IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

1010612

Noise-Boosted Backpropagation Learning of
Feedforward Threshold Neural Networks for
Function Approximation

Lingling Duan™, Fabing Duan™, Francgois Chapeau-Blondeau™, and Derek Abbott™, Fellow, IEEE

Abstract— Aiming to ensure the feasibility of the backpropa-
gation training of feedforward threshold neural networks, each
hidden unit layer is designed to be composed of a sufficiently
large number of hard-limiting activation functions that are
excited by mutually independent external noise components
and the weighted inputs simultaneously. The application of
noise to nondifferentiable activation functions enables a proper
definition of the gradients, and the injected noise is treated
as a network parameter that can be adaptively updated by
a stochastic gradient descent learning rule. This noise-boosted
backpropagation learning process is found to converge to a
nonzero optimized level of noise, indicating that the injected
noise is beneficial both for the learning and for the ensuing
retrieval phase. For minimizing the total error energy of the
function approximation in the designed threshold neural network,
the proposed noise-boosted backpropagation learning method is
proven to be better than directly injecting noise into network
inputs or weight coefficients. The Lipschitz continuous property
of the noise-smoothed activation function in the hidden unit
layer is demonstrated to guarantee the local convergence of the
learning process. Beyond the Gaussian injected noise, the optimal
noise type is also numerically solved for training the designed
threshold neural network. Test experiments for approximating
nonlinear functions and real-world datasets verify the feasibility
of this noise-boosted backpropagation algorithm in the threshold
neural network. These results not only extend the analysis of
the beneficial effects of noise similar to stochastic resonance
and exploited here to the universal approximation capabilities
of threshold neural networks, but also allow backpropagation
training of neural networks with a much wider family of
nondifferentiable activation functions.

Index Terms— Function approximation, noise injection, noise-
boosted backpropagation, optimal noise, stochastic resonance,
threshold neural network.

Manuscript received July 15, 2021; revised September 20, 2021; accepted
October 11, 2021. Date of publication October 21, 2021; date of current
version November 3, 2021. This work was supported in part by the Natural
Science Foundation of Shandong Province, in part by the Taishan Scholar
Project of Shandong Province of China under Grant TS20190930, in part by
the Australian Research Council under Grant DP200103795, and in part by the
Shandong Key Laboratory of Industrial Control Technology. The Associate
Editor coordinating the review process was Arunava Naha. (Corresponding
author: Fabing Duan.)

Lingling Duan is with the Institute of Complexity Science, Qingdao
University, Qingdao 266071, China, and also with the Department of Mathe-
matics, Jining University, Jining 273155, China.

Fabing Duan is with the Institute of Complexity Science, Qingdao Univer-
sity, Qingdao 266071, China (e-mail: fabing.duan@gmail.com).

Frangois Chapeau-Blondeau is with the Laboratoire Angevin de Recherche
en Ingénierie des Systemes (LARIS), Universit€ d’Angers, 49000 Angers,
France (e-mail: f.chapeau@univ-angers.fr).

Derek Abbott is with the Centre for Biomedical Engineering (CBME),
School of Electrical and Electronic Engineering, The University of Adelaide,
Adelaide, SA 5005, Australia (e-mail: derek.abbott@adelaide.edu.au).

Digital Object Identifier 10.1109/TIM.2021.3121502

I. INTRODUCTION

OISE injection [1]-[3], as a regularization method for

avoiding overfitting, has been extensively investigated
for improving the generalization performance of a neural
network by artificially adding noise to input data, weights,
the desired signal or gradients during the backpropagation
training [4]-[8]. By adding noise, only to the activation func-
tion in its hard-saturated regimes, it is found [9], [10] that the
training of neural networks becomes possible and easier to
optimize for a wider family of activation functions, yielding
the state-of-the-art competitive results on different datasets
and tasks. Interestingly, the noise injection also results in
lower training loss for very deep networks [10]-[18], and
the dropout or dropconnect technique can be also viewed as
injecting Bernoulli noise into the nodes and hidden layers of a
deep neural network during training [14], [19]. The injection
of noise in neural networks becomes a focused problem in
the research of exploiting the benefit of noise for machine
learning.

For information-network technologies, constraints on
cost, power consumption, or bandwidth limitations render
very attractive low-complexity sensors or devices such as
low-resolution quantizers [7]-[9], [20]-[22], [25]-[27]. Using
large numbers of such low-complexity devices is useful to
increase the robustness of sensor networks or the lifetime
of monitoring systems [7], [20]-[24]. Accordingly, activation
functions with hard-limiting input—output characteristics
stand as an appealing choice for implementing neural
networks in digital hardware [7], [9], [20]-[22]. However,
the conventional backpropagation algorithm [28] cannot be
used in such networks, because the gradients of the objective
function with respect to the network parameters are often
undefined due to the nondiffentiability of the activation
function [7], [9], [26]. Thus, noise injection has become a
useful alternative strategy in updating the weights of such
threshold neural networks [7], [9], [26].

It is interesting to notice that the benefits of injecting noise
whilst training threshold neural networks can be viewed as a
type of stochastic resonance effect [29]-[31], because there is
also a nonzero amount of noise for improving the performance
of nonlinear systems (in this case, threshold neural networks).
Actually, the suprathreshold stochastic resonance model of a
parallel array of McCulloch-Pitts neurons can be viewed as a
feedforward neural network with only one hidden layer [23],
[32]-[36]. A series of studies by Kosko er al. [13], [31],

1557-9662 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7461-5946
https://orcid.org/0000-0003-1210-6825
https://orcid.org/0000-0003-0536-7146
https://orcid.org/0000-0002-0945-2674

1010612

[37]-[40] demonstrated that the backpropagation algorithm
can be viewed as a special case of generalized Expectation—
Maximization, and the injection of carefully chosen noise
can speed convergence of backpropagation training with suf-
ficient guaranteed conditions. Recently, Ikemoto et al. [26]
established a stochastic resonance based feedforward threshold
neural network, as shown in Fig. 1, whose hidden units consist
of a number of threshold neurons. For a sufficiently large num-
ber of threshold neurons, these hidden units asymptotically
converge to a smooth input—output characteristic obtained as
the statistical mean of the threshold neuron with respect to the
noise probability function density (PDF) [26], [41], [42]. This
architectural feature indicated in Fig. 1 ensures the feasibility
of the proposed backpropagation training of threshold neural
networks in the framework of stochastic resonance.

However, in these noise-aided neural networks with
hard-limiting activation functions, the appropriate amount of
injected noise is manually configured, and not “intelligently”
or adaptively learned [9], [10], [14], [26], [32]-[35]. More
recently, we investigated the threshold neural networks for data
classification and handwritten digit recognition by adaptively
optimizing the injected Gaussian noise level during the learn-
ing process [41].

In this direction, this article will now focus on the univer-
sal approximation capabilities of threshold neural networks
assisted by the optimized amount of injected noise for non-
linear functions and real-world multivariate datasets. We first
theoretically prove that, in the sense of a convex loss function
of total error energy, the method of injecting artificial noise
into the hidden layer is never worse than adding noise into
inputs or weight coefficients [1]-[3], [18] and it might even
outperform it. Then, we regard the injected noise as a learnable
network parameter as well as the connected weights, and
propose the online noise-boosted backpropagation learning
algorithm for adaptively adjusting the network parameters by
the stochastic gradient descent learning rule. In the training
process for supervised learning, the gradient descent learn-
ing rule of network parameters is continued until the last
training data are accounted for. This constitutes one epoch of
training neural networks. Then, the updated weights and the
adjusted noise level in the previous epoch are treated as the
initial network parameters for the next epoch, and the adjust-
ments to weights and noise are made on an epoch-by-epoch
basis.

After a certain number of learning epochs, the trained
weights and the converged noise level are recorded and
employed to establish the trained threshold neural network,
whose hidden units are with a finite (but large) number
of hard-limiting activation functions in practice. The weak
convergence of the learning process is proven based on the
Lipschitz continuous property of the noise-smoothed activation
function in the hidden layer. Moreover, beside the Gaussian
injected noise, the optimal noise type is also numerically
solved by the kernel function method for training the threshold
neural network. Experimental tests in approximating nonlinear
functions and multivariate regression of real-world bench-
mark datasets are conducted with the trained threshold neural
network. The obtained results show the applicability of the

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Input layer Hidden layer

Output layer

hidden unit %,

Fig. 1. Block diagram representation of the constructed feedforward threshold
neural network with the noise injection in the hidden layer.

proposed noise-boosted backpropagation learning algorithm
and the enhanced threshold neural network performance it
entails.

II. THRESHOLD NEURAL NETWORK AND NOISE-BOOSTED
BACKPROPAGATION LEARNING ALGORITHM

Consider a three-layer feedforward neural network
(N x K x M) with the N x 1 input vector x and the M x 1
target output vector s, as shown in Fig. 1. The hidden layer
and the output layer have K and M neurons, respectively.
The K x N weight matrix W connects the hidden neurons to
the input vector x, and the M x K weight matrix U connects
the output layer to the hidden one. The M x 1 output vector
y is given by

y=ywUh) (1

where h is the K x 1 output vector of the hidden layer and
w(-) is the activation function of the neurons in the output
layer. As shown in Fig. 1, the kth hidden unit

1 T
he= ;ka + 1Mie) 2)

which consists of T activation functions ¢ (-) activated by the
same local field vy = [W]®x but T mutually independent
noise variables #r, with a common PDF f,(y) for t =
1,2,...,T. Here, [W]® denotes the kth row of the weight
matrix W. It is noted that, for a sufficiently large number 7,
the hidden unit 4; converges to

T

A= Jim e g) =BG 4])
where the expectation operator E,(-) = [- f,(n)dn [26], [32],
[34], [35], [42].

Let {x(¢), s(€)}_, denote L examples of the training set
to train the network in a supervised learning manner. For
each input vector x(£), the error between the output y,, (£)
of neuron m in the output layer and the mth element s, ()
of the desired response vector s(€) is e, (£) = 5, (€) — Y (€).
Summing all errors contributed by all neurons in the output
layer, the instantaneous error energy of the whole network is
defined as

M

§0=3 A0 =510 —yOP @

m=1

DUAN et al.: NOISE-BOOSTED BACKPROPAGATION LEARNING OF FEEDFORWARD THRESHOLD NEURAL NETWORKS

// \Sigmoid

Threshold
0.8r

=o06f
ASS
0.4f

Noise-smoothed

0.2

-4 -2 0o .. 2 4 6 8

Fig. 2. Plots of the threshold activation function in (7), the noise-smoothed
activation function /23° in (8) with ¢ = 1, the hard-sigmoid activation function
in (15) and the sigmoid function in (16). Here, the threshold parameter
O = 1.5.

where the factor 1/2 is introduced for deriving the gradients
compactly in the following. With L examples of the training
set, the total error energy or the empirical risk is computed as

L 1 L
Eo = 2 EW) =5 D> lIs(6) = y(OI*. (5)
t=1 t=1

Lemma 1: When the activation function w (x) in the output
layer is an affine function, the total error energy & of the
threshold neural network with noise-boosted hidden layer in
Fig. 1 is no more than that obtained by injecting noise into
input data or weights of the network.

Proof of Lemma 1 is given in Appendix A. Lemma 1
indicates that, compared with the approach of injecting noise
into input data or weight coefficients [1]-[3] for training
the threshold neural network, the benefit of the added noise
components indicated in Fig. 1 consists in potentially achiev-
ing a smaller total error energy. Another motivation for the
architectural structure of Fig. 1 will be demonstrated by the
feasibility of the backpropagation training of the noise-boosted
threshold neural networks as follows.

Without the noise injection, the common backpropagation
algorithm [19], [26], [31] is not applicable for training a
feedforward threshold neural network, because the threshold
function is nondifferentiable at the discontinuity points and
with zero gradients for the piecewise constants [16], [43].
However, due to the injection of noise, it is seen that the hidden
unit A in (3) is effectively equivalent to a noise-smoothed
differentiable activation function 4;° that is a function of the
input data x, the weight vector [W]® and the noise PDF
f» (including the noise level o). A special example of the
noise-smoothed threshold activation function Ap° is shown
in Fig. 2 and its gradients become accessible. Therefore,
we can adopt the backpropagation learning rule to minimize
the instantaneous error energy E£(£) through applying the
gradient descent method, and treat the noise-level o as a learn-
able network parameter. Defining the gradients 0E(£)/0W,
0E(C)/oU and 0E(f)/0o of the instantaneous error energy
E() with respect to weight matrices W, U and the noise-
level o, the update rule for the {th training example can be
expressed as

oE(0)

O =0 ~1)~a—> oo, (6)

1010612

where the network parameter ®@ € {U, W, o}, ®(0) denotes
the initial values and the learning rate o > 0.

The update procedure of (6) is carried on example-by-
example, from the first training example {x (0), s(0)} to the last
one {x(L),s(L)}, which constitutes the epoch p of training
over the whole training set. Then, the adjustments to the
network parameters are continued on an epoch-by-epoch. For
clarity, the proposed noise-boosted backpropagation learning
for the designed threshold neural network in Fig. 1 is presented
in the Algorithm 1.

Algorithm 1 Noise-Boosted Backpropagation Learning

Input: {x(¢), s(O)}k,, W(0), U(0), o(0), P, a.
OUtput: ®(L) € {[U]mks [W]kn; 0'}.
for training epoch p =1 — P do

Eot < 0;

for training example { =1 — L do
Feedforward procedure:

o () < [W]N(C = Dx(0);
hie(€) < Eylg 0k (6) + m;
ym(€) < y{LU1" (€ — Dh(0));
€m (6) < S (6) — Ym (f),

E(0) < 32 ex(0);

ot < Et +E();
Backpropagation procedure:

0E(0) .
OO —et-h- ‘0 0=0(-1)
end
0(0) < O(L).

end

III. RESULTS OF THRESHOLD NEURAL NETWORKS
WITH NOISE INJECTION

A. Threshold Neuron

We first consider the hidden unit /; consisting of the thresh-
old activation function [32], [34], or the McCulloch-Pitts
neuron [44], as

1, u>6b

¢u) = [0, ‘<0, @)
where 6 is the threshold parameter and also assumed
to be learnable. The mutually independent noise compo-
nents 7y, injected into the hidden units h; are assumed
to be with the common Gaussian PDF f,(x) =
exp(—x?/262)/(2nc?)"/? and the same noise level o. The
activation function in the output layer is taken as the linear
transformation (x) = x.

With the noise-smoothed activation function of (7) and the
injected Gaussian noise, we can express the hidden unit A7°
as

00 1 2
hE = Byl (oi+ 1)) = /() =on(-F)ar ®
and deduce the gradients 0£(€)/6® in Appendix B for the
network parameter ® € {U, W, a}.

Lemma 2: For the designed threshold neural
network with the hidden units hy° of (8), the
noise-boosted backpropagation Algorithm 1 is weakly

convergent.

1010612

(a)

—Gaussian added noise
---optimal added noise

10°

A% 25tot/A

2000 3000 4000 5000
number of epochs

0 1000

(b)0.35
0.3
0.25F

0.2

a/A

0.15F

0.1F

0.05F

ol .
0 1000

2000 3000 4000

number of epochs

5000

Fig. 3. Learning curves of (a) rms error (2&00)"?/ A (blue solid line) and
(b) injected Gaussian noise-level o/A versus the number of epochs by the
noise-boosted backpropagation Algorithm 1 for the unidimensional function
in (9). Here, the maximum difference of the function in (9) is A = 3.005
in the interval [—2, 2]. The red dashed line represents the learning curve of
(2Er)"/?/ A with the optimal injected noise obtained by the PDF f;*(1) of
(12) in Section III-C.

It is then proven in Appendix C that the gradients are
Lipschitz continuous in the definition domain of —oco <
t < oo and ¢ > 0, and the noise-boosted backpropagation
Algorithm 1 is weakly convergent. Thus, Lemma 2 holds.
Therefore, we can find a local optimum solution of the noise
level in the training procedure of threshold neural networks
by the Algorithm 1, and when the convergence is obtained at
a noise level ¢ > 0, the beneficial role of injected Gaussian
noise will be manifested.

First, we investigate the approximation capability of the con-
structed feedforward network for some benchmark nonlinear
functions. The training set {x(£), s({)};_, is generated from
an unidimensional function

f(x) = sin(2x) + 2 exp(—10x?). ©)

Here, the length of data is L = 41, input examples x(£)
are generated equally spaced in the interval [—2,2] and
the corresponding function values s(£) = f[x({)] are also
recorded for ¢ = 1,2,..., L. Then, a feedforward neural
network (N x K x M) with N = 1 input neuron, K = 50
hidden units %, and M = 1 output neuron is trained to fit the
training set {x(¢), s(€)}5_, sampled from the target function
of (9). Here, the learning rate takes a = 0.01, the initial noise-
level o (0) = 1, and the initial weight vectors W(0) and U (0)
are uniformly distributed in the interval [—1, 1].

Using the proposed noise-boosted backpropagation
Algorithm 1, the learning curves of the total error energy
&t and the noise-level ¢ can be obtained as a function of

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

0.4

0 0.1 0.2 o/A
(b) 0.05
0.1
3 E(r
0.15
0.2 1
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.0

a/

Fig. 4. (a) Surface and (b) corresponding contour of the rms error
(2&0[)1/2 /A as a function of the element [W]3; of the weight matrix W
and the noise-level o/A with respect to the unidimensional function in (9).
The learning curve of (2E1)"/?/A (red triangle trajectory) versus [W1]3; and
o/A is also plotted. The other parameters are the same as shown in Fig. 3.

the number of epochs. Here, for reference, the maximum
difference A of the target function in the interval [a, b] is
defined as

A = max f(x) —min f(x) Vx € [a,b]. (10)

For the unidimensional target function in (9) in the interval
[—2, 2], the maximum difference A = 3.005. Then, the root-
mean-square (rms) error (2&)"/?/A (blue solid line) and
the noise-level o /A are plotted as a function of the number
of epochs in Fig. 3(a) and (b), respectively. It is shown in
Fig. 3(a) that, upon increasing the epoch number, the rms
error (2&)"/?/A first greatly decreases and then reaches
convergence effectively. For instance, (2&q)"?/A < 107!
after about 45 epochs of training. In addition, it is also
observed in Fig. 3(b) that, after 200 epochs of training, the
noise-level /A (x) also converges to 0.054, which clearly
indicates a (local) optimized nonzero Gaussian noise being
necessary to achieve the best performance & of the trained
threshold neural network. However, the noise-level /A does
not stay at the local optimized point 0.054 and experiences
a slight increase as the training epoch number increases,
as shown in Fig. 3(b). The reason causing this result can
be explained in Fig. 4: the total error energy &g is not a
strictly convex function of the noise level and the weight
coefficients (for simplicity, only illustrating the element [W]3;
of the weight matrix W), and the learning curve of the rms
error (2E¢)'/?/ A moves slowly in the flat bottom of the valley.

Next, we validate whether the converged noise level 6 /A =
0.054 in the above training experiment is consistent with
the optimized one that corresponds to the minimum total

DUAN et al.: NOISE-BOOSTED BACKPROPAGATION LEARNING OF FEEDFORWARD THRESHOLD NEURAL NETWORKS

10°

/A

107

V2Ei0t

o
0 0.05 0.1 0.15 0.2 0.25 0.3
o/A

102

Fig. 5. RMS error (25)"/ 2/ A of the total error energy Eior as a function of
noise-level o/ A for the target function in (9). Here, each point of (2E)'/%/A
is obtained by fixing noise-level /A but training other network parameters
with the backpropagation learning rule. The other parameters are the same as
shown in Fig. 2.
10

4000 6000 8000

element number T

0 2000 10000

Fig. 6. RMS error (2E)"/2/A for 10% testing points of the target
unidimensional function of (9) versus the number 7 of threshold elements.
Here, 10 trials are realized for each point of experimental results, and other
parameters are the same as shown in Fig. 3.

error energy obtained by the conventional stochastic resonance
method. By fixing the noise-level o, the weight matrices W,
U and the threshold 0, of the feedforward neural network
are trained for 5000 epochs by the backpropagation learning
rule. Then, the resonance curve of the rms error (2£)"/?/A
of the total error energy &y is illustrated as a function of
the noise level ¢/A in Fig. 5. It is seen in Fig. 5 that the
optimized noise-level /A (M) corresponding to the lowest
(2&00)"/?/A agrees well with the converged value of 0.054
shown in Fig. 3(b). This fact also demonstrates the validity and
practicability of the proposed noise-boosted backpropagation
learning algorithm to adaptively optimize the noise level as
part of the learning process of function approximations.
After 5000 times of training epochs, the trained network
parameters W, U, 6; and the converged noise-level o define
the designed threshold neural network. However, it is noted
that the hidden unit A7° in (3) is a limit expression that
would be obtained with threshold neurons activated by an
infinite number of mutually independent noise components,
which is impossible to implement in practice. Therefore, in the
test experiments, the hidden unit /; is composed of a finite
number 7 of threshold activation functions in (7), which are
activated by mutually independent noise components with the
same converged noise-level ¢. For 10° test input data x ()
equally spaced in the interval [—2, 2], we simulate the trained
threshold neural network for 10% times. For each trail, the
K x T mutually independent noise components are randomly

1010612

251 * sample points
—target function
| --network output

-2 -1 0 1 2
T

Fig. 7. Approximation (red dashed line) of the target function of (9) obtained
by the trained feedforward neural network for 10° testing points. The L = 41
training data () and the target function (blue solid line) of (9) are also plotted.
Other parameters are the same as shown in Fig. 3.

generated and injected into the hidden units /4 in (2) for
k=1,2,..., K. Then, we average the outputs of the network
as the approximated function for testing the target function
of (9). For different numbers 7 of threshold elements, the
rms error (2€)"/?/A, as shown in Fig. 6, are experimentally
obtained for 10 trials. It is seen in Fig. 6 that, for a sufficiently
large number T = 10* of the threshold elements, the rms
error (2E¢)'/%/ A has a relatively small statistical mean value
0.0316. Then, using the T = 10* threshold elements in each
hidden units in the testing phase, the outputs (red dashed line)
of the proposed threshold network are presented in Fig. 7. For
comparison, the target function of (9) (blue line covered by
the network outputs) and the L = 41 training data () are also
plotted in Fig. 7. It is seen in Fig. 7 that the trained threshold
neural network assisted by the addition of noise performs
well on the test for approximating the target unidimensional
function of (9).
We also test a benchmark 2-D function [26]

f(xy,x2) = max{e‘loxlz, e™50% 1.256_5("12+x22)}. (11)

The designed threshold neural network is with the layer size
of N x K x M =2 x 100 x 1. The L =11 x 11 training
set contains the data x(£) = [x;(£), x2(£)]" that are equally
spaced in the range [—1, 1] x [—1, 1] and the corresponding
function values s(€) = f[x;(£), x2(£)] of (11). Here, for the
target function in (11), the maximum difference A = 1.2499
in the range [—1, 1] x [—1, 1]. Using the proposed back-
propagation learning Algorithm 1, the rms error (2&)'/?/A
is obtained as (2£)"/?/A = 0.1864 and the converged
noise-level 6/A = 0.0258 after training 2 x 10* epochs,
as shown in Fig. 8(a) (blue solid line) and (b), respectively.
The approximation (patched surface) of the trained neural
network and the training data (%) are illustrated in Fig. 9(a),
and the relative error |y(xi, x2) — f(x1, x2)|/A between the
neural network outputs y(xi,x;) and the training function
f(x1, x2) is plotted in Fig. 9(b). The maximum relative error
max |y(xy, x2) — f(x1,x2)|/A = 0.0450. For L = 21 x 21
testing data equally spaced in the range [—1, 1] x [—1, 1], the
rms error (2&)/?/A is given by (2E,)"/?/A = 2.0625 and
the maximum relative error max |y (xy, x3) — f(x1, x2)|/A =
0.5067.

1010612
(a) —Gaussian added noise
---optimal added noise
10’
107!
0 5000 10000 15000 20000
number of epochs
0 5000 10000 15000 20000
number of epochs
Fig. 8. Learning curves of (a) rms error (2E)!'/?/A by injecting the

Gaussian noise_(blue solid line) and the optimal noise (red dashed line)
with the PDF f”* of (12) in Section III-C. (b) Gaussian noise level /A in
(12) versus the number of epochs. Here, the noise-boosted backpropagation
Algorithm 1 is applied to the threshold neural network for approximating
the 2-D function in (11). The maximum difference of the function in (11) is
A = 1.2499 in the interval [—1, 1] x [—1, 1].

s 0
05,

Fig. 9. (a) Outputs y(xj, xp) of the trained neural network as the approxi-
mation (patched surface) to the training data (x) of the 2-D function f(x1, x2)
in (11) in the range [—1,1] x [—1,1]. (b) Corresponding relative error
[y(x1,x2) — f(x1,x2)|/A between the neural network output and the testing
data.

B. Validation of the Threshold Neural Network on the
Real-World Dataset

Furthermore, we validate the proposed backpropagation
learning Algorithm 1 on five real-world datasets [45]-[48]
in the designed feedforward threshold neural network. The
N x K x 1 (K = 5,20, and 30) three-layer network is
trained by the real-world N-dimensional datasets of Auto
MPG (N = 7) [45], Housing (N = 13) [46], Airfoil noise
(N =5) [45], Wine quality (N = 11) [47], and QSAR fish
toxicity (N = 6) [48] in a computer equipped with CPU of

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

TABLE I

COMPARISON OF TESTING RESULTS OF (2&)'/2/A OF THE
NOISE-BOOSTED THRESHOLD NEURAL NETWORK AND THE ONE
WITH THE SIGMOID ACTIVATION FUNCTION

Number K K=5 K =20 K =30
Data set threshold|sigmoid|threshold|sigmoid|threshold|sigmoid
Auto MPG [45] 0.0827 (0.0913| 0.0838 |0.0956| 0.0876 |0.1001
Housing [46] 0.0857 [0.0890| 0.0633 |0.0922| 0.0734 |0.0959
Airfoil noise [45] | 0.1224 |0.1490| 0.1207 |0.1492| 0.1101 |0.1488
Wine quality [47] 0.1753 [0.1763| 0.1742 |0.1759| 0.1724 |0.1763
QSAR fish toxicity[48]| 0.0994 |0.1040| 0.0990 |0.1046| 0.1034 |0.1047
TABLE II

COMPARISON OF THE CONVERGENCE TIME OF TRAINING THE
NOISE-BOOSTED THRESHOLD NEURAL NETWORK AND THE

NETWORK WITH THE SIGMOID ACTIVATION FUNCTION
FOR ATTAINING THE SAME VALUE OF THE RMS ERROR
(2€01)'/?/ A (UNIT: SECOND)

Number K K=5 K =20 K =30
Data set threshold|sigmoid|threshold|sigmoid|threshold|sigmoid
Auto MPG [45] 0.2663 |1.0163| 0.1247 (0.5027| 0.2225 |0.7081
Housing [46] 0.7490 |1.3604| 0.1985 [1.7214| 0.5664 |2.3088
Airfoil noise[45] 0.8607 |1.6895| 1.2088 |1.4262| 0.4767 |1.1729
Wine quality [47] 5.2061 |2.5871| 0.7949 |2.1044| 1.1327 |2.5631
QSAR fish toxicity[48]] 0.6622 [1.1938| 0.6094 |0.7719| 0.2394 |0.8029

Intel Core i7-7820HK at 2.90 GHz and 32G RAM DDR4
at 2400 MHz. Here, the datasets contain 198, 253, 300, 980,
and 908 examples, respectively. Using the two-eight rule, 80%
of data are used for training, while 20% of data are employed
to test the trained threshold neural network.

Table I reports the test results of the rms error Q&2 A
of the noise-boosted neural network with the threshold acti-
vation function. For comparison, the classical neural network
with the smooth sigmoid activation function of (16) is also
tested, and the corresponding rms error (2€)'/?/A is pre-
sented in Table I. It is interesting to note in Table I that, for
testing five real-world datasets, the proposed threshold neural
network can predict the test data with a smaller rms error
(2€1)'/?/ A than the neural network with the smooth sigmoid
activation function does. This demonstrates the superiority of
the proposed backpropagation learning method in the threshold
neural network for solving the practical multivariate regression
problem. Of course, the apparent cost of employing the
noise-boosted threshold neural network is the demand of more
memory storage for storing the mutually independent KT
noise samples and requiring more addition and XOR operations
in the testing phase. For instance, when the number 7 in
K = 30 hidden units of the threshold neural network takes
10*, the memory storage of the noise samples occupies about
2-Mb memory in the computer RAM.

In Table II, we also compare convergence times of training
both the noise-boosted threshold neural network and the
network with the sigmoid activation function to attain the
same level of the rms error (2&)"/?/A of a given dataset.
Although the noise-boosted threshold neural network has extra
parameters of noise-level ¢ and threshold 6 to be learned,
it is shown in Table II that the convergence time of training

DUAN et al.: NOISE-BOOSTED BACKPROPAGATION LEARNING OF FEEDFORWARD THRESHOLD NEURAL NETWORKS

2 ——— —
---Unidimensional function
—Two-dimensional function

0.51

0 PP L L il
-2 -1 0 1 2 3
n

Fig. 10. Approximated optimal noise PDF () for the threshold neural
networks with respect to the unidimensional function in (9) (blue dashed line)
and the 2-D function in (11) (red solid line). The kernel function number
J = 4. Other parameters are the same as shown in Figs. 3(a) and 8(a).

the noise-boosted threshold neural network is lower than that
of the network with the sigmoid activation function in most
cases. The reason is that the designed neural network with
its size N x K x 1 (K < 30) is actually not deep, and the
extra network parameters have low memory requirement in the
training phase. The introduction of the learnable parameters
of noise level ¢ and threshold 8 leads to a more powerful
learning capacity of the noise-boosted threshold neural net-
work. Therefore, for reaching the same value of the rms error
2Ew)'?/A = 0.009,0.012,0.017,0.017 and 0.01 for five
real-world datasets respectively, Table II demonstrates another
superiority of the noise-boosted threshold neural network in
the convergence time of training phase.

C. Optimal Noise Type for Threshold Neural Networks

In the above-mentioned experiments, only the Gaussian
noise injected into the feedforward threshold neural network
is taken into account. It is natural to consider the injection
of other noise types into the network and find the optimal
injected noise type to achieve the minimum total error energy
&t with respect to the noise PDF f, (). However, it is
usually analytically intractable to obtain the optimal noise PDF

,f pt(;y) [35], [42]. Usually, a kernel method with the form
s [35], [42]

J
frony =" 28(n 1y, 0)) (12)
j=1

is employed to approximate the optimal noise PDF f,* ‘),
where the normalization coefficients A; > 0 satisfy the
constraint ijl Aj = 1, and the Gaussian kernel function
g(iy, Ui, aj) =expl—(y— ,uj)z/Zaf]/(Zno'f)1/2 is with mean
w; and standard deviation ¢; > 0 for j =1,2,..., /. With
this approximate PDF of (12), the outputs of the hidden units

in (3) can be reexpressed as
J

h = Eylp @k +m1 =D 2Bl o +)

j=1

13)

where the expectation operator E,(1) = [+ g(1, uj, 0;)dn.
Therefore, for a given kernel function number J > 1, the
minimization problem of the total error energy & with respect
to the optimal noise can be simplified as a finite-dimensional

1010612
constrained optimization
min &y
{4,101}
J
st.A; =0, D ij=1,0;>0 (14)
j=1
with respect to parameters 4;, y; and o; for j =1,2,...,J.

Under such circumstances, the training procedure of (6)
updates the weight matrices W and U by the gradients
0E()/oW and 0E(f)/oU, but searches the approximate
optimal PDF f,,*(;y) of (12) by the sequential quadratic
programming (SQP) method [35], [42], [49], which can resort
to the existing commercial software package of constrained
nonlinear optimization [53]. At each iteration of a quadratic
programming subproblem, an approximation is made of the
Hessian of the Lagrangian function using a quasi-Newton
(BFGS) updating method [49]. Then, in the proposed
backpropagation Algorithm 1, the Gaussian noise needs to
be replaced by the updating procedure of the PDF f,;“(n),
while the learning rules of the weight matrices still keep
updating by their corresponding gradients. For clarity, the
optimal noise-boosted backpropagation learning is described
in Algorithm 2. Moreover, it is seen that the hidden unit in
(13) is a linear combination of the expectations E,[¢ (vx + 7)1,
therefore the Lemma 2 holds and the optimal noise-boosted
backpropagation Algorithm 2 with online searching the
optimal noise type is still weakly convergent.

Algorithm 2 Optimal Noise-Boosted Backpropagation
Learning

Input: {x(¢), s(O)}_;. W(0), U(0), 2;(0), 1;(0), 0,(0), P, a.
OUtput: ®(L) € {[U]mks [W]kn}s f;(}’])

for training epoch p =1— P do

Eot < 0;

for training example { =1 — L do

Feedforward procedure:

o () < [W]D(C = Dx(0);

hE(€) < 307, 4Byl (o + m);

ym(€) < y{LU1" (€ — Dh(0));

€m (6) < S (6) — Ym (f),

E() < 33, €,(0):

Eiot < Eot +E(0);

Backpropagation procedure:

O) <0t —1)—aD

0 |o—o@-1)
{A;(€), uj(€),o;(£)} < SQP method,;
end
0(0) < O(L).
end

Using this optimal noise-boosted backpropagation learning
rule in Algorithm 2, the learning curves of the rms error
(2€1)'/?/ A for the unidimensional function in (9) and the
2-D function in (11) are shown in Figs. 3(a) and 8(a) (red
dashed lines), respectively. It is seen in Figs. 3(a) and 8(a)
that the trained threshold neural network with the optimized
noise indicated by the PDF [() can outperform that with
the injected Gaussian noise. The finally obtained noise PDFs
f, (n) after the training procedure are also shown in Fig. 10.
According to the optimized noise PDF fn*(n), we generate

1010612

2, 05

Fig. 11. Outputs of the trained threshold neural network as the approximation
(patched surface) to the 21 x 21 testing data () of the 2-D function f(xj, x2)
in (11) in the range [—1, 1] x [—1, 1]. The number of threshold activation
functions in each hidden unit is 7 = 10* and other parameters are the same
as shown in Fig. 9.

T = 10* samples of the noise using the slice-sampling
method [50] and inject them into each hidden unit of the
threshold networks for testing data. For instance, the approxi-
mation (patched surface) of the trained neural network and the
21 x 21 testing data () of the 2-D function in (11) are illus-
trated in Fig. 11 in the range of (x1, x;) € [—1, 1] x [—1, 1].
The rms error (2&;)"/?/A = 0.6254 and the maximum rela-
tive error max |y(xy, x2) — f(x1, x2)|/A = 0.2048. Compared
with the results of (2&)"?/A = 2.0625 and the maximum
relative error max |y(xy, x2) — f(x1,x2)|/A = 0.5067 by
injecting Gaussian noise, the trained feedforward neural net-
work with the optimized noise performs well on the test data.
There are also some distinct differences between the network
outputs and the testing points of the 2-D function in (11), and
the reason lies in the finite number J of the kernel function
in (12). It is known that, as the number of kernel functions
J increases, the approximate optimal noise PDF fn*(”) can
converge to the optimal one f,™ (1) if it exists [42], [49].
However, the acceleration of the training procedure is an open
problem for the application of the noise-boosted backpropa-
gation learning algorithm to the threshold neural network, and
further studies of the optimal-injected noise type are being car-
ried out for function approximation and pattern classification.

D. Hard-Sigmoid and Sigmoid Thresholds

Next, it is interesting to investigate whether the proposed
algorithm is applicable to other activation functions or not.
Here, we consider a kind of piecewise linear functions named
as the hard-sigmoid [9]

1, u > 9]{
0.25(u —6) +0.5, 0, <u <6
0, u <0,

P(u) = 5)

and a frequently-used sigmoid activation function defined as
¢u) = [1+e W) (16)

where the threshold parameters are 0, 0 = 0, + 2 and 0, =
6 — 2 [1]-[3], [9]. For a special threshold value 6; = 1.5,
the input—output characteristics of the hard-sigmoid function

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

0.8 T T T -
—Hard-sigmoid activation function
0.7 —-Sigmoid activation function

1000 1500 2000 2500

number of epochs

0 500 3000

Fig. 12. Learning curves of the noise-level o/A versus the number of
epochs for the noise-boosted backpropagation algorithm with respect to the
unidimensional function in (9). Here, hidden units sy of the feedforward
neural networks (I x 50 x 1) are composed of the hard-sigmoid function
in (15) and the sigmoid function in (16), respectively. The other parameters
are the same as in Fig. 3.

in (15) and the sigmoid function in (16) are illustrated in
Fig. 2.

In Appendix B, the partial derivatives of the instantaneous
error energy £({) with respect to network parameter ® €
{W,U, 6, o} are derived. Using the Algorithm 1, we train the
feedforward neural networks (N x K x M =1 x 50 x 1)
with hidden units composed of the hard-sigmoid function
in (15) and the sigmoid function in (16), respectively. For
approximating the unidimensional function in (9), the learning
curves of the noise level o/A are plotted in Fig. 12. It is inter-
esting to note that the converged noise-level 6/A = 0.0677
is not zero, and the injection of noise improves training the
feedforward neural networks composed of the hard-sigmoid
function in (15). However, it is seen in Fig. 12 that the injec-
tion of noise is unnecessary for the neural networks composed
of the sigmoid function in (16). The reason is that the sigmoid
function in (16) is continuous and has no constant parts, and
then the gradient of the total error energy with respect to the
network parameters is always accessible and nonzero for the
backpropagation learning. However, the feedforward network
with the zero-gradient activation function, e.g. (7) and (15),
could benefit from the noise injection into the hidden layer
for approximating function approximation via the proposed
backpropagation learning.

IV. CONCLUSION

In this article, an online backpropagation learning algorithm
enhanced with the injection of noise is proposed for training
the feedforward threshold neural network. When the activation
function has hard-limiting input—output characteristics, the
conventional gradient-based backpropagation learning proce-
dure meets the difficulty of zero or undefined gradients but is
inapplicable in practice. The proposed backpropagation learn-
ing algorithm complements the conventional one by injecting
mutually independent noise components into a sufficiently
large number of activation functions. Due to the noise injec-
tion, the hidden unit in the hidden layer of networks can be
viewed as a noise-smoothed function, and the loss function
with respect to the network parameter becomes continuously
differentiable, with a nonvanishing gradient everywhere that
can be used for efficient backpropagation training.

DUAN et al.: NOISE-BOOSTED BACKPROPAGATION LEARNING OF FEEDFORWARD THRESHOLD NEURAL NETWORKS

7

(@) (b) (©)

707

Fig. 13. Examples of (a) input handwritten image and (b) output image of
the autoencoder with size of (784 x 256 x 64 x 10) x (64 x 256 x 784).
(c) Generated image of the decoder part of the autoencoder by feeding a
deviated low-dimensional vector into the code layer.

A key feature of the proposed noise-boosted backpropaga-
tion learning algorithm is that the noise level or the noise PDF,
as well as other network parameters, are learnable and updated
by the gradient-based rule. An essential observation is that the
learning process is generally found to converge to a nonzero
optimized level of noise, indicating that the nonzero optimized
noise has a beneficial effect, both in the learning but also in the
retrieval phase of the neural network. With the trained weights
and the converged nonzero noise level or the approximated
optimal noise PDF, experimental results show the applicability
of the designed noise-boosted backpropagation algorithm for
approximating nonlinear functions and practical multivariate
regression of real-world dataset by the trained threshold neural
networks operated with the injection of mutually independent
noise components in hidden layers.

This proposed noise-boosted backpropagation learning algo-
rithm benefits from the noise in the hidden layer to allow
the training of neural networks with a much wider family
of activation functions that are nondifferentiable or with
zero derivatives. However, some open questions remain. For
instance, the numerical computation of the gradient of the total
error energy with respect to model parameters is time consum-
ing, the convergence rate of the training procedure is rather
low, and the convergent noise-level sways and is not stable
(see learning curves in Figs. 3 and 8). Thus, some improved
learning rules, such as Adam [51] and Levenberg—Marquardt
method [49], can potentially be developed to accelerate the
training process of the studied neural networks in this article.
Although the optimal noise type is analyzed, a crucial problem
of the existence and uniqueness of the optimal injected noise
for the threshold neural networks remains to be solved.

In addition, the improvement of injecting noise into the
hidden layer on the generalization performance of the thresh-
old neural network is not studied for the inputs corrupted by
some preexisting noise. In the line with the argument of noise
injection equivalent to a smooth Tikhonov regularization [1] of
the total error energy, the noise injected into the hidden layer
of the threshold neural network is also expected to possibly
play a regularization role in constraining the network model
to be less sensitive to the noisy inputs.

Finally, the noise-boosted threshold neural network con-
sidered in this article has a shallow and simple size of
N x K x M. A natural question is whether the proposed
backpropagation learning algorithm can potentially be applied
to deeper neural networks, e.g. deep convolutional neural net-
works [13] and long-short-term memory (LSTM) networks [9],
[18], or not. Moreover, the learning manner of the proposed
neural network is based on the supervised learning principle.
To investigate the possibility of also operating this network in
an unsupervised manner, we here make a trial of the proposed

1010612

backpropagation learning algorithm in an autoencoder with a
deep size of (784 x 256 x 64) x 10 x (64 x 256 x 784).
Besides the first input layer with the linear activation function,
other layers are all composed of the noise-smoothed function
defined in (8). The fourth layer is the code layer, and the
784 x 256 x 64 x 10 network part performs the encoding
or compressing function of transforming the high-dimensional
784 x 1 vector into a low-dimensional 10 x 1 code vector,
and the decoder with the 10 x 64 x 256 x 784 network part
does the exact opposite of the compression for recovering the
low-dimensional data from the code layer [19]. The whole
(784 x 256 x 64) x 10 x (64 x 256 x 784) network is
called an autoencoder [19]. From the MNIST dataset [54]
without labels, each black-and-white 28 x 28 pixel hand-
written image is mapped into a 784 x 1 input vector x
for training the designed autoencoder via the unsupervised
learning method [19]. It is interesting to note that this deep
autoencoder with the noise-smoothed activation function can
learn well and yields the low-dimensional code as a tool to
reduce the dimensionality of data. For example, after 10°
epochs of the unsupervised learning of 5 x 10* handwritten
images, an input handwritten image illustratively shown in
Fig. 13(a) is compressed by the encoder as a low-dimensional
vector [0.3366, 0.6974,0.2757, 0.6797, 0, 0.4564, 0.2855, 0,
0.6105,1.0]" at the code layer. By contrast, with this low-
dimensional vector, the decoder produces a visualization of
data in Fig.13(b). The unsupervised learning rule of mini-
mizing the cross-entropy error between the pixel intensities
of the original image and the reconstructed one [19] is also
generalized via the introduction of noise into deep autoencoder
networks.

To test the fast retrieval of the designed autoencoder,
a vector [0.3,0.7,0.3,0.7,0.1,0.4,0.3,0.1,0.6,0.7] ", devi-
ating from the encoded vector with the 10° intersection
angle, is feed into the decoder part of the autoencoder, and
generates the reconstructed image as shown in Fig. 13(c). It is
seen in Fig. 13(a) and (c) that the generated image is very
similar to the original input one and clearly reestablishes the
handwritten numeral of 7, which effectively demonstrates the
generalization of the noise-boosted autoencoder. This exam-
ple also illustrates that the noise-boosted proposed threshold
neural network can be used in deeper architectures and with
unsupervised learning. Therefore, further investigations of the
noise-boosted backpropagation learning of feedforward thresh-
old neural networks can be extended in various directions.

APPENDIX A
PROOF OF LEMMA 1

Proof: When we inject noise & into the input x, the kth
hidden unit has the same local field v; = [W]® (x + &) and
the output i, = ZZT:1 ¢ i)/ T = ¢(vy). In this circumstance,
the total error energy in (5) can be calculated as

Lk, [i S 50— 30 (f))z]

(=1 m=1

5tot =

\o)]

|
M~

b o us(w 50
(17)

(=1

1010612

where | - || denotes the Euclidean norm of a vector x. For the
convex function | x||> and using the Jensen inequality, we find

L
Eot = Z 5
=1

s(g)_EE{W[U¢>(W(x(f)+'§(£’)))]}Hz

L

= 3 3 lso-wlor[s(wro+we) |||
:ZL:% s0)-w{UE [éb(Wx(‘))*”(f))]}H

)

=~

(18)

2
s(0)— y{UR®) H = Eun

~
NS RC

=1

where the injected noise vector n(¢) WE(() and the
output vector h* = [A{°, h5°, ..., h%‘}]-r of the hidden layer.
Moreover, the proof is the same for injecting noise into the

weight matrix W by replacing the injected noise vector with
n(€) = Wx(£). Thus, the Lemma 1 holds.

APPENDIX B
PARTIAL DERIVATIVES IN (6)

The partial derivative of £(£) with the mth row and the
k-column element [U],; of the weigh matrix U can be
calculated as

L = e (19)

0 [U]mk]mk

where [U],,x denotes the weight connecting the neuron m in
the output layer with the hidden unit 47°. The partial derivative
of £(€) with the element [W]y, of the weigh matrix W is

2E(0)

ahoo (f) aym (f)
oWl Z en(f)

TaWl, &= o)

(20)

where [W], denotes the weight connecting the hidden unit
hy° with the nth element of the input vector x. Similarly, the
partial derivative of £(£) with respect to the noise-level o can
be calculated as

ag(f)

ZZ m()aym(f) ahoo(f) (21)

oo
P ohP(t) oo
When the activation function of the output layer is taken as
w(x) = x, we have the gradients
6 m g a m €
y():h?(f)’ Y (6)
a[U]mk ah/?o(f)

For the threshold activation function in (7), we can further
compute the gradients

= [U]mk~ (22)

ohg® Xn O —)’

- G o 23
oWl 2ro il 207] (23)

oh® 1 O — 01)?
= — — 24
00 2w o x [202] 4

6/100 O, — 6, — v;)>
ohy k— v [_(e — Og)] 25)

oo «/27[0'2 202

Then, substituting (22)—(25) into (6), the learning rule can
be implemented.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

For the hard-sigmoid activation function in (15), we can
express the hidden unit 2;° in (3) as

= - (52) ()
_ 2 n 2
+arlen(-) —ew(-)]
—F(L; ")+1 (26)

where F(x) = ffoo(l/((27r)1/2))e’(”2/2)d77 is the standardized
Gaussian cumulative distribution function. Then, the partial
derivatives of (26) with respect to the weight [W],, the
threshold parameter 6, and noise-level ¢ become

af‘flvkolokn N %[F@k ;) - F(Qk ~ “)] @7)
%Z_EFM_FM 28)
66}16’](; 41[(o (Q)k) Uk<)2 o)] a _vk)2
ﬁ = 4m[exp(—7)—exp(—T)].

(29)

For the sigmoid function in (16), the hidden unit 4}° in
(3) is given by
oo — /°° exp[—7*/(26%)]
T Vamo oo 1+ expl—(or — b +)]
The partial derivatives of (30) with respect to the weight

[W1i,, the threshold parameter 6, and noise-Olevel o can be
calculated as

dy. (30)

2
n
)
AWl V2rmo) o1 — —o)) 1
oo[1 4 exp(—(vx + 7 — 6)))]
n
Y exp(@k—vk—n— 202) ., 5
o =) sdn (32)
i mo)-od 1+ exp(—(vx + 17— Hk))]
77
G0 V2rod ,m1+exp(—<vk+n—ek)) "

If the noise level ¢ is zero, the hidden unit 4;° in (3)
reduces to the sigmoid function ¢(vg) in (16). The partial

derivatives (16) with respect to [W], and the threshold
parameter 6, become
o) _
oWl $ ()1 = ¢ (vi)]xn (34)
0
";(9”") = —poll — pop)]. (35)
k

Substituting (27)—(35) into (19)—(21), the learning rule can
be implemented.

APPENDIX C
WEAK CONVERGENCE OF THE LEARNING RULE FOR
TRAINING THRESHOLD NEURAL NETWORKS

From (3) and letting t = 6 —uy, it is noticed that the hidden
unit 17°(z, o) is bounded within the range from O to 1, because

DUAN et al.: NOISE-BOOSTED BACKPROPAGATION LEARNING OF FEEDFORWARD THRESHOLD NEURAL NETWORKS

it equals one minus the cumulative distribution function of the
standardized Gaussian random variable. The partial derivatives
of h{°(t, o) with respect to variables ¢ and ¢ are given by

Oh(t,0) 1 12
= - 36
ot 2no exp(202) (36)
Oh(t,0) —t 12
= ——). 37
oo V2ro? exp(202) en

Since exp(—t%/25?) is infinitesimal of higher order than
t as t — =+oo, and the same for ¢~ 2 as ¢ — 0 and
o0 — 00, then 0h°(t,0)/0t and 0h;°(t, 0)/00 are uniformly
bounded for the domain of definition —oco < ¢t < oo and
0 < 0 < oo. Likewise, we can deduce the exact expressions
of the second-order partial derivatives of 4;° (¢, o) with respect
to variables ¢t and o, and the tedious manipulation is not
included here for simplicity. Similarly, the second-order partial
derivatives can be also proven to be uniformly bounded in
the domain of definition. Therefore, the first-order partial
derivatives 0h(°(t,0)/0t and 0h{°(t,0)/0c are Lipschitz
continuous, which guarantees the convergence of the proposed
noise-boosted algorithm based on gradients [49], [52].

Furthermore, for the approximated optimal noise PDF in
(12), the hidden unit in (13) is a linear combination of the
expectations Eg[¢ (vx 4 17)], therefore the partial derivatives of
h°(t, o) with respect to variables ¢ and ¢ are also uniformly
bounded in the domain of definition. Thus, the modified
noise-boosted backpropagation Algorithm 2 of searching the
optimal noise type is still weakly convergent.

REFERENCES

[1] C. M. Bishop, “Training with noise is equivalent to Tikhonov regular-
ization,” Neural Comput., vol. 7, no. 1, pp. 108-116, 1995.

[2] R. Reed, R. J. Marks, and S. Oh, “Similarities of error regularization,
sigmoid gain scaling, target smoothing, and training with jitter,” /EEE
Trans. Neural Netw., vol. 6, no. 3, pp. 529-538, May 1995.

[3] G. An, “The effects of adding noise during backpropagation training
on a generalization performance,” Neural Comput., vol. 8, no. 3,
pp. 643-674, Apr. 1996.

[4] J. Sietsma, “Neural net pruning-why and how,” in Proc. IEEE Int. Conf.
Neural Netw., San Diego, CA, USA, Jul. 1988, pp. 325-333.

[5] L. Holmstrom and P. Koistinen, “Using additive noise in back-
propagation training,” [/EEE Trans. Neural Netw., vol. 3, no. 1,
pp. 24-38, Jan. 1992.

[6] K. Matsuoka, “Noise injection into inputs in back-propagation learning,”
IEEE Trans. Syst., Man, Cybern., vol. 22, no. 3, pp. 436-440, May 1992.

[7]1 P. L. Barlett and T. Downs, “Using random weights to train multilayer
networks of hard-limiting units,” /IEEE Trans. Neural Netw., vol. 3, no. 2,
pp- 202-210, Mar. 1992.

[8] Y. Grandvalet, S. Canu, and S. Boucheron, “Noise injection: Theoretical
prospects,” Neural Comput., vol. 9, no. 5, pp. 1093-1108, 1997.

[9]1 C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio, “Noisy
activation functions,” 2016, arXiv:1603.00391. [Online]. Available:
http://arxiv.org/abs/1603.00391

[10] Z. He, A. S. Rakin, and D. Fan, “Parametric noise injection: Trainable
randomness to improve deep neural network robustness against adver-
sarial attack,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Long Beach, CA, USA, Jun. 2019, pp. 588-597.

[11] X. Meng, C. Liu, Z. Zhang, and D. Wang, “Noisy training for deep
neural networks,” in Proc. IEEE China Summit Int. Conf. Signal Inf.
Process. (ChinaSIP), Xi’an, China, Jul. 2014, pp. 16-20.

[12] A. Neelakantan et al., “Adding gradient noise improves learning for very
deep networks,” in Proc. 4th Int. Conf. Learn. Represent., San Juan,
Puerto Rico, May 2016, p. 327.

[13] K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional
neural networks,” Neural Netw., vol. 78, pp. 15-23, Jun. 2016.

1010612

[14] Y. Li and F. Liu, “Whiteout: Gaussian adaptive noise regularization in
deep neural networks,” 2016, arXiv:1612.01490. [Online]. Available:
http://arxiv.org/abs/1612.01490

[15] J. Wang, Q. Chang, Q. Chang, Y. Liu, and N. R. Pal, “Weight noise
injection-based MLPs with group lasso penalty: Asymptotic convergence
and application to node pruning,” IEEE Trans. Cybern., vol. 49, no. 12,
pp. 43464364, Dec. 2019.

[16] N. Frazier-Logue and S. J. Hanson, “The stochastic delta rule: Faster
and more accurate deep learning through adaptive weight noise,” Neural
Comput., vol. 32, no. 5, pp. 1018-1032, May 2020.

[17] P.Panda and K. Roy, “Implicit adversarial data augmentation and robust-
ness with noise-based learning,” Neural Netw., vol. 141, pp. 120-132,
Sep. 2021.

[18] L. Xiao, F. Duan, J. Tang, and D. Abbott, “A noise-boosted remaining
useful life prediction method for rotating machines under different con-
ditions,” IEEE Trans. Instrum. Meas., vol. 70, 2021, Art. no. 3512612.

[19] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507,
2006.

[20] P. M. Aziz, H. V. Sorensen, and J. van der Spiegel, “An overview of
sigma-delta converters,” IEEE Signal Process. Mag., vol. 13, no. 1,
pp. 61-84, Jan. 1996.

[21] L. Bin, T. W. Rondeau, J. H. Reed, and C. W. Bostian, “Analog-to-
digital converters,” IEEE Signal Process. Mag., vol. 22, no. 6, pp. 69-77,
Nov. 2005.

[22] J.-J. Xiao, R. Ribeiro, Z.-Q. Luo, and G. B. Giannakis, “Distributed
compression-estimation using wireless sensor networks,” IEEE Signal
Process. Mag., vol. 23, no. 4, pp. 2741, Jul. 2006.

[23] D. Rousseau and F. Chapeau-Blondeau, “Noise-improved Bayesian
estimation with arrays of one-bit quantizers,” IEEE Trans. Instrum.
Meas., vol. 56, no. 6, pp. 2658-2662, Dec. 2007.

[24] Y. Zhou, Y. Huang, J. Pang, and K. Wang, “Remaining useful life
prediction for supercapacitor based on long short-term memory neural
network,” J. Power Sources, vol. 440, Nov. 2019, Art. no. 227149.

[25] S. Lu, Q. He, F. Hu, and F. Kong, “Sequential multiscale noise tuning
stochastic resonance for train bearing fault diagnosis in an embedded
system,” IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 106-116,
Jan. 2014.

[26] S. Ikemoto, F. DallalLibera, and K. Hosoda, ‘“Noise-modulated neural
networks as an application of stochastic resonance,” Neurocomputing,
vol. 277, pp. 29-37, Feb. 2018.

[27] M. G. Xibilia, M. Latino, Z. Marinkovic, A. Atanaskovic, and
N. Donato, “Soft sensors based on deep neural networks for applications
in security and safety,” IEEE Trans. Instrum. Meas., vol. 69, no. 10,
pp. 7869-7876, Oct. 2020.

[28] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal reprenta-
tions by error propagation,” in Parallel Distributed Processing, vol. 1,
D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA:
MIT Press, 1986, pp. 318-362.

[29] R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochas-
tic resonance,” J. Phys. A, Math. Gen., vol. 14, no. 11, p. L453,
Nov. 1981.

[30] B. Ando, S. Baglio, A. R. Bulsara, and V. Marletta, “A nonlinear energy
harvester operated in the stochastic resonance regime for signal detec-
tion/measurement applications,” IEEE Trans. Instrum. Meas., vol. 69,
no. 8, pp. 5930-5940, Aug. 2020.

[31] B. Kosko, K. Audhkhasi, and O. Osoba, “Noise can speed backpropaga-
tion learning and deep bidirectional pretraining,” Neural Netw., vol. 129,
pp- 359-384, Sep. 2020.

[32] N. G. Stocks, “Suprathreshold stochastic resonance in multilevel
threshold systems,” Phys. Rev. Lett., vol. 84, no. 11, pp. 2310-2313,
Mar. 2000.

[33] N. Mtetwa and L. S. Smith, “Precision constrained stochastic resonance
in a feedforward neural network,” IEEE Trans. Neural Netw., vol. 16,
no. 1, pp. 250-262, Jan. 2005.

[34] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott,
Stochastic Resonance: From Suprathreshold Stochastic Resonance to
Stochastic Signal Quantization. New York, NY, USA: Cambridge Univ.
Press, 2008.

[35] F. Duan, Y. Pan, F. Chapeau-Blondeau, and D. Abbott, “Noise benefits in
combined nonlinear Bayesian estimators,” IEEE Trans. Signal Process.,
vol. 67, no. 17, pp. 4611-4623, Sep. 2019.

[36] Y. Fu, Y. Kang, and R. Liu, “Novel bearing fault diagnosis algorithm
based on the method of moments for stochastic resonant systems,” /IEEE
Trans. Instrum. Meas., vol. 70, 2021, Art. no. 6500610.

1010612

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

A. Patel and B. Kosko, “Stochastic resonance in continuous and spiking
neuron models with Levy noise,” IEEE Trans. Neural Netw., vol. 19,
no. 12, pp. 1993-2008, Dec. 2008.

O. Osoba, S. Mitaim, and B. Kosko, “The noisy expectation-
maximization algorithm,” Fluctuation Noise Lett., vol. 12, no. 3,
Mar. 2013, Art. no. 1350012.

0. Adigun and B. Kosko, “Noise-boosted bidirectional backpropagation
and adversarial learning,” Neural Netw., vol. 120, pp. 9-31, Dec. 2019.
O. Adigun and B. Kosko, “Using noise to speed up video classification
with recurrent backpropagation,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Anchorage, AK, USA, May 2017, pp. 108-115.

X. Liu, L. Duan, F. Duan, F. Chapeau-Blondeau, and D. Abbott,
“Enhancing threshold neural network via suprathreshold stochastic res-
onance for pattern classification,” Phys. Lett. A, vol. 403, Jul. 2021,
Art. no. 127387.

S. Uhlich, “Bayes risk reduction of estimators using artificial observation
noise,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5535-5545,
Oct. 2015.

G.-B. Huang, Q.-Y. Zhu, K. Z. Mao, C.-K. Siew, P. Saratchandran,
and N. Sundararajan, “Can threshold networks be trained directly?”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 3, pp. 187-191,
Mar. 2006.

W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115-133,
1943.

D. Dua and C. Graff. (2017). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

M. H. Rafiei and H. Adeli, “A novel machine learning model for
estimation of sale prices of real estate units,” J. Construct. Eng. Manage.,
vol. 142, no. 2, Feb. 2016, Art. no. 04015066.

P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling
wine preferences by data mining from physicochemical properties,”
Decis. Support Syst., vol. 47, no. 4, pp. 547-553, 2009.

M. Cassotti, D. Ballabio, R. Todeschini, and V. Consonni, “A similarity-
based QSAR model for predicting acute toxicity towards the fathead
minnow (Pimephales promelas),” SAR QSAR Environ. Res., vol. 26,
no. 3, pp. 217-243, Mar. 2015.

J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY,
USA: Springer, 2006.

R. M. Neal, “Slice sampling,” Ann. Statist., vol. 31, no. 3, pp. 705-767,
Jun. 2003.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

K. Suresh, Design Optimization Using MATLAB and SOLIDWORKS.
Cambridge, U.K.: Cambridge Univ. Press, 2021.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

Lingling Duan was born in China in 1982. She
received the master’s degree in computational math-
ematics from Xiamen University, Xiamen, China,
in 2008. She is currently pursuing the Ph.D. degree
in system science with Qingdao University, Qingdao,
China.

Since 2009, she has been with Jining Univer-
sity, Jining, China. Her research interest includes
noise-enhanced effects in neural networks.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fabing Duan was born in China in 1974.
He received the master’s degree in engineering
mechanics from the China University of Mining and
Technology, Beijing, China, in 1999, and the Ph.D.
degree in solid mechanics from Zhejiang University,
Hangzhou, China, in 2002.

From 2002 to 2003, he was a Post-Doctoral Fel-
low with the University of Angers, Angers, France.
Since 2004, he has been with Qingdao University,
Qingdao, China, where he is currently a Professor
of system science. His research interests include
nonlinear signal processing and machine learning.

Francois Chapeau-Blondeau was born in France
in 1959. He received the Engineer Diploma from
ESEO, Angers, France, in 1982, the Ph.D. degree
in electrical engineering from the University Pierre
of Marie Curie, Paris, France, in 1987, and the
Habilitation degree from the University of Angers,
Angers, in 1994.

In 1988, he was a Research Associate with the
Department of Biophysics at the Mayo Clinic,
Rochester, MN, USA, where he was working on
biomedical ultrasonics. Since 1990, he has been with
the University of Angers, Angers, where he is currently a Professor of elec-
trical and electronic engineering. His research interests include information
theory, signal processing and imaging, and the interactions between physics
and information sciences.

Derek Abbott (Fellow, IEEE) was born in South
Kensington, London, U.K., in 1960. He received the
B.Sc. degree (Hons.) in physics from Loughborough
University, Leicestershire, U.K., in 1982, and the
Ph.D. degree in electrical and electronic engineering
from The University of Adelaide, Adelaide, SA,
Australia, in 1997, under the supervision of K.
Eshraghian and B. R. Davis.

From 1978 to 1986, he was a Research Engineer
with the GEC Hirst Research Center, London, U.K.
From 1986 to 1987, he was a VLSI Design Engineer
with Austek Microsystems, Australia. Since 1987, he has been with The
University of Adelaide, where he is currently a Full Professor with the
School of Electrical and Electronic Engineering. His research interests include
multidisciplinary physics and electronic engineering applied to complex
systems, networks, game theory, energy policy, stochastics, and biophotonics.

Dr. Abbott is a fellow of the Institute of Physics (IoP), U.K., and Honorary
Fellow of Engineers Australia. He has received a number of awards, including
the Tall Poppy Award for Science in 2004, an Australian Research Council
Future Fellowship in 2012, the David Dewhurst Medal in 2015, the Barry
Inglis Medal in 2018, and the M. A. Sargent Medal in 2019 for eminence
in engineering. He has coedited Quantum Aspects of Life (Imperial College
Press, 2008), and coauthored Stochastic Resonance (Cambridge University
Press, 2008) and Terahertz Imaging for Biomedical Applications (Springer-
Verlag, 2012). He has been an Editor and/or Guest Editor for a number of
journals, including the IEEE JOURNAL OF SOLID-STATE CIRCUITS, Journal
of Optics B, Microelectronics Journal, PLOS ONE, PROCEEDINGS OF THE
IEEE, and the IEEE PHOTONICS JOURNAL. He is currently on the Editorial
Boards of IEEE ACCESS, Scientific Reports (Nature), Royal Society Open
Science, and Frontiers in Physics. He has served on the Editorial Boards of
PROCEEDINGS OF THE IEEE from 2009 to 2014, the Editorial Board of IEEE
AcCCESS from 2015 to present. He currently serves for the IEEE Publication
Services and Products Board (PSPB) from 2019 to present.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

