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ABSTRACT There is evidence that 15–30% of the general population cannot effectively operate brain–
computer interfaces (BCIs). Thus the BCI performance predictors are critically required to pre-screen par-
ticipants. Current neurophysiological and psychological tests either require complicated equipment or suffer
from subjectivity. Thus, a simple and objective BCI performance predictor is desirable. Neurofeedback (NFB)
training involves performing a cognitive task (motor imagery) instructed via sensory stimuli and re-adjusted
through ongoing real-time feedback. A simple reaction time (SRT) test reflects the time required for a
subject to respond to a defined stimulus. Thus, we postulated that individuals with shorter reaction times
operate a BCI with rapidly updated feedback better than individuals with longer reaction times. Furthermore,
we investigated how changing the feedback update interval (FUI), i.e., modification of the feedback provision
frequency, affects the correlation between the SRT and BCI performance. Ten participants attended four NFB
sessions with FUIs of 16, 24, 48, and 96 ms in a randomized order. We found that: 1) SRT is correlated with
the BCI performance with FUIs of 16 and 96 ms; 2) good and poor performers elicit stronger ERDs and
control BCIs more effectively (i.e., produced larger information transfer rates) with 16 and 96 ms FUIs,
respectively. Our findings suggest that SRT may be used as a simple and objective surrogate for BCI aptitude
with FUIs of 16 and 96 ms. It also implies that the FUI customization according to participants SRT measure
may enhance the BCI performance.

INDEX TERMS Simple reaction time, feedback update interval, brain-computer interface, brain-machine
interface, aptitude, information transfer rate.

I. INTRODUCTION
Brain-computer interfaces (BCIs) provide an alternative com-
munication channel for the transfer of the human will to
the outside world. However, there is evidence that 15–30%
of the general population are not able to effectively oper-
ate BCIs [1]. Having access to BCI performance predictors
avoids participants that are unable to operate BCIs, thus
saving a significant amount of time and resources. To predict
BCI performance, a number of neurophysiological [1]–[8]
and psychological tests [9], [10] have been proposed. All
proposed measures correlate to some degree with motor
imagery (MI) performance quality.

However, previously proposed neurophysiological mea-
sures [1]–[8] require complicated equipment such as elec-
troencephalography (EEG),magnetoencephalography (MEG),
functional near-infrared spectroscopy (fNIRS), or functional

magnetic resonance imaging (fMRI) machines. Psychologi-
cal measures [9], [10] are easily accessible but suffer from
subjectivity and low resolution (e.g. questionnaires). Thus,
simple (measurable with ubiquitous hardware) and objective
(not reliant on subjects’ self-assessment) BCI performance
predictors remain warranted.

Neurofeedback (NFB) training with real-time feedback
involves performing a cognitive task (motor imagery, MI)
followed by feedback realisation. The knowledge of per-
formance provided by feedback may be used to adjust the
ongoingMI, which in turn will be rewarded by the next round
of feedback provision. A simple reaction time (SRT) test is
an accurate and simple test [11], which may be implemented
in commonly available hardware such as a PC and open
source software. The SRT test reflects how quickly a person
interacts with the environment while preparing to provide a
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required action [12]. Thus, we hypothesised that SRT may
provide a simple and objective surrogate for BCI perfor-
mance. Specifically, we hypothesised that those subjects with
shorter reaction times will display improved performance
during NFB training with more rapidly updated feedback
than their counterparts with longer reaction times. Further,
following up on our prior studies [17], [45], we investigated
whether and to what extent lengthening the feedback update
interval (FUI), i.e. decreasing the feedback provision fre-
quency, affects the relationship between reaction time and
quality of BCI performance.

We investigated the relationship between BCI performance
quality and reaction times, which measures the speed of
interaction with the performance environment. Information
transfer rate (ITR) is a BCI performance measure that not
only reflects the accuracy of performance but also reveals the
speed of communication [13]. Therefore, ITR was selected
as the measure of quality for BCI performance. Ten par-
ticipants attended four NFB training sessions with FUIs of
16, 24, 48, and 96 ms in a randomised order. For those
FUIs that revealed significant correlations between the ITR
and SRT, two follow-up analyses were implemented, investi-
gating: (i) how interaction between BCI aptitude and FUIs
affect ITR, and (ii) how interaction between BCI aptitude
and FUIs affects event-related de-synchronization (ERD) in
alpha (8–13 Hz) and beta (16–30 Hz) frequency bands as
neural correlates of quality of MI performance [14], [15].

II. METHODS
A. PARTICIPANTS
Ten healthy participants (six males, four females) aged
18–26 years were recruited in this study. The study was
approved by the local human ethics committee of the Uni-
versity of Adelaide, and all participants gave their written
informed consent to participate in the study.

B. BCI SYSTEM
A 72 Channel Refa TMSi EXG amplifier, with 64 unipo-
lar and eight bipolar channels and a 64 channel Waveg-
uard EEG cap was used. The EEG data were recorded only
from small Laplacian combination of the channels centred
on either the C3 or C4 channel. The ground channel was
connected to the participants’ target hand using a wristband.
The impedance between electrodes and the scalp was kept
below 20 k�. The EMG data of the finger flexor muscles
of the target hand were recorded using a bipolar channel of
the EXG amplifier. The amplifier uses a built-in common
average reference of the recorded channels and thus does not
require a reference channel. The amplifier was set to exclude
any unipolar channels with impedances larger than 20 k�
from the common average reference calculation. It also does
not consider the bipolar channels used for EMG recording
in common average referencing of EEG signals. All EEG
and EMG signals were digitised at 1000 Hz and passed
through a 50 Hz notch filter (3rd order Chebyshev) followed
by a high pass filter (1st order Butterworth) with a corner

frequency of 0.1 Hz. To provide the proprioceptive feedback
two orthoses were mounted on a platform to serve either the
right or left hand. They passively flex fingers of the involved
hand according to the motor imagery of four-finger flexion.
Each orthosis was driven by a Blue Bird BMS-630 servomo-
tor, using customized software and a Micro Maestro servo
controller module.

A customised version of the BCI2000 [16] was used to
record the data and run the real-time experiments. The source
code was customised to provide auditory commands and to
update the position of the servo motors.

C. STUDY DESIGN
The data used in the current study were part of a larger
study we conducted to investigate the effect of user-centred
strategies on BCI performance. In this crossover study, each
of the 10 participants attended one screening session followed
by six training BCI sessions under different conditions. The
six conditions were (I) proprioceptive feedback with FUI
of 16 ms, (II) proprioceptive feedback with FUI of 24 ms,
(III) proprioceptive feedback with FUI of 48 ms, (IV) propri-
oceptive feedback with FUI of 96 ms, (V) visual feedback,
and, (VI) No imagery (control condition). The order of con-
ditions was randomised to compensate for a potential training
effect during the consecutive sessions of BCI. The data for
the current study were derived from conditions I–IV in which
participants performed MI-BCI and received proprioceptive
feedback that was updated every 16, 24, 48, or 96 ms.

The FUI values were set to be less than 100 ms to allow
for frequent repetitions of feedback updates during MI per-
formance for all FUIs. Due to the EEG amplifier’s firmware,
the FUIs could be increased in 8 ms steps, which in turn
dictated the largest FUI of 96 ms within the 0–100 ms range.
Also, FUIs were chosen to be logarithmically equidistant that
determined their values to be 12, 24, 48, and 96 ms. How-
ever, the shortest technically achievable FUI that provided
real-time feedback was 16 ms, and thus the FUIs were as
follows: 16, 24 (16× 1.5), 48 (16× 3), and 96 (16× 6) ms.

D. SCREENING SESSION
During the screening session, the subjects were asked to
perform three runs of left and right hand motor imagery
according to the visual and auditory instructions. Each run
included 20 trials of right/left and imagery in a randomised
order where each trial lasted for 3 s and was followed by 3 s
of relaxation. Thereby, for each subject, 60 trials were per-
formed in the screening session, during which the frequency
within 8–30 Hz frequency band that maximised the spectral
power discrepancy between the motor imagery of right or
left hand and relaxation trials was identified. To minimise
cognitive load, only right vs. relaxation and left vs. relax-
ation combinations were considered. Thus, the screening
session provided the optimum frequency and the optimum
combination of tasks (either right vs. relax or left vs. relax)
for each subject. Also, according to the selected imagery
task (right or left hand movement), the contralateral channel

2000311 VOLUME 6, 2018



S. Darvishi et al.: Reaction Time Predicts BCI Aptitude

over the hand representation of the sensorimotor area was
chosen (C3 or C4 channels). For all participants but partici-
pant P3, right vs. relaxwas found to provide larger differences
compared to left vs. relaxation. For all participants except P3,
channel C3 and its closest neighbours (FC3, CP3, C5, and C1)
were recorded to provide small Laplacian combinations. For
P3 with left vs. relax as their selected tasks, EEG signals
were recorded from C4 and its small Laplacian combina-
tion (FC4, CP4, C6, and C2). Table 1 summarises partici-
pants’ selected features. For further details on the schedule
of the screening session, refer to Darvishi et al. [17], [18].

TABLE 1. Results of screening session to define the optimum tasks,
channels and frequency bands for each individual.

E. NEUROFEEDBACK TRAINING SESSION
Each training session comprised eight runs of MI of right/left
hand finger flexion. Each run included 20 trials with ten
motor imagery and ten relaxation trials presented with a
randomised order. Each run took almost four minutes and
consecutive runs were separated by a 2-minute break. Over-
all, each session took less than an hour. Sessions were sched-
uled using BCI2000 operator scripts that determined runs
operation and the breaks between consecutive runs.

Every trial was initiated with a ‘‘start’’ auditory command
that prepared the participant for the following instruction.

After 3 s, another auditory command instructed the par-
ticipant to either relax or perform motor imagery of right
hand finger flexion. After another 3 s, the participant was
able to receive contingent feedback according to their motor
imagery or relaxation as follows. For ‘‘right’’ auditory com-
mand the right orthosis initialized the right hand’s fingers to
fully extended position. Within the next 2.5 s, the orthosis
was able to flex the right hand’s fingers incrementally if
the classification result was smaller than a threshold value.
However, if the command was ‘‘relax’’, the free running left
orthosis was initialized to fully extended position. Conse-
quently, it could be flexed again incrementally within the
next 2.5 seconds if the classification result was larger than
the threshold value. The threshold value was defined as the
pooled average spectral power of motor imagery and relax-
ation trials within the most recent 18 seconds (see below for
further details). An auditory ‘stop’ command cued the end
of each trial and after a subsequent 4 s inter-trial interval,
the next trial started. Each participant’s left hand was placed
on the arm rest and not on the left orthosis. As a result,
participants received proprioceptive feedback for right hand
imagery and visual feedback through observation of the left
orthosis flexion on relaxation. For participant P3, however,
his left hand was involved with the left orthosis while his right
hand was resting on the armrest. Thus, participant P3 was
supplied with proprioceptive feedback for left hand imagery
and visual feedback of relaxation through the right orthosis.
For further details on the design of training session refer
to [42]. Fig. 1 illustrates the training session’s time course.

F. REAL-TIME SIGNAL PROCESSING
To enhance the spatial resolution of EEG signals a small
Laplacian (SLP) transform was used to filter C3 channel
(C4 for participant P3). While a large Laplacian slightly out-
performs a small Laplacian for spatial filtering, since chan-
nel C5 of our EEG cap was disconnected, the small Laplacian
was chosen over the large Laplacian in this study. A 20th order
autoregressive model of the EEG signal was created using the
Burg method [19]. According to each participant’s selected
frequency and electrode (C3-SLP or C4-SLP), the spectral
power of the most recent 500 ms was calculated. The calcu-
lated spectral power outputs were z-scored (adaptively nor-
malised to zero mean and unit variance) to compensate for
the effect of EEG non-stationarity, by using the content of
a buffer that was continuously filled with the most recent
18 seconds of imagery and relax trials (equally represented).
More specifically, the adopted classifier was a first order
linear regression model made using the spectral power of the
EEG signals. The classifier output was considered congruent
with motor imagery and relaxation with negative and posi-
tive values, respectively. The classifier outputs were used to
update the flexion angle of the orthoses at every FUI. For
further details on the BCI setup refer to [42], and [44].

To render the comparison between different FUIs unbiased
by the amount of movement, it was necessary to provide
equal maximum flexion angles during each trial for all FUIs.
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FIGURE 1. Illustration of the time course of each neurofeedback training session. Each session encompasses
eight runs, where each run includes 20 trials. Each trial starts with a preparation cue at t = 0 s, followed by
another command at t = 3 s that guides the participant to perform relaxation or finger flexion motor imagery.
After 3 s of motor imagery/relaxation performance, feedback provision starts and becomes updated recurrently
every 16 or 96 ms according to the session’s condition. At t = 8.5 s the trial finishes and after a 4 s inter-trial
interval the next trial starts.

Therefore, normalised outputs were used to flex the tar-
get orthosis for 0.4, 0.6, 1.2, and 2.4 degrees with
16, 24, 48, and 96 ms FUIs, respectively at each feedback
update. Note that the flexion angle for different FUIs was
adjusted to provide a maximum flexion angle of 62.4 degrees
for all FUIs. Equation 1 shows the amount of flexion at each
update interval for different FUIs

Degrees of flexion = 62.4×
2500
FUI

. (1)

The BCI Performance Measure
We employed information transfer rate (ITR) to com-

pare participants’ real-time BCI performance across differ-
ent FUIs. The ITR was selected to take into account both
the accuracy and the speed of data transfer [13]. The ITR
calculation was performed according to Wolpow’s defini-
tion [13] using Equation 2 in which it is expressed in bits per
minute (bits/min)

ITR =
[
log2 N + P log2 P+

(1− P) log2 (1− P)
N − 1

]
×

60
8.5
(2)

where P reflects the average trial-based accuracy, N repre-
sents the number of classes (two classes: relaxation andmotor
imagery), and 8.5 is the total length of each trial in seconds.
The ITR has been multiplied by 60, to express it in bits/min.
Note that the trial based accuracy (P) was calculated as the

percentage of times in the feedback section of each trial
that classification outputs conformed to the task and flexed
the orthosis. The analysis was performed using custom built
Matlab scripts.

It has been argued that the threshold for BCI accuracy to
consider one Is controlling a BCI is 70% [7], which is equiv-
alent to an ITR of 0.838 bits/min (Eq. 2). Therefore, in this
study participants were dichotomized to good performers if
their average ITR with the shortest FUI (16 ms) were more
than 0.838, and poor performers if their average ITR with
the shortest FUI were less than 0.838. The choice of 16 ms
FUI for dichotomization was based on the assumption that
any potential effect of SRT on BCI performance may be most
pronounced at the shortest FUI.

G. SRT MEASUREMENT
A simple reaction time (SRT) test [11] was carried out to
measure the reaction time of participants, using the CANTAB
battery test (Cambridge Cognition, UK). Participants sat in
a chair and were asked to concentrate on a tablet computer
placed on a desk in front of them and to press the button on
a press pad as soon as they saw a square on the screen. Each
participant repeated the task 30 times to obtain the average
latency (reaction time), which was used as their SRT index.
Note that our reported values for SRT are measured using
CANTAB battery test with subjects aged 18–26 years.
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H. OFFLINE ANALYSIS
For offline analysis of the EEG and EMG signals,
EEGLAB [20] and custom-built Matlab scripts were used.
The EEG signals were spatially transformed using a small
Laplacian filter to produce single channel EEG data. Sub-
sequently, the data were band-pass filtered (3–47 Hz) and
divided into epochs from −2 to 8.5 s centred around
the ‘‘start’’ auditory command. All relaxation trials were
rejected. After removing the time averages, data purification
was performed as follows: (i) to tag the outlier trials, EEG
amplitude, spectral power, skewness, kurtosis and variance
were checked; (ii) the trial was labelled as irregular if any
of the mentioned indices were beyond the regular values
of artefact free EEG signals using the guideline provided
elsewhere [21]. The EMG signals of the Flexor Carpi Radi-
alis (FCR) muscles of the target arm, which reflected the
actual movement of fingers in the forearm muscle activity,
were also band-pass filtered (3–400 Hz). The time averages
of motor imagery trials were removed and then divided into
epochs using the same time windows as EEG signals. EMG
signals recorded during the motor imagery performance were
screened and trials with peak-to-peak values larger than
50 mV were tagged. All tagged trials due to irregular EEG
or significant EMG signals were discarded (9.2%).

The spectral power of the feedback section of motor
imagery trials (6–8 s) and their preceding inter-trial
interval (−2 to 0 s) were extracted in three frequency
bands: alpha (8–13 Hz), lower beta (16–22 Hz) and higher
beta (22–30 Hz). Only the last 2 s of the 4-second-long
inter-trial interval were considered as baseline period. This
adjustment ensured that the post imagery event-related syn-
chronization (ERS) had elapsed and had has no effect on
the baseline spectral power estimation. Only the first 2 s of
motor imagery with feedback section (6–8 s) was consid-
ered, to equalise the length of imagery and baseline time
windows. TheWelchmethod [22] with a frequency resolution
of 0.25 Hz was used to estimate the power spectral den-
sity (PSD) in decibel (dB). The PSD in the inter-trial interval
preceding the imagery trials was also calculated to determine
baseline spectral power. The difference between the spectral
power during motor imagery and inter-trial intervals were
calculated as a measure of task (MI/relaxation) effect on PSD
within 3–45 Hz frequency band. The ERD percentage indices
were also calculated according to Equation 3 [23]:

ERD =
A− R
R
× 100 (3)

where A and R stand for the spectral power during motor
imagery and the baseline period, respectively. Note that ERD
percentage measures in each frequency band were calculated
and compared between different FUIs for each group (good
and poor performers).

I. STATISTICAL ANALYSIS
To investigate the relationship between the ITR measures
obtained with different FUIs and SRT, Pearson correlation

coefficients were calculated. To ensure that the small num-
ber of samples did not bias the correlation coefficients,
100,000 bootstrapped data samples were used. Using the
bootstrapped samples mean values (r’, estimated correlation
coefficient), standard error and 98.75% confidence inter-
vals (0 and 98.75 centiles of the 100,000 correlation coef-
ficients) were calculated. Note that a 98.75% confidence
interval (instead of a 95% confidence interval) has been used
to compensate for multiple comparisons (four FUI levels).
Furthermore, the left ‘tail’ was considered for correlation
analysis as we hypothesised a negative correlation between
SRT and ITR. If the mentioned 98.75% confidence inter-
val did not include zero, the correlation coefficient was
considered as significant.

Only those FUI levels that revealed significant correlations
between the ITR and SRT valueswere selected (16, and 96ms)
for a follow-up analysis to study the effect of the FUI and
BCI aptitude on the ITR. Accordingly, the ITR indices of
the eight runs of each session with different FUI values for
each participant were used, to calculate the real-time BCI
performance measures. Note that here the ITR was calculated
only using the motor imagery trials to appreciate the effect of
the frequency of proprioceptive feedback realisation. Since
each group (good and poor performers) had five members,
each condition (FUI) comprised 40 (five participants× eight
runs) measures for comparison. We decided to consider
all eight runs of each session for each participant’s ITR
measures (instead of their average values over each session)
to increase the statistical power. A two-way ANOVA with
factors BCI aptitude (levels ‘‘good’’ and ‘‘poor’’) and FUI
(levels ‘‘16 ms’’ and ‘‘96 ms’’) was used to explore the
interplay between the aforementioned factors and ITR.

For statistical analysis of ERD with different FUIs, alpha,
lower beta, and higher beta ERDs were compared. The calcu-
lations were performed for each of eight runs of each session
only with FUIs that revealed a significant correlation with
SRT (16 and 96 ms). Selecting all runs for the analysis,
resulted in 40 (five participants × eight runs) ERD mea-
sures with each FUI in each frequency band for each group.
In total, it provided 240 ERDmeasures (40 runs x two FUIs×
three frequency bands) that were analysed using a two-way
ANOVA with factors frequency band (levels alpha, lower
beta, and higher beta) and FUI (levels ‘‘16 ms’’ and ‘‘96 ms’’)
for good and poor BCI performers, separately.

For post-hoc tests in the applied ANOVA for the ITR,
planned comparisons between FUI values (16 and 96 ms)
were carried out. Therefore, Holm-Sidak’s two-sided t-test
was adopted for post-hoc analysis to adjust for multiple com-
parisons. The statistical analyses were implemented using
Matlab 2015 and Graphpad Prism 6.

III. RESULTS
A. CORRELATION BETWEEN ITR AND SRT
Table 2 summarises ITR values for all participants at
16, 24, 48, and 96 ms FUIs and their SRT results. Our
SRT response times are consistent with those reported using
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TABLE 2. Information transfer rates (ITR) with feedback update intervals
of 16, 24, 48, and 96 ms and simple reaction time test measures for each
participant.

similar age group participants [24]. We observed a linear
relation with negative slopes between ITR and SRT (Fig. 2).
However, according to the obtained correlation coefficients
through 10,000 times bootstrapped samples, only 16 and
96 ms FUIs revealed significant correlations with SRT where

their confidence intervals did not include zero. Table 3 sum-
marises the correlation analysis results.

B. PARTICIPANT DICHOTOMISATION
For FUIs that showed significant correlation with SRT the
boundary margin for classification of participants according
to their ITR is wider at 16 ms (Fig. 2-A) FUI compared to that
of 96 ms FUI (Fig. 2-D). Therefore, the ITR with the shortest
FUI was employed to dichotomize subjects as good and poor
performers. Subjects with ITRs larger than 0.838 (equivalent
to accuracies> 70%) at an FUI of 16ms (P2, P3, P6, P9, P10)
were grouped as good performers. The remaining partici-
pants (P1, P4, P5, P7, and P8) who achieved ITRs lower
than the threshold ITR value (0.838) at the same FUI were
grouped as poor performers. The dashed horizontal lines
in Fig. 2 represent the threshold ITR.

C. THE EFFECT OF BCI APTITUDE AND FUI ON ITR
Since FUIs of 16 and 96 ms revealed a significant correlation
with SRT measure, we further investigated how and to what
extent switching FUI between 16 and 96 ms affects real-time
BCI performance of good and poor performers. According to

FIGURE 2. Scatter plots of ITR and SRT at four different FUIs (A: 16 ms, B: 24 ms, C: 48 ms, and D: 96 ms). The horizontal
dashed lines represent the ITR of 0.838 which is the threshold for good performance. The FUI of 16 ms (panel A) provides
the widest classification margin between good and poor performers.

TABLE 3. Results of correlation analysis between simple reaction time (SRT) and information transfer rate (ITR) using 10,000 times bootstrapped samples
for ten participants. CI (High) and CI (Low) represent 0 and 98.75 centiles of the 100,000 correlation coefficients, respectively (CI: confidence interval).
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FIGURE 3. Comparison of the information transfer rate (ITR) for good and
poor performers during motor imagery with feedback update
intervals (FUIs) of 16 and 96 ms. Good and poor performers produce
larger ITRs with 16 and 96 ms FUIs, respectively (∗: p < 0.05, ∗∗: p < 0.01).

Fig. 3, the direction of ITR change due to FUI modification
was dependent on the BCI aptitude. The two-way ANOVA
for the ITR showed a significant interaction between BCI
aptitude and FUI factors (F (1, 78) = 17.80, p < 0.0001)
and a significant main effect for BCI aptitude (F (1, 78) =
38.16, p < 0.0001). However, FUI factor did not have a
significant main effect (F (1, 78) = 0.4037, p = 0.5270).

The post-hoc analysis showed a significant outperformance
of the shorter (16 ms) over the longer (96 ms) FUI for good
performers (t (78)= 3.432, p = 0.0019). In contrast, the ITR
for poor performers was larger with the longer FUI than those
of the shorter FUI (t (78)= 2.534, p = 0.0264). Overall, poor
performers appear to produce larger ITRs with the longer
FUI (96 ms), whereas good performers revealed larger ITRs
with the short FUI (16 ms). Furthermore, there was a signif-
icant main effect of BCI aptitude with ITR across good and
poor performers, which implies that good performers produce
larger ITRs compared to poor performers regardless of the
FUI value.

D. THE EFFECT OF FUI ON EEG POWER
SPECTRUM DENSITY
To investigate the underlying neurophysiologic basis for
the observed significant correlations between SRT and
16 and 96 ms FUIs, the difference between the spectral power
of motor imagery and baseline periods were calculated for
each FUI in each group and plotted in Fig. 4-A, and 4-B.
Also, ERD percentage measures were calculated accord-
ing to Equation 3 for both groups and both conditions in
alpha, lower beta and higher beta frequency bands and are
shown in Fig. 4-C, and 4-D. The statistical analysis was
performed on the ERD percentages as the neural signature
of kinesthetic motor imagery performance [23]. The ERD
indices were analysed using a two-way ANOVA with fac-
tors frequency bands (levels alpha, lower beta, and higher
beta) and FUI (levels ‘‘16 ms’’ and ‘‘96 ms’’) across good
and poor performers, separately. The Two-way ANOVA of

FIGURE 4. Average power spectral density across 3–45 Hz for different feedback update intervals. Panels A and B depict the difference
between spectral power between motor imagery and baseline periods for poor performers and good performers, respectively.
ERD percentage measures for both groups (good and poor performers) and both conditions (MI vs. Baseline) in alpha, lower beta and higher
beta frequency bands are plotted in panels E, and F (FUI: feedback update interval, ERD: event-related de-synchronization.
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good performers revealed significant main effects for both
frequency band (F (2, 234) = 6.178, p = 0.0024) and
FUI (F (2, 234) = 32.06, p < 0.0001). The post-hoc
analysis showed a significant outperformance for 16 ms FUI
over 96 ms in the alpha (t (234) = 4.155, p < 0.0001),
lower beta (t (234) = 2.896, p = 0.0041), and higher beta
(t (234) = 2.757, p = 0.0063) bands. However, for poor
performers, there were no significant main effects neither for
frequency band (F (2, 234) = 2.563, p = 0.0792) nor for
FUI (F (2, 234) = 1.647, p = 0.2007). However, there was
a significant interaction between factors (F (2, 234)= 3.343,
p = 0.0370). The post-hoc analysis for poor performers
showed that lower beta band supplied significantly stronger
ERDs with the longer (96 ms) compared to those of the
shorter (16 ms) FUI (t (234) = 2.036, p = 0.0428). Overall,
good performers showed significantly stronger ERDs across
all studied frequency bands (alpha, lower, and higher beta)
with the shorter FUI while poor performers showed signif-
icantly larger ERDs only at the lower beta band with the
longer FUI.

IV. DISCUSSION
The main findings of this study are as follows: (i) for FUIs
of 16 and 96 ms, SRT and ITR measures are inversely
correlated, i.e. a short SRT is a surrogate for possessing a
high ITR and vice versa; (ii) the FUI customization affects
the ITR and down-regulation of sensorimotor rhythms when
operating MI-BCIs with proprioceptive feedback depends on
the participants’ level of BCI aptitude. Notably, participants
with poor and good BCI aptitude produce larger ITRs and
stronger ERDs with feedback updated every 96 and 16 ms,
respectively.

A. THE SRT AS A BCI APTITUDE PREDICTOR
Recent approaches addressed MI-BCI performance as a
dynamic measure on the basis of learning principles. Specif-
ically, a certain degree of challenge for the participant
is considered necessary to reinforce continuous effort and
improvement of MI-BCI performance [25]. In this context,
mathematical simulations [26] and empirical data [27, 28]
suggest that dynamic difficulty adaptation in the course of the
training relevantly modulates MI-BCI performance. These
approaches, therefore, evaluated the impact of different task
difficulties [29] and balanced the mental effort involved by
adjusting the task demands on the basis of self-ratings by the
participants [30]. Therefore, whilst thementioned approaches
provide valuable information for BCI performance enhance-
ment, do not provide objective and simple predictors for BCI
aptitude.

Prior work on predicting BCI aptitude of participants has
considered a number of methods. Blankertz et al. (2010)
suggested a neurophysiological measure, which is based
on a 2-minute EEG recording during relaxation with open
eyes [1]. Their predictor revealed a correlation coefficient of
r = 0.53 with MI-BCI performance. Halder et al. (2013)
reported that myelination quality and the structural integrity

of deep white matter of the brain are correlated (r = 0.63)
with BCI aptitude [7]. Ahn et al. (2013) found that only low
aptitude BCI users reveal noticeable spectral powers within
low alpha and high theta bands [2] and showed that the spec-
tral power in low alpha and high theta bands were correlated
with BCI aptitude (r = 0.59). Bamdadian et al. (2014)
reported that prior to the MI onset, modulation of the spectral
power within the posterior lower alpha as well as frontal
higher theta are correlated (r = 0.53) with high BCI apti-
tude [3]. The study of Fazli et al. (2013) also revealed that
prior to the MI onset, near-infrared spectroscopy (NIRS)
activity is correlated with BCI aptitude in the majority of their
studied subjects [5].

Grosse-Wentrup et al. (2011) showed that motor imagery-
related modulation of the sensorimotor rhythms is positively
correlated with the power of frontal and occipital gamma
oscillations and negatively correlated with the power of
centro-parietal gamma oscillations [6]. Such an extended
motor imagery-related cortical motor network that includes
frontal and parietal brain areas was also demonstrated by
Vukelić et al. [31], [32]. These distributed networks were
spatially selective and frequency-specific and had effects on
cortico-cortical connectivity that lasted beyond the interven-
tion period [8]. Notably, those subjects who were particularly
capable of performing sensorimotor brain self-regulation
could be predicted by a distributed alpha-band resting state
network measured before the intervention [25]. Moreover,
functional coupling of coherent theta band oscillations during
the BCI task has been shown to be correlated with the skill of
sensorimotor modulation [32, 33].

Vuckovic et al. (2013) used kinesthetic and visual imagery
questionnaires to examine a psychological measure for pre-
diction of BCI aptitude and found it as a useful measure
of MI-BCI performance [10]. Another psychological index
was suggested by Hammer et al. (2012) where they studied
the Two-Hand Coordination Test and Attitude Towards Work
Test and found a moderate correlation between their adopted
tests and MI-BCI performance [9].

Even though the mentioned studies on finding a BCI
performance predictor are promising, they either require a
lengthy and costly procedure or suffer from subjectivity. The
SRT reflects the speed at which a subject can process sen-
sory information i.e. ‘‘go’’ signal and engages behavioural
response i.e. movement. Similarly, receiving sensory feed-
back during BCI performance allows adjustment of the motor
imagery. So, we hypothesised that subjects with shorter SRT
might be better able to make more use of faster feedback
provision of FUI than subjects with longer SRT and more
effectively update their behavioural response i.e. MI perfor-
mance when driving BCI. Therefore, in the present study,
we examined the potential for SRT as an objective and sim-
ple BCI performance predictor and a biomarker to refine
the BCI, e.g. by informing the adaptation of the FUI. The
aim was to (i) remove the need for complicated equipment
for recording EEG, MEG, fMRI, or fNIRS of the afore-
mentioned neurophysiologic measures; and, (ii) eliminate the
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subjectivity of psychological predictors that rely on subjects’
self-assessment.

At least for one of the investigated FUIs (96 ms),
we observed a stronger correlation coefficient (0.68) com-
pared to previous studies, while it was comparable for the
FUI of 16 ms (0.58). However, due to the following reason,
we cannot claim for the superiority of our proposed novel
predictor in terms of the level of correlation: sample sizes,
equipment, methodologies, and study protocols were quite
diverse both among previous studies as well as compared to
our adopted approach. Therefore, we did not find it feasible at
this stage to perform a realistic and fair comparison between
our proposed predictor and those of the prior studies. Instead,
we investigated whether SRT as a simple and objective pre-
dictor is significantly correlated with BCI performance and
our primary results support the hypothesis with correlation
values that are at the bottom line comparable with previous
results.

The SRT was found to be inversely correlated with
ITR only at the shortest and the longest FUIs within the
16–96 ms range (Figs. 2-A, and 2-D). For intermediate FUIs
of 24 and 48 ms the correlation between SRT and ITR was
not significant (Figs. 2-B, and 2-C). Overall, it suggests that
SRT predicts the BCI performance for FUIs on the bound-
ary of 16–96 ms spectrum but does not appear specific for
the intermediate values such as 24 and 48 ms. The lack of
significant correlation for 24 and 48 ms FUIs suggest that
participants may react to intermediate FUIs independent of
their SRT index.

We employed Cambridge Cognition equipment due to its
highly reliable and dedicated set of hardware and software
for reaction time measurement. However, in practice, any
PC or tablet may be used to measure participants’ reac-
tion time via open source software. Therefore, it appears
that SRT provides a predictor for BCI aptitude that is both
simple, i.e. it can be measured using ubiquitous hardware
and software, andobjective as it does not rely on subject
self-reporting.

B. HOW BCI APTITUDE AND SRT AFFECT ITR
In this study, participants were dichotomized according to
their BCI performance with the 16ms FUI. Besides the provi-
sion of a wider boundary margin for classification (Fig 2-A),
another reason for choosing 16 ms over 96 ms FUI was
assuming that using shorter FUIs would make the distinction
between good and poor performers more pronounced due to
their different speed of information processing.

Studying the interaction of the SRT and BCI aptitude
using a 2-way ANOVA (Fig 3) illustrates that changing FUI
from 16 to 96 ms improves the BCI performance for poor
performers while decreases those of good performers. Thus,
it suggests that within a BCI framework, people with shorter
reaction times may be able to perform motor planning and
feedback realisation rapidly and thus dowell with a short FUI.
In contrast, a short FUI might be interfering and distracting

for people with longer SRTs (slower people) as the updates
occur faster than their information processing speed and
therefore, may degrade their BCI performance.

C. NEURAL SUBSTRATES OF FUI ALTERATION
To investigate neural substrates underlying FUI alteration
impact on the ITR, the spectral power of the EEG signals
over the contralateral hand representation of the primary
motor cortex (M1) in alpha and beta bands were analysed.
Good performers showed more pronounced ERDs in both
frequency bands than their poor counterparts (Fig 4). Besides,
good performers showed larger alpha and beta ERDs with the
shorter (16 ms) FUI (Figs 4-B, and 4-D). Poor performers,
however, showed significantly larger ERDs with the longer
FUI (96 ms) only in the lower Beta band (Figs 4-A, and 4-C).
Since poor performers showed relatively weaker ERDs com-
pared to good performers with both FUIs, it might explain
why they failed to show distinctive ERDs with different
FUIs in alpha and higher beta bands. While increasing FUI
elicited significantly larger ERDs in the alpha band for good
performers, poor performers appeared to be indifferent. How-
ever, in the beta band, changing FUI affected ERDs in the
lower or both lower and higher beta bands for poor and good
performers, respectively. This responsiveness of beta ERDs
to FUI change is congruent with prior studies that highlight
the role of beta oscillation in motor control [34], cortico-
muscular coherence [35]–[38] and corticospinal excitabil-
ity [39]–[41]. Distinctive beta oscillations are also supported
by recent studies that highlight the specific relevance of pro-
prioceptive feedback formodulation of beta ERDduringNFB
training [32], [42].

The opposite effect of FUI change on poor and good per-
formers (Figs. 3–4) may also be explained by the findings
of Witham et al. (2011), who studied how descending and
ascending pathways affect corticomuscular coherence [38].
They demonstrated that both cortical to muscular activity
time lag and its re-afferent feedback (muscular to cortical)
time delay vary across subjects, implying individual vari-
ations in sensorimotor loop duration. Therefore, it implies
that specific FUIs may optimise sensorimotor information
processing through consideration of intra-subject bidirec-
tional corticomuscular delays manifested in larger ITRs and
stronger ERDs.

D. THE APPLICATION OF FUI CUSTOMIZATION
BCIs for communication and rehabilitation require different
key performance indices. Notably, in BCIs for communica-
tion, accuracy is a critical measure [43], whereas, in thera-
peutic BCIs, both real-time accuracy and brain facilitation are
equally important. For instance, a recent study has demon-
strated the significant effect of the FUI value on the efficacy
of restorative BCIs for stroke rehabilitation [44]. Overall, our
results suggest that FUI customization may benefit both good
and poor performers with therapeutic BCIs as well as BCIs
for communication.
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V. LIMITATIONS OF THE STUDY
In this study, no motor imagery questionnaire such as KVIQ
questionnaire was used. If such a measure was administered,
it could be used as a validator of SRT test for BCI aptitude.

Even though the statistical analysis of the data showed
significant differences between SRT and ERD patterns of
two groups, considering the small number of group members,
it is recommended to verify the reported results with larger
groups.

VI. CONCLUSION
The present study shows that the SRT may be used as a
surrogate for BCI performance. People with fast and slow
SRT respond differently to FUIs. People with a short SRT
produce larger ITRs and stronger alpha and beta ERDs with
a short FUI (16 ms), while their slower counterparts reveal
larger ITRs and stronger lower beta ERDswith a substantially
longer FUI (96 ms).

Follow up studies on the findings of the present study
may investigate whether and two what extent the interaction
between different feature extraction and classification meth-
ods and FUI values affects the BCI performance.
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