussed in Section 2.3, wavelet-based image compression is advantageous over the earlier block-based com-
pression techniques. However the bandwidth constraints of mobile environments involve coding images at very
low bit rates. This facilitates the requirement to discard much of the image detail resulting in obvious artifacts
that are most visible around sharp edges and discontinuities. These are referred to as ringing effects and blurring
effects. Distortion around these edges is perceptually objectionable and cannot be easily avoided if images are
required to be transmitted at low bit rates.14 This type of edge distortion is easily seen in the eyelashes of Lena
in Figures 8 and 9. In order to improve the image quality in these circumstances, post processing is a useful
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Figure 7: One level wavelet decomposition of Barbara. (Figure generated in Matlab)

Figure 8: Original Lena image (no distortion) Figure 9: Wavelet compression 1:80 with blurring
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means of improving the received image quality. This can be performed either through image enhancement or
image restoration. Image enhancement functions by accentuating specific image features without regard to the
technical image fidelity factors, such as peak signal to noise ratio (PSNR.) Image restoration works by recovering
a better image from the degraded one by using a model for the degradation process.
An edge construction model was proposed by Fan14 as a post processing technique for image restoration. This
model involved analysing the degradation of edges using the wavelet transform and the commonly implemented
zerotree coding and quantisation technique.8 The edge recovery technique was implemented by estimating the
original edge model parameters from the compressed image. This was based on modelling edges as Gaussian
smoothed step functions and using a 2-dimensional Gaussian filter to reduce the noise present across the edges.
This work was aimed at obtaining a tradeoff between perceived reconstructed image quality and the image Power
Signal to Noise Ratio (PSNR.)

3.3. Reconstruction of Lost Image Blocks – An Extension to Source Coding

Once data has been compressed into a bitstream it becomes extremely sensitive to errors. A lot of research
has been put into channel coding (also referred to as Forward Error Correction, FEC), which is a solution
based on adding redundancy into the data stream. This gives the decoder a better chance of detecting and
correcting errors if they occur. Despite increasing the bandwidth requirements of the communications channel
and increasing the complexity of the system, this strategy effectively allows for a receiving device to detect and
correct errors introduced by the channel.15 Unfortunately, these techniques cannot completely prevent the loss
of image blocks if the Bit Error rate (BER) is unknown, which characterises most wireless scenarios However, as
a consequence of the fading that characterises wireless environments. The loss of image blocks typically occurs in
a random and bursty fashion, degrading the image quality. Rane et al16 showed that the lost image blocks could
be reconstructed from available surrounding blocks using a process of interpolation using very simple techniques.

3.3.1. Classification of the blocks

The first step to take in reconstructing the lost blocks as proposed by Rane et al16 involved classifying the blocks
as either part of an edge or non-edge. By referring to Section 3.1, we see the magnitude of each wavelet coefficient
indicates the amount of change, as well as the location at which the change occurs. This can be illustrated in
Figure 10, where shaded areas indicate high coefficients as a result of a vertical edge contained in an 8 × 8
block. The level 2 coefficients obtained from the first wavelet decomposition (implemented in Figure 7) represent

Figure 10: Wavelet decomposition of block containing a vertical edge.

localised spatial detail and would not be suitable for edge detection. Instead, level 1 coefficients extracted from
the second wavelet decomposition16 could determine the presence of an edge. Each of these coefficients could
then be compared to a variable threshold to determine the presence of an edge. Figure 11 illustrates the 4
possible situations where a vertical edge may be detected in which the values of the level 1 wavelet coefficients
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Figure 11: Possible cases for vertical edge detection.

Figure 12: Simulated loss from16 Figure 13: Reconstructed image from16

are examined in the closest surrounding 8, 8 × 8 vertical tiles. This type of edge testing procedure is easily
extrapolated for diagonal and horizontal edges.

3.3.2. Reconstructing blocks containing edges

The process of reconstructing a lost block containing an edge involved minimising the square of the error of the
selected border tiles (shaded in grey in Figure 11 for the four possible vertical edge situations.) This is desirable
as it makes the edge through the lost block as consistent as possible with the surrounding edge tiles.

3.3.3. Reconstruction of non-edge blocks

Unlike tiles that have been classified as containing edges, non-edge blocks require interpolation from all the
surrounding blocks. The D0 level is obtained by averaging the D0 levels of the four diagonal surrounding
blocks. The D1 and D2 coefficients are assigned to the closest available diagonal D1 and D2 coefficients. The
methods used to interpolate horizontal and vertical details however, are similar to the technique used for edge
reconstruction. The results obtained using this type of block reconstruction technique are shown in Figures 12
and 13.

4. CONCLUSIONS

The development of wavelet technology for use in images has gained widespread acceptance in signal processing
and in image compression research. For the purposes of low bandwidth, wireless systems, wavelet-based image
coding schemes such as JPEG2000 outperform other coding schemes. Wavelet basis functions have variable
length, as well as position and consequently offer higher obtainable compression levels without objectionable
blocking artifacts. Wavelet-based coding also facilitates progressive transmission of images, which makes it
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more practical for any receiving device. Because of the inherent multiresolution nature of wavelets, which is
facilitated by the tree-based coding structure, these coding schemes are especially suitable for applications where
scalability and tolerable degradation are important. Improvements can still be made to optimise the received
quality of wavelet-based image coding for mobile environments. These include innovations to reconstruct fine
image detail, such as edges that have been lost as a result of discarding detailed image information during the
image encoding process. Block reconstruction is also a very new successful development in conjunction with
wavelet-based images. This development has made it possible to approximate image blocks that have been lost
due to the fading that characterises wireless environments.
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