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

 

Abstract—Objective: Echolucent carotid plaques are associated 
with acute cardiovascular and cerebrovascular events (ACCEs) in 
atherosclerotic patients. The aim of this study was to develop a 
computer-aided method for identifying echolucent plaques. 
Methods: A total of 315 ultrasound images of carotid plaques (105 
echo-rich, 105 intermediate and 105 echolucent) collected from 
153 patients were included in this study. A bimodal gamma 
distribution was proposed to model the pixel statistics in the gray 
scale images of plaques. The discrete Fréchet distance features 
(DFDFs) of each plaque were extracted based on the statistical 
model. The most discriminative features (MDFs) were obtained 
from DFDFs by linear discriminant analysis, and a k-nearest-
neighbor classifier was implemented for classification of different 
types of plaques. Results: The classification accuracy of the three 
types of plaques using MDFs can reach 77.46%. When a receiver 
operating characteristics (ROC) curve was produced to identify 
echolucent plaques, the area under the curve was 0.831. 
Conclusion: Our results indicate potential feasibility of the method 
for identifying echolucent plaques based on DFDFs. Significance: 
Our method may potentially improve the ability of noninvasive 
ultrasonic examination in risk prediction of ACCEs for patients 
with plaques. 
 

Index Terms—Bimodal gamma distribution, Carotid plaque, 
Discrete Fréchet distance, Ultrasound imaging. 

I. INTRODUCTION 

CUTE cardiovascular and cerebrovascular events (ACCEs) 
are major causes of disability and premature death 

worldwide for subjects without obvious symptoms [1, 2]. 
Plaque echogenicity assessed by B-mode ultrasound has been 
reported to be associated with cardiovascular and 
cerebrovascular events in previous studies [3-5]. Echolucent 
plaques have higher lipid and macrophage, signifying a higher 
risk for ACCEs [6-9]. Therefore, we proposed a computer-
aided method to identify echolucent plaques, which may 
potentially improve risk prediction of ACCEs for patients with 
plaques. 
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In recent years, the gamma distribution has been widely 
adopted for modeling gray level distribution in synthetic 
aperture radar images [10, 11], mammogram images [12], and 
ultrasound images [13-17]. Li et al. have reported that the 
gamma distribution is useful for the statistical modeling of 
amplitude synthetic aperture radar images [10]. Qin et al. have 
indicated that the gamma distribution is a flexible empirical 
model for synthetic aperture radar images, and the categories of 
synthetic aperture radar images can be discriminated using the 
Kullback–Leibler distance between gamma distributions [11]. 
Gumaei et al. have shown that the gamma distribution is 
suitable for describing symmetric and non-symmetric 
mammogram images, and can improve the accuracy of breast 
cancer detection. Tao et al. model cardiac ultrasound images 
based on four families of distributions (gamma, Weibull, 
normal, and log-normal), and find that the gamma distribution 
demonstrate improved performance in fitting the data and a low 
misclassification rate in classifying blood and tissue [15]. The 
study of Vegas-Sánchez-Ferrero et al. have shown desirable 
performance of the generalized gamma distribution in 
characterizing the speckle of blood and myocardial tissue in 
ultrasonic images [16]. They also propose a plaque 
characterization method for intravascular ultrasonic images 
based on the gamma distribution [17]. The unimodal gamma 
distribution is characterized by two parameters and is useful for 
describing most of the homogeneous images, but it may be 
inadequate for modelling images with complex structures [18, 
19].The distribution of gray levels in B-mode ultrasound 
images of carotid plaques is complicated as the plaques have 
heterogeneous histologic components (e.g. calcifications, lipids, 
hemorrhages, fibrous tissue etc.) [20]. Thus, a bimodal gamma 
distribution with five parameters may be sufficient to describe 
the ultrasound images of plaques. Shankar et al. report 33 
ultrasound images of plaques indicating that a bimodal gamma 
distribution model is effective in modeling hard and soft 
plaques [13]. However, this is an incomplete scheme for feature 
extraction and classification of plaques with different 
echogenicity. According to the criteria of the European carotid 
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plaque study group, the plaques can be classified into echo-rich, 
intermediate and echolucent plaques [21]. In our study, the 
bimodal gamma distribution is proposed to model the pixel 
statistics of the gray scale images of the three different types of 
plaques. There are three curves representing the echo-rich, 
intermediate and echolucent plaques in the model. Furthermore, 
previous studies have indicated that discrete Fréchet distance is 
feasible for quantitative assessment of the similarity of two 
curves [22, 23]. The discrete Fréchet distance features (DFDFs) 
were extracted from the relationship between the cumulative 
distribution curve of the pixel gray value distribution of each 
plaque and the three curves in the statistical model, respectively. 

Our study aims to develop a computer-aided method based 
on DFDFs for identifying echolucent plaques, which may 
potentially improve the ability of ultrasonic examination in risk 
prediction of ACCEs for patients with carotid plaques. The 
flowchart of the method is shown in Fig. 1. 

 
Fig. 1. Flowchart for the classification of echolucent carotid plaques based on 
the discrete Fréchet distance features. 

II. MATERIALS AND METHODS 

A. Materials 

A total of 315 ultrasound images of carotid plaques (105 
echo-rich, 105 intermediate and 105 echolucent) collected from 
153 subjects were analyzed in our study. The plaques were 
randomly divided into a training group (70 echo-rich, 70 
intermediate and 70 echolucent images) and a test group (35 
echo-rich, 35 intermediate and 35 echolucent images). In order 
to improve reliability of the results, a 3-fold cross validation test 
was performed, and the mean accuracy was taken as the final 
result. 

B. Images Acquisition and Preprocessing 

From February 2014 to October 2015, ultrasound carotid 
plaque images were collected using an Aplio XG (SSA-790A, 
Toshiba Medical Systems, Japan) equipped with a 5-12 MHz 
(center frequency is 8 MHz) linear-array transducer (PLT-
805AT) and a MyLab90 (Esaote Medical Systems, Italy) 
equipped with a 4-13 MHz (center frequency is 8 MHz) linear-
array transducer (LA523) by a sonographer with 5 years of 
experience in vascular imaging. The carotid artery was 
examined with the head tilted slightly upward in the mid-line 
position. The transducer was manipulated so that the near and 
far walls were parallel to the transducer footprint, and the lumen 
diameter was maximized in the longitudinal plane. All 
participants provided written informed consent. The study 
protocol was approved by the Institutional Review Board of the 
third affiliated hospital of Sun Yat-sen University (Guangzhou, 
China). 

Plaque echogenicity was visually classified into type 1 
(echo-rich), type 2 (intermediate) and type 3 (echolucent) 
according to the criteria of the European carotid plaque study 
group [21]. The assessment of plaque echogenicity was 
performed by two sonographers with at least 5 years experience 
in vascular imaging, and the controversial plaques were 
removed. A Cohen’s kappa coefficient (�) was calculated to 
evaluate the inter-observer agreement. To improve the 
comparability of the images and the reliability of our results, 
the images were normalized according to the scheme proposed 
by Sabetai et al. [24]. After normalization, the gray-scale 
median (GSM) of the blood range from 0 to 5, and the GSM of 
adventitia range from 185 to 195.  

C. Statistics of Gray Value Distribution of Plaque Pixels 

The region of interest within each plaque image was 
manually defined in gray scale, and the statistics of the gray 
value distribution of each plaque was obtained. Let x denote 
pixel value, where f(x) is the probability density function (PDF) 
of x, and the empirical cumulative distribution function (CDF), 
Fplaque(x), can be expressed by:  

0
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D. Bimodal Gamma Distribution 

For a parameter	� > 0, gamma function Γ(α) is defined 
by:  
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A variable x that is gamma-distributed with shape k and 
scale θ is denoted by X~Γ(k, θ). Its PDF is defined as 
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The corresponding CDF is calculated by Equation (4). For 
a bimodal gamma distribution, its PDF and CDF can be 
expressed by Equations (5) and (6), respectively. 
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E. Statistical Model of Plaques 

We investigated the ability of a bimodal gamma 
distribution in modeling the gray scale distribution of the plaque. 
There are five parameters (β, k1, θ1, k2 and θ2) that can be 
adjusted for curve-fitting implemented between the CDF of the 
bimodal gamma distribution and the empirical CDF of the 
plaque. In order to guarantee the reliability of curve-fitting, the 
parameters were obtained by minimizing the error (	all	ε	< 0.05), 
given by: 
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where Fplaque(x) and Fgamma(x)	were obtained from (1) and 

(6), respectively. Further, we proposed a statistical model that 
can be used for classifying the three types of plaques. The gray 
value distributions of echo-rich, intermediate and echolucent 
plaques in the training group were obtained respectively 
according to the following equation: 
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where M is the plaque label in the training set,
M ( )f x  

represents the probability of x of M-th plaque. Thus the data 
used for modeling was obtained. Curve-fitting techniques were 
performed between the CDF of bimodal gamma distribution 

and
model ( )iF x in (8). Therefore, a statistical mode 

model-gamma ( )iF x  were achieved, which included three curves 

denoting the echo-rich, intermediate and echolucent plaques, 
respectively. 

F. Feature Extraction 

1) Discrete Fréchet Distance 

Assume a path
1,..., rZ z z of r vertices, a t-walk along 

Z means Z is partitioned along the path into t disjoint nonempty 

subpaths  
1,...,j j t

Z

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1 1= ,...,
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jB contains exactly one vertex). The discrete 

Fréchet distance between two paths A and B is: 
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    (9)  

where dis(a, b) represents the Euclidean distance between two 
points a and b. In this study, the discrete Fréchet distance was 
proposed to measure the similarity between CDF of each plaque 
and the three model curves. The discrete Fréchet distance 

between two paths
model-gamma ( )iF x or

plaque ( )F x is: 

 model-gamma plaqueDFDF=dis ,F F F .        (10) 

2) Discrete Fréchet Distance Feature Extracted from 
Piecewise Curves  

In order to acquire more effective features, we extracted 
the DFDFs from the piecewise curves. The CDF of each plaque 
and the model curves were divided intp step lengths of 255, 50 
or 30 gray levels, as shown in Table I. 
3) Gray-scale Median 

The GSM of a carotid plaque is a common metric for 
evaluating plaque echogenicity. We measured the GSM of each 
plaque in this study. The effectiveness of GSM in identifying 
the echolucent plaques was investigated and compared with that 
of DFDFs. 

G. Feature Reduction and Classification 

1） Linear Discriminant Analysis 
Before classification, feature reduction was necessary to 

consider the relative large amount of DFDFs. Linear 
discriminant analysis (LDA) is a useful tool for pattern 

recognition [25]. It is widely used in process of feature 
reduction by providing a linear transformation of the feature 
space. Here, LDA was implemented for DFDFs and the most 
discriminating features (MDFs) were obtained. 

Let DFDFc
g

 denote the DFDF of the g-th plaque in class 

c, and c = 1, 2, 3. Define the within-class scatter matrix SW as 

  

N

1 1

1
= (DFDF )(DFDF )

N

cc
c c T

W g c g c
c gall

S  
 

    (11) 

where c  is the mean vector of the c-th class, Nall is the 

number of all the sample, Nc is the number of the sample in the 
c-th class. Define the between classes scatter matrix SB as 

        
T

1all
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= N ( )( )
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where   is the mean vector of the pooled data. The aim of 
LDA is to find a linear transform matrix   such that the 
objective function as maximizing the following: 
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It can be proved that such a transform   is composed of 

eigenvectors corresponding to largest eigenvalues of B WS S . 

The MDFs can be produced by the transformation: 

             MDFs DFDFsT  .            (14) 

2） K-nearest-neighbor (KNN) Classifier  
In the KNN algorithm, a new input case is classified by a 

majority vote of its neighbors from the training set. In this study, 
the case is assigned to the most frequent class among its K 
nearest neighbors based on the Euclidean distance. The KNN 
carotid plaque classification system was implemented for the 
value of 3 and it was tested using for input the MDFs of feature 
sets 1-3 and GSM. 

 

 
TABLE I 

THE SCHEME OF CURVE SEGMENTATION 

Feature set Step length Gray level ranges of the piecewise curves Number of features 
1 255 0-255 3 
2 50 0-50, 51-100, 101-150, 151-200, 201-255 15 
3 30 0-30, 31-60, 61-90, 91-120, 121-150, 151-180, 181-210, 211-255 24 

III. RESULTS 

A. Visual Classification 

The visual classification of the carotid plaques (n = 330) 
into three different types showed a good inter-agreement (Table 
II). The inter-observer reproducibility was 97.57% (� = 0.964). 
A total of 8 controversial plaques were excluded, and the 
remaining 105 echo-rich, 105 intermediate and 105 echolucent 
consensual plaques were randomly selected for the following 
analysis.  

B. Model Curves of Plaque Based on Bimodal Gamma 
Distribution 

Fig. 2 shows that the CDF of bimodal gamma distribution 
is effective in fitting the empirical CDF of the echo-rich, 

intermediate and echolucent plaques. The statistical model of 
the gray value distribution of plaque was shown in Fig. 3. The 
CDF of bimodal gamma distribution with parameters (β	= 0.5, 
k1 = 4.74, θ1 = 18.19, k2 = 13.14, θ2 = 6.34), (β = 0.5, k1 = 3.76, 
θ1 = 29.19, k2 = 11.41, θ2 = 8.03) and	(β = 0.5, k1 = 6.73, θ1 = 
15.27, k2 = 9.51, θ2 = 16.48) represents the echolucent, 
intermediate and echo-rich plaques. The distance between the 
three model curves showed a trend of first increase and then 
decrease as gray value increasing (Fig. 3). And the curve of 
echolucent plaque can be distinguished from the other two 
model curves. 

 
TABLE II 

VISUAL CLASSIFICATION OF 330 CAROTID PLAQUES BY TWO OBSERVERS 

  First observer  
  Echo-rich Intermediate Echolucent Total 

 
Second observer 

Echo-rich 106 2 1 109 
Intermediate 1 105 4 110 
Echolucent 0 0 111 111 

Total 107 107 116 330 

		�	= 0.964
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Fig. 2. Cumulative distribution function (CDF) of bimodal gamma distribution fitting empirical CDF of the gray value distributions of the plaques. The empirical 
CDFs in (a) was drew according to the echolucent, intermediate and echo-rich plaques defined in (b), (c) and (d), respectively. The parameters of fitting curve were 
β = 0.31, k1 = 4.44, θ1 = 13.79, k2 = 20.49, θ2 = 4.44, ε = 0.0020 (echolucent);	β = 0.19, k1 = 21.93, θ1 = 6.69, k2 = 19.54, θ2 = 4.32,	ε = 0.0028 (intermediate); β 
= 0.42, k1 = 13.84, θ1 = 11.76, k2 = 20.23, θ2 = 4.94, ε = 0.0019 (echo-rich).

 
Fig. 3. Model curves of the three types of plaques based on bimodal gamma 
distribution. The parameters of CDF are β = 0.5, k1 = 4.74, θ1 = 18.19, k2 = 
13.14, θ2 = 6.34 (echolucent); β = 0.5, k1 = 3.76, θ1 = 29.19, k2 = 11.41, θ2 = 
8.03 (intermediate); β = 0.5, k1 = 6.73, θ1 = 15.27, k2 = 9.51, θ2 = 16.48 (echo-
rich). 

C. Feature Extraction and Classification 

For each plaque, a total of 42 DFDFs (feature set 1 with 3 
features, feature set 2 with 15 features, and feature set 3 with 24 
features) were obtained. LDA was performed for each feature 
set, and two MDFs (MDF1 and MDF2) were obtained. All 
MDF1 and MDF2 of feature set 1 to 3 were significantly 
different between the three types of plaques (all, p < 0.001) 
(Table III ). Fig. 4 illustrates the two-dimensional scatter-plots 
of 315 plaques using MDF1 and MDF2. The scattered point 

distributions based on MDFs obtained from feature set 2 and set 
3 constituted three more distinct congregate areas compared 
with feature set 1. Accordingly, the classification accuracy of 
three types of plaques were 68.25%, 75.87% and 77.46% when 
using MDFs of feature set 1 to 3 for training.  

D. Identification of Echolucent Plaques 

Previous studies proved that echolucent plaques were 
potentially unstable and were regarded as high-risk plaques, 
whereas echo-rich and intermediate plaques were considered as 
low-risk [6, 8]. When echolucent plaques were identified using 
feature set 2, the accuracy, sensitivity and specificity were 
85.09%, 77.14% and 89.04%, which were higher than these 
using feature set 1 (79.05%, 67.62% and 84.76%) and feature 
set 3 (83.17%, 75.24% and 88.09%) (TABLE IV). Also the 
identification of echolucent plaques based on GSM showed a 
sensitivity of 72.38%, a specificity of 80.95% and a specificity 
of 63.33%. The receiver operating characteristic (ROC) is a 
standard method for assessing the sensitivity and specificity of 
diagnostic procedures, which provides a curve to describe the 
inherent tradeoff between the sensitivity and specificity of a 
diagnostic system. The ROC analysis was implemented to 
examine the ability of our method and GSM in identifying 
echolucent plaques. Fig. 5 shows the ROC curves for the KNN 
classifier when feature set 1 to 3 and GSM were used to train 
the classifier. The areas under the curve (AUC) for feature set 
1-3 were 0.762, 0.831 and 0.812, which was higher than that for 
GSM (AUC = 0.712). 
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TABLE III 
DISCRETE FRÉDCHET DISTANCE FEATURE SETS 

  Echo-rich Intermediate Echolucent F value p value 
Feature set 1 MDFs 1 1.07±0.66 -0.24±0.99 -0.84±0.83 141.67 < 0.001 

 MDFs 2 0.13±1.12 -0.41±0.77 0.29±0.96 15.32 < 0.001 
Feature set 2 MDFs 1 0.29±0.14 -0.61±0.21 -0.23±0.15 254.44 < 0.001 

 MDFs 2 -0.01±0.04 0.04±0.05 -0.02±0.04 65.49 < 0.001 
Feature set 3 MDFs 1 0.25±0.12 -0.05±0.17 -0.19±0.13 274.04 < 0.001 

 MDFs 2 -0.02±0.06 0.06±0.08 -0.04±0.05 71.04 < 0.001 

ANOVA. MDF = most discriminating feature. 

 

 
Fig. 4.Two-dimensional scatter-plots for 315 plaques using MDF1s and MDF2s. The MDFs in (a), (b), and (c) obtained from feature set 1, set 2 and set 3, 
respectively. MDF = most discriminating feature.
 

TABLE IV 
RESULTS of KNN CLASSIFICATION 

 Accuracy Sensitivity Specificity 
 Feature 

set 1 
Feature 

set 2 
Feature 

set 3 
GSM Feature 

set 1 
Feature 

set 2 
Feature 

set 3 
GSM Feature 

set 1 
Feature 

set 2 
Feature 

set 3 
GSM 

Test 1 72.38% 84.78% 85.71% 67.62% 48.57% 71.43% 71.43% 82.86% 84.28% 91.42% 95.71% 60.00% 
Test 2 78.10% 85.71% 77.14% 63.81% 77.14% 80% 74.29% 82.86% 78.57% 88.57% 78.57% 54.29% 
Test 3 86.67% 84.78% 86.67% 85.71% 77.14% 80% 80% 77.14% 91.42% 87.14% 90% 75.71% 

Average 79.05% 85.09% 83.17% 72.38% 67.62% 77.14% 75.24% 80.95% 84.76% 89.04% 88.09% 63.33% 
Ranking  3 1 2 4 4 2 3 1 3 1 2 4 

The 3-fold cross validation in detailed. The accuracy, sensitivity and specificity of identifying echolucent plaques based on feature sets 1 to 3 and gray-scale 
median (GSM). The 3-fold cross validation test included test 1 to 3. 
 

 
Fig. 5. Receiver operating characteristic curves of identifying echolucent 
plaques for KNN classifier based on feature sets 1-3 and gray-scale median 
(GSM). AUC = area under the curve.  

IV. DISCUSSION 

In this study, a statistical model based on a bimodal 
gamma distribution was proposed to identify echo-rich, 
intermediate and echolucent plaques (Fig. 3). Once the model 
was built, the problem of classification of plaques with different 
echogenicity was transformed into a mathematical problem for 
distinguishing similarity between the CDF of each plaque and 
the model curves, and the novel DFDFs were extracted for 
evaluating the similarity. The classification accuracy can reach 
77.46%, when classifier was trained with the DFDFs. 
Furthermore, previous studies suggest that patients with 
echolucent plaques have a high risk of carotid bifurcation 
lesions [26] and ischemic cerebrovascular events [7]. Moreover, 
plaque echolucency is useful for predicting coronary events [3] 
and future strokes [9]. Fig. 5 shows that our method has a high 
potential for identifying echolucent plaques (AUC = 0.831). 
Therefore, a computer-aided method based on DFDFs may be 
promising in risk prediction of ACCEs for patients with plaques. 

Visual identification is a common method for 
classification of plaques with different echogenicity [21, 27-29]. 
Mayor et al. visually classify 95 plaques into 5 types: type 1 
(uniformly echolucent); type 2 (predominantly echolucent); 
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type 3 (predominantly echogenic); type 4 (uniformly 
echogenic); and type 5 (unclassified plaques owing to 
calcification and producing acoustic shadows) [28] and they 
find that the plaques of type 1-5 presented intermediate mean 
GSMs, respectively of 33, 58, 100, 127 and 163, respectively. 
The mean GSM is linear related with the types (Spearman r = 
1, p < 0.05), and GSMs among different types of plaques show 
a statistical significance (p < 0.02). Plaques are classified 
visually into: type 1 (echo-rich), type 2 (intermediate) and type 
3 (echolucent) in this study [21]. We compared the ability of 
DFDFs and GSM for identifying echolucent plaques. When the 
classifier was trained using MDFs of feature set2, the accuracy 
(85.09%) and the specificity (89.04%) were the highest, and a 
moderate sensitivity (77.14%) was achieved (TABLE IV). The 
identification of echolucent plaques based on GSM showed a 
highest specificity of 80.95%, but it had a lower sensitivity 
(72.38%) and specificity (63.33%).  TABLE IV shows the 3-
fold cross validation analysis in detailed. Overall, the 
classification based on DFDFs feature set 2 had a higher 
stability than based on feature set 1, feature set 3 and GSM in 
identifying echolucent plaques. 

In order to improve the comparability of the images 
acquired from different ultrasonic condition, images 
standardization is necessary before data processing. According 
to the method proposed by Elatrozy et al. [30], images were 
standardized manually by linearly adjusting the image so that 
the median gray level value of the blood was 0–5, and the 
median gray level value of the adventitia (artery wall) was 185-
195. Moreover, Sabetai et al. have indicated that such an image 
normalization can decrease the variability between storage 
media and between probes [24]. In our study, all ultrasound 
images were normalized as the same as in [31-33]. 

In 1906, the Fréchet distance was defined as a measure of 
similarity between two parametric curves [34]. In 1994, Heikki 
et al. presented the discrete Fréchet distance, which is used for 
approximately computing Fréchet distance between two 
arbitrary curves using the discrete nodes along the curves for 
the measurements [35]. Many recent studies have proven the 
effectivity of discrete Fréchet distance [22, 23]. In this study, 
the most discriminating features extracted from the DFDFs 
showed statistical difference between plaques with different 
echogenicity (Table III). Furthermore, Irie et al. [36] in a study 
with 287 patients investigated the relationship between the 
echogenicity of carotid plaque and the occurrence of CVD 
events in detail. They divided the GSM values into quartiles 
(Q1: ≥	59, Q2: 48-58, Q3: 38-47, and Q4: ≤	37) and found that 
the lowest GSM quartile (Q4: GSM ≤ 37) has much higher risk 
for CVD as compare to the other GSM quartiles. Ruiz-Ares et 
al. [37] analyze 42 patients indicate that the unstable plaques 
have lower echogenicity than the stable plaques (GSM = 23 vs. 
37, p < 0.001). These studies suggest that plaque with different 
GSM had different level of risk, which may consistent with our 
results since more effective DFDFs can be obtained from the 
piecewise CDF of each plaque and the model curves in different 
gray level ranges.  

The main limitation of present study is that the model 
curves were built with relatively few samples, and a more 
precise model is the next step for investigation. Moreover, we 
only took 255, 50 and 30 gray levels as step lengths to segment 

the curves, and DFDFs were extracted from piecewise curves. 
In order to obtain an optimal step length, the curve 
segmentation scheme needs detailed investigation. Our results 
may be verified with additional ultrasound images of carotid 
plaques.  

V. CONCLUSION 

Our results demonstrate the potential feasibility of the 
method for identifying echolucent plaques based on DFDFs, 
which may potentially improve the ability of noninvasive 
ultrasonic examination in risk prediction of ACCEs for patients 
with plaques.  
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