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Pulsatile Flow Characterization in a Vessel Phantom
With Elastic Wall Using Ultrasonic Particle Image
Velocimetry Technique: The Impact of Vessel
Stiffness on Flow Dynamics
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Abstract—This study aims to experimentally investigate the im-
pact of vessel stiffness on the flow dynamics of pulsatile vascu-
lar flow. Vessel phantoms with elastic walls were fabricated using
polyvinyl alcohol cryogel to result in stiffness ranging from 60.9
to 310.3 kPa and tested with pulsatile flows using a flow circula-
tion set-up. Two-dimensional instantaneous and time-dependent
flow velocity and shear rate vector fields were measured using
ultrasonic particle image velocimetry (EchoPIV). The waveforms
of peak velocities measured by EchoPIV were compared with the
ultrasonic pulse Doppler spectrum, and the measuring accuracy
was validated. The cyclic vessel wall motion and flow pressure were
obtained as well. The results showed that vessel stiffening influ-
enced the waveforms resulting from vessel wall distension and flow
pressure, and the fields of flow velocity and shear rate. The stiffer
vessel had smaller inner diameter variation, larger pulse pressure
and median pressure. The velocity and shear rate maximized at
peak systole for all vessels. The results showed a decrease in wall
shear stress for a stiffer vessel, which can initiate the atheroscle-
rotic process. Our study elucidates the impact of vessel stiffness
on several flow dynamic parameters, and also demonstrates the
EchoPIV technique to be a useful and powerful tool in cardiovas-
cular research.

Index Terms—Flow velocity, polyvinyl alcohol (PVA) cryogel,
shear rate, ultrasonic particle image velocimetry, vessel stiffness.
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I. INTRODUCTION

T has been known for over two centuries that the integrated
I effect of hemodynamics and arterial wall mechanics plays
a fundamental role in cardiovascular health [1], [2]. Measuring
the details of flow in arterial models or artificial organs is essen-
tial to investigate various flow-induced changes, and to evaluate
patient-specific parameters such as geometry, non-Newtonian
flow characteristics, wall elasticity, and steady and pulsatile flow
[3]-[7]. Techniques that can assess diseased arteries via flow
information and vascular mechanics can provide insight into
the diagnostic or therapeutic management of cardiovascular
diseases (CVD). Till now, many studies have been performed.
However, the experiments on the impact of arterial stiffness on
blood flow dynamic parameters are seldom reported.

In clinical practice, the changes in blood flow dynamics
have been used to diagnose the location and extent of disease.
Ultrasound-based techniques have gained broad applications
for the purpose of blood flow imaging due to the advantages of
real time, cheap, easy to use, safe and nonionizing. The pulsed
wave Doppler technique is routinely used to obtain 1-D time-
dependent blood flow velocity information [8], [9], but the typ-
ical limitation of this technique is angle dependence. In order to
overcome this limitation, and to obtain more accurate 2-D blood
flow velocity patterns, many novel ultrasound-based techniques
have been developed in the past two decades, including ultra-
sonic speckle velocimetry [10], vector flow imaging using plane
wave excitation [11], ultrasonic perpendicular velocimetry [12],
and ultrasonic particle image velocimetry (EchoPIV) [13], [14].
These techniques not only provide a better way to understand
the flow velocity distribution but also can result in more accurate
shear stress calculations. Based on this, the impact of hemody-
namic shear stress on the arterial wall has been studied [15], [16].
The innermost intima vessel layer is exposed to both wall stress
caused by pulsating blood pressure and wall shear stress (WSS)
caused by pulsatile blood flow, and influences the many func-
tions of endothelium that control the process of production and
degradation [17].

More recently, researchers have been paying increasing atten-
tion to arterial stiffness, considering it to be both a diagnosis tar-
get and an important issue in the development of CVD. Changes
in arterial stiffness may occur early in the atherosclerotic
process, even before the anatomical changes of intima-media
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Fig. 1. Diagram of the experimental setup: the pump pushed the working fluid
to circulate and flow through the vessel phantom with elastic walls; pulsatile flow
was generated in the vessel; the flow pressure was recorded using the pressure
sensor; the B-mode image sequences were acquired using the ultrasonix RP
ultrasound system for postprocessing.

thickening become perceptible [18], [19], and arterial stiffening
plays an important role in the process of CVD. A number of stud-
ies examined the ability of arterial stiffness to predict the risk of
future fatal and nonfatal cardiovascular events and total mortal-
ity [20]-[22]. Correspondingly, several ultrasound-based tech-
niques have been developed for arterial stiffness measurements,
including pulse wave velocity (PWV) measurements [23], [24],
regional PWV [25], [26], tissue Doppler [27], [28], phase-
tracking [29], and an ultrasound image-based texture matching
method [30]. Lately, Niu et al. have combined EchoPIV and
image-based texture matching method to simultaneously mea-
sure arterial strain and flow pattern [31].

Till now, there have been limited experimental studies on how
arterial stiffness can influence the blood flow dynamics and how
arterial mechanics and blood flow interact, which provides the
motivation of this study. In this paper, vessel phantoms with
elastic walls were made using polyvinyl alcohol (PVA) cryogel
in order to simulate human common carotid arteries of different
stiffness. Then, the pulsatile flows within the vessels having vari-
able stiffness were characterized using EchoPIV. The accuracy
of EchoPIV measurements was demonstrated by comparing the
waveforms of peak velocities with the ultrasonic Doppler spec-
trum. Importantly, 2-D detailed maps of blood flow and shear
rate patterns, as well as waveforms of the vessel wall distension,
flow pressure, and time-dependent flow velocity and shear rate
were obtained, analyzed, and discussed.

II. MATERIALS AND METHODS
A. Pulsatile Flow Circulation and Ultrasound Imaging System

A pulsatile flow was generated within an elastic vessel phan-
tom using a flow circulatory test rig as shown in Fig. 1. An ultra-
sound system (Sonix RP, Ultrasonix, Canada) equipped with a
linear transducer (L14-5W/60, transmit frequency 10 MHz) was
used for data acquisition. The vessel was coated by synthetic
tissue to simulate human common carotid artery surrounded by
human tissue. The elastic vessel phantom had initial inner diam-
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eter of 6 mm, and underwent distension and contraction when
pumped. The whole phantom was immersed in degassed water
for the convenience of ultrasound beam transmission. An aque-
ous solution of ultrasound contrast microbubbles was used as the
working fluid. The bubbles were generated using the mechan-
ical agitation method and suspended in deionized water [32].
Each bubble consisted of octafluoropropane gas encapsulated
by a phospholipid shell. Bubble concentration and size distribu-
tion were characterized using an AccuSizer 780A particle sizing
system (Santa Barbara, CA, USA). Each milliliter of solution
contained 1 ~ 2x10° bubbles. A major peak was observed at
the size of 0.67 pm, with mean and median size of 1.90 and
0.93 pm, respectively. The working fluid (microbubbles aque-
ous solution) had a bubble concentration of 1 x 10% bubbles/ml.
This concentration was chosen for the optimum quality of ul-
trasonic images, so as to maximize the accuracy of EchoPIV
measurements [33].

The pulsatile pump (Model 55-3305, Harvard, USA), the
vessel phantom, the pressure sensor (HDP708, Hedi Sensing
Instrument, Guangdong, China), and the reservoir filled with
the working fluid were connected using plastic tubes. The pump
simulated the ventricular action of the heart and pushed the
fluid to circulate. The stroke volume, stroke rate of the pump
were maintained at 15 ml per stroke, 60 strokes per min in all
experiments, so as to simulate the heart beat at 60 beats/min. The
pressure sensor was connected to an oscillograph (DPO3032,
Tektronix) for recording the flow pressure waveform, which
was composed of systolic phase and diastolic phase. The peak
systole was defined as the time point when the systolic pressure
reaches maximum.

B. Phantom Fabrication and Characterization

The vessel phantoms with elastic walls coated with synthetic
tissue were made from PVA cryogel (PVA-C). The PVA aque-
ous solution was filled into a steel mold, and then frozen and
subsequently thawed to form a cryogel with rubber-like proper-
ties [34]. The composition (by weight) of the solution was 10%
PVA powder, 87% deionized water, and 3% scattering particles
(Sigma-Aldrich, USA). The mold consisted of a sleeve (14 mm
inner diameter), two diaphragms (10 mm inner diameter and
14 mm outer diameter), a cylindrical rod (6 mm outer diam-
eter), and two caps [see Fig. 2(a)]. All components except the
upper cap were assembled, the solution was injected into the gap
between the rod and the diaphragms, and the upper cap was then
screwed [see Fig. 2(b)]. The whole mold underwent a number
of (1 to 8) freeze—thaw (f-t) cycles to result in different stiff-
ness. Each f—t cycle comprised of 12 h of freezing at —20 °C
and 12 h of thawing at 20 °C. The obtained vessel phantoms
with elastic walls had a regular concentric lumen and different
stiffness. The vessel had 6 mm inner diameter, 10 mm outer di-
ameter, and 16 cm length. The vessel with the inserted steel rod
was assembled inside a glass tank, and the same PVA solution
was gently poured into the tank to coat the vessel. The steel rod
insured that the elastic tube did not deform. The whole tank was
then subjected to one more f—t cycle. The vessel was covered
with 2 cm of synthetic tissue [see Fig. 2(c)]. The synthetic
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Fig. 2. Fabrication of the vessel phantoms with elastic walls coated with
synthetic tissue: (a) the steel mold was composed of a sleeve with 14 mm
inner diameter, two diaphragms with 10 mm inner diameter and 14 mm outer
diameter, a cylindrical rod with 6 mm outer diameter, and two caps; (b) all
the components except the upper cap were assembled together, and the PVA
solution was injected into the gap, and the upper cap was then screwed; and
(c) the resulted vessel phantoms with elastic walls surrounded by synthetic
tissue.

tissue supported the vessel and guaranteed isotropic vessel wall
motion. Three phantoms (3, 5, and 8 f-t cycles) were used in
flow experiments.

The speed of sound within and the attenuation coefficient of
the vessel samples were determined using the pulse—echo substi-
tution method [35]. A 10 MHz single element transducer (Pana-
metrics, Olympus, MA, USA) acted as both the transmitter and
receiver. Young’s modulus was measured using a CMT 6104
testing instrument (MTS System Corporation, China). Each
sample was subjected to stress—strain cycles to a displacement
of 15% of the gauge length. The Young’s elastic moduli were
calculated from the upward loading portion of the stress—strain
curves. The modulus was evaluated as the mean gradient of the
best-fit least-squares line to the data from 6%—15% [36].

C. Vessel Inner Diameter Measurements

Vessel diameter was automatically acquired from ultrasonic
B-mode images. In sequential B-mode images, the boundaries
between the flow and the walls were delineated using a region
growing image segmentation method [37]. In this method, the
intensity (or grayscale) difference in two consecutive frames of
ultrasound contrast images was termed as window frame dif-
ference (WFD). The blood flow and microbubbles within move
much faster than the arterial walls. Thus, there is much higher
intensity variation in the lumen regions (microbubbles within)
than in the arterial wall regions. Note that WFD information can,
therefore, be used to segment these two regions. Our proposed
segmentation method combines WFD and region growing al-
gorithm to delineate the boundaries of the arterial walls from
ultrasound contrast images and can automatically get the value
of inner diameter.

D. Echo Particle Image Velocimetry Technique

The EchoPIV technique consists of identifying and tracking
a tracer (ultrasound contrast microbubbles) within a flow field,
and computing local velocity vectors using a cross-correlation
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TABLE I
SPEED OF SOUND AND SOUND ATTENUATION FOR PHANTOMS OF DIFFERENT
NUMBER OF F~T CYCLES

Number of f-t cycles || Speed of sound (m/s) || Sound attenuation (dB/cm)
1 1536.5 0.96
3 1543.2 1.31
S5 1550.8 1.61
8 1552.1 1.70

algorithm. The B-mode images were acquired at a frame rate of
200 Hz using 128 ultrasound beams with focal depth of 2 cm and
field of view of 3 cm (depth) by 3 cm (width). For each single
data acquisition, more than 1200 frames were recorded, so as to
cover at least five cardiac cycles. A new EchoPIV algorithm was
used to process sequential image frames to get 2-D map of ve-
locity vectors. This new algorithm made several improvements
on the conventional PIV algorithm. A cross-correlation method
was initially applied with a large interrogation window to esti-
mate the displacement, and a multiple iterative algorithm was
used to enhance the spatial resolution of the velocity measure-
ments. Then, subpixel method, filter and interpolation method,
and removal of spurious vectors were applied to improve the
accuracy of velocity measurement. Please refer to [33] for more
details about the algorithm. The 2-D flow velocity pattern al-
lows detailed evaluation of the flow-mediated shear rate which
can be calculated from the radial velocity gradient based on the
following equation:

i
T dr

where v is the axial velocity, and r is the radial coordinate.

S (1)

III. RESULTS
A. Phantom Characterization

Five samples were prepared for each batch of phantoms that
were subjected to the same number of f-t cycles, and the re-
sults of the five measurements were averaged. Table I lists the
speed of sound and sound attenuation for phantoms of 1, 3, 5,
and 8 f—t cycles. The speed of sound increased from 1536.5 to
1552.1 m/s. The synthetic tissue (1 f—t cycle) had a speed of
sound of 1536.5 m/s, which was quite close to the routine value
of 1540 m/s for human soft tissue. The speed of sound of the
three phantoms (3, 5, and 8 f—t cycles) was close to the reported
values for normal arteries [38]. The sound attenuation values at
10 MHz ranged from 0.96 to1.70 dB/cm.

The strain—stress curve is plotted for each vessel sample in
Fig. 3(a). An increase in the mean Young’s moduli with the
number of f—t cycles was observed in Fig. 3(b). The 3, 5, and 8
f—t cycle phantom had modulus of 165.0, 250.5, and 310.3 kPa,
respectively.

B. Flow Mediated Vessel Motions

The vessel dilated and contracted periodically (time period
1 s). The time-dependent curves of inner diameter (see Fig. 4)
showed that it increased from a minimum at end diastole to a
maximum at peak systole, and then declined to the minimum.



QIAN et al.: PULSATILE FLOW CHARACTERIZATION IN A VESSEL PHANTOM WITH ELASTIC WALL USING ECHO PIV TECHNIQUE

(a) (b)

35 ~350
©
30 2 300
g 25 5250
= S
i Eis0
®10 :
2100
s 3
0 =
0 2 4 6 810121416 0 1 2 3 4 5 6 7 8
Strain(%) Number of freeze-thaw cycles
Fig. 3. Mechanical characteristics of vessel phantoms of different number of

f=t cycles: (a) stress—strain curves; and (b) Young’s modulus versus number of
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Fig. 4. Time-dependent curves of vessel inner diameter. The red, green, and
blue solid curves correspond to the measured results of 3, 5, and 8 f—t cycle
vessel, respectively. The black dotted line denotes the initial inner diameter for
all the vessel phantoms. The red, green, and blue arrows point out the maximum
diameters for the three vessel phantoms. The dotted vertical lines demonstrate
the time points for the inner diameter achieving maximum.
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Fig. 5. Time-dependent pressure waveforms corresponding to different ves-
sels: The red, green, and blue solid curves correspond to the measured results
of 3, 5, and 8 f—t cycle vessel, respectively. The arrows point out peak systole,
dicrotic notch, and end diastole. The dotted vertical lines demonstrate the time
points for the pressure achieving systolic peak pressures and dicrotic notch.

For 3, 5, and 8 f—t cycle vessels, the maximum and minimum
values were 6.69 and 5.30 mm, 6.61 and 5.40 mm, and 6.54
and 5.46 mm, respectively. The peak-to-peak diameter variation
(1.39,1.21, and 1.08 mm) became smaller as the vessel increased
in stiffness. The time duration increased correspondingly
(at 0.26, 0.28, and 0.30 s).

C. Flow Pressure Waveform

The recorded pressure was plotted against time in different
colors (see Fig. 5). The pressure achieved maximum (113.9,
122.7, and 135.4 mmHg) at peak systole, and minimum (83.0,
79.3, and 74.7 mmHg) at end diastole. Pulse pressure (PP) was
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Fig. 6. Two-dimensional maps of flow velocity and shear at the peak systole:
(a)—(c), velocity maps of 3, 5, and 8 f—t cycle vessels; and (d)—(f), shear rate
maps of 3, 5, and 8 f—t cycle vessels.

calculated from the difference of systolic and diastolic pressures,
and mean pressure (MP) from the averaged pressure within a
cycle. For 3, 5, and 8 f—t cycle vessels, PP and MP were 31.9
and 98.5 mmHg, 43.4 and 100.7 mmHg, and 60.7 and 103.9
mmHg, respectively. The vessels that pertain to 3 and 8 f-t
cycles had the smallest and biggest PP and MP respectively. As
the vessel became stiffer, the time durations from diastolic to
systolic peak pressure (0.26, 0.28, and 0.30 s) increased, and the
time duration from peak systolic to dicrotic notch (0.21, 0.17,
and 0.14 s) decreased, and the time duration from the dicrotic
notch to end diastole increased.

D. Two-Dimensional Distribution of Flow Velocity
and Shear Rate

The instantaneous 2-D maps of flow velocity and shear rate
can be obtained. The typical flow patterns at peak systole were
shown in Fig. 6 with arrows showing magnitude and direction,
and color denoting contour. The maps of velocity vector in
the left column showed parabolic profiles. The flow velocity
maximized at the centerline, and gradually decreased to zero
at the boundaries. The maps of shear rate in the right column
demonstrated that this property is maximized near the walls.

The time-dependent waveforms of the peak velocities mea-
sured by EchoPIV were depicted in Fig. 7(a). Measurements
starting from soft to stiff vessels result in the peak systolic and
end diastolic velocities with magnitudes of 55.0 and 12.3 cm/s,
50.0 and 13.4 cm/s, and 44.9 and 14.8 cm/s. To evaluate the
accuracy of EchoPIV measurements, the peak velocity deduced
from radial velocity profiles in the vessel were compared with
the profile obtained from Doppler velocity spectrum. The results
were shown in Fig. 7(b)—(d). The Doppler-measured peak sys-
tolic velocities were 57.0, 53.3, and 47.2 cm/s, slightly bigger
than the EchoPIV-measure values. The biases were below 5%
during the whole cardiac cycle. Fig. 7(e) shows the near-wall
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Fig. 7. Time-dependent waveforms of the peak velocities and shear rates:

(a) the waveforms of peak velocities measured by EchoPIV; (b)-(d) the com-
parison between the waveforms of EchoPIV-measured peak velocities and
the ultrasonic Doppler spectrum: (b) 3-ft-cycle vessel; (c) 5-ft-cycle vessel;
(d) 8-ft-cycle vessel; and (e) the time-dependent waveform of wall shear rate
close to the near wall.

shear rate plotted against time for different vessels. The maxi-
mum shear rates were 650, 550, and 500 (1/s), respectively.

IV. DISCUSSION

In this study, three elastic vessel phantoms with identical
structure and different stiffness were made from PVA-C and
used in the same fluid circuit. Under the pulsatile flow con-
dition, the vessels underwent cyclic dilation and contraction
during one cardiac cycle. The recorded vessel wall distension
waveform (see Fig. 4) of the vessel is similar to that of an
asymptomatic common carotid artery [39]. While it is easy to
understand that a stiffer vessel would undergo smaller wall mo-
tions, it is also interesting to observe that it took longer time
to achieve maximum inner diameter for a stiffer vessel. The
increased vessel stiffness had degraded deformation ability in
response to an applied force.

The flow pressure waveforms (see Fig. 5) revealed significant
information on the systolic and diastolic pressure, PP, and MP.
For instance, the 8 f—t vessel pertains to the largest PP and MP.
This confirmed the correlation between hypertension and artery
stiffening. The time to achieve peak systolic pressure in the pres-
sure waveform coincided with the time to achieve maximum in-
ner diameter in the wall distension waveform. This indicates that
the wall motion and flow pressure was synchronous. Another
point to note is that the stiffer vessel reached the dicrotic notch
earlier. The reason could be the earlier arrival of the reflection
wave for the stiffer vessel.

The EchoPIV technique enabled the measurements of 2-D
color flow velocity vector maps, and thus the calculation of de-
tailed shear rate values at different locations in the flow. From
the typical 2-D maps of velocity at the peak systole, we ex-
amined the parabolic flow velocity profiles for all the vessels
(see Fig. 6). The shear rate maximized at the boundaries and
minimized in the center. The comparison of time-dependent
EchoPIV-measured peak velocities with the profile of Doppler
velocity spectrum validated the measuring accuracy (see Fig. 7).
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In one cardiac cycle, the cyclic change of the near-wall shear
rate was synchronous with that of the flow velocity. For the
vessel phantoms of a regular shape, the stiffer one resulted in
smaller peak velocity in the lumen center and shear rate close
to the walls at the peak systole.

Considering that the endothelium is very sensitive to shear
stress, local hemodynamic conditions such as low and oscillat-
ing shear can result in abnormal and disarrayed endothelial cells
and increase in the intercellular permeability and the vulnerabil-
ity of these vessel segments to atherosclerosis, and consequently
lead to various cardiovascular events. This indicates that the re-
duced WSS due to increased vessel stiffness can initiate the
atherosclerotic process. Further hemodynamic and pathological
studies can be performed in animal models.

The usage of deionized water as the working fluid in the
Harvard blood pump may cause some drawbacks in the exper-
imental setup. Water has smaller viscosity and density as com-
pared to real human blood, which may affect the flow velocity
distribution and influence the WSS. Synthetic blood based on
realistic viscosity is desirable in the future work. The pump can-
not ideally simulate the real function of a human heart, and the
impact of wave reflections at tube connections would inevitably
influence the pressure waveforms and the velocity waveforms.
Nonetheless, since we only substituted the vessel phantoms and
remained other components the same throughout all the exper-
iments, the comparison between the results of different vessel
phantoms can cancel out the resulting errors. The measured
results of this study demonstrated that the experimental con-
figuration did simulate the blood flow in the artery very well,
and the use of elastic vessel phantoms of different stiffness in-
deed provided a way to study the impact of arterial stiffness on
flow dynamics. Also, EchoPIV was proven to be a useful and
powerful tool in blood flow dynamics studies.

V. CONCLUSION

We have fabricated elastic vessel phantoms of different stiff-
ness with PVA-C and successfully generated pulsatile flows
in the vessels using a circulatory rig. Using the EchoPIV to
provide accurate measurements of 2-D instantaneous and time-
dependent flow velocity and shear rate vector fields in the vessel
allow us to study three different vessels and demonstrate that the
vessel stiffness can influence vessel wall distension, flow pres-
sure, and time-dependent flow velocity and WSS. A decrease
in wall shear rate was observed for a stiffer vessel, and this
factor may function to prompt the pathological development
of the endothelial cells. In future, more sophisticated-shaped
phantoms (such as bifurcation or stenosis) and preclinical and
clinical studies may be studied using the framework proposed
in this paper.
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