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Abstract—Noise in dynamical systems is usually considered a Engineers have normally sought to minimize the effects of
nuisance. However, in certain nonlinear systems, including elec- noise in electronic circuits and communication systems. Today,
tronic Cir:‘:“its at?]d boiloltogitc_:al sefnsory;ys_temlsv “}%preience of noisenowever, it is acknowledged that noise or random motion is ben-
can ennance tne detection of weak signails. e enomenon IS ¢ .. : : : : . . :
termed stochastic resonance and is of ggreat interesrt) for electronic ef|C|_aI In br?aklng up the quantlzqtlpn pattern in a video signal
instrumentation. [1], in the dithering of analog to digital converters (ADCs) [2],

We review and investigate the stochastic resonance of severalin the area of Brownian ratchets [3], and in the physics of mixed
bistable circuits. A new type of S characteristic circuit is demon- powders [4]-[6]. Also, it is known that when training a neural
strated using simple nonlinear elements with an operational am- network, addmg noise to the training data set can |mprmle
plifier. Using this circuit, the effects on stochastic resonance were \yqri generalizationi.e., the neural network’s ability to fit real
sg:g? ined as the slope of the S shaped characteristic curve Wasa1a qutside of the initial training set [7]. Noise even plays a

role in game theory [8], [9], number theory [10], and cosmology
[11]. Furthermore, recent research has established that noise can
play a constructive role in the detection of weak periodic signals
via a mechanism known as stochastic resonance. In essence, SR
|. INTRODUCTION is a nonlinear cooperative effect in which a weak periodic stim-

HEN noise is added to a system, the output usually dgl_us influences large-scale fluctuations, the result being that the

teriorates in quality. However, in some systems, addiﬁ?ge”c’d'C component is greatly enhanced.

the right amount of noise can enhance the system output oStochastic resonance is now known to occur in a wide range
response. For these systems, it can be shown that there eXaétghysical systems; however, it was originally proposed by
a nonzero value of noise that gives an optimal value for tfenzi [12] in 1980, as an explanation of the behavior of the
signal-to-noise ratio (SNR) of the system. Earth’s ice ages, which exhibit a 100 000 year periodicity.

Stochastic resonance (SR) is characterized by the respohBis was closely followed by a number of papers [13]-[15]
of a system to noise, the signal-to-noise ratio. The SNR ris@escribing a general dynamical mechanism whereby small
sharply to a maximum value, then gradually decreases for higipgriodic perturbations could be greatly amplified by large
noise intensities, where SR occurs, as noise is added to a sys@ironmental fluctuations.
Itis seen from this description of SR that it is not strictly a reso- Experimentally, SR was first demonstrated with a noise
nance as the increased responsmisiue to a natural frequency driven electronic circuit based on the Schmitt trigger [16]. This
of the system. The alternative use of the waegonances de- work was also the first to characterize the phenomenon in terms
rived from the SNR having a peak due to some other paragf-a signal-to-noise ratio. It took more than five years before

eter—in this case, input noise amplitude. the interest of physicists was sparked by the demonstration of
The essential ingredient for SR is a nonlinear dynamicgR in a bistable ring-laser experiment [17].

;ystem, which typically has a periqdic signal. and noise at theStochastic resonance has been reported in a variety of phys-
Input and an output that is a function of the INputs as well #al systems [18]-[20] and the classical theory is well estab-
the internal dynamics of the system. The nonlinear componq&léed [21]-[24]. The concept of SR has been extended to a

Index Terms—Bistable circuits, level crossing circuits, stochastic
resonance.

tht_hﬁ dyne:rglcal SyStZT |st§0me:|mttets %rov'ﬁed béa tr&retsh ss of systems for which the signal-to-noise ratio may dis-
which must be crossed for the output to be changed or detec y a multiplicity of maxima with increasing noise. This was
A nonlinear system is essential for SR to exist, since in a syst

Hown for the first time in [25], where a response for a peri-

that is well characterized by linear response theory, the SNR at f : ' o
) N rce is enhan n nly for an imiz mount of
the output must be proportional to the SNR at the input. Th O%C orce is enhanced, not only for an optimized amount o

any increase in the input noise will result in a decrease in t gise, but_als_o at multiple vaIu_es O.f the no?se level. NOV.V SR hgs
output SNR, which is in contrast to the characteristic of SR ?sted d|SC|pI|r1ary bogndanes: |ts'role In sensory biology is

' " being explored in experiments on single crayfish neurons and
in perceptive brain function by experiments on people’s ability
Manuscript received April 21, 2000; revised February 10, 2002. This wotlg resolve ambiguous figures. SR has been shown to enhance the
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Three case studies are considered to show the diversity 12 ' " ;
disciplines that SR covers. Some theory is presented for no

and bistable systems. Initially, simulations are used to check" | O S ]
SR from electrical circuit characteristics. Then, we constru 0 ) (‘%@‘W.
some circuits to demonstrate the measurement of SR and out oo R L ; O
possible application areas. 8+ 04 .
g - C
II. EXAMPLES OF SR x &1 1
%]

In order to gain an appreciation of the concepts associal
with stochastic resonance and the diversity of fields it cover  4r
some case studies are reviewed. The first example examines
sensing systems of the crayfish [28]-[30], the second rela

to visual perception [31]-[33], and the third to public opinior 2| |
formation [34].

_ % 0.2 0.4 0.6 0.8 1
A. Crayfish Sensory Systems Noise (V)

The primary objective of the sense organs is to detect faint ) o .
. . . . . . ; Ef 1. SNR of the crayfish mechanoreceptors when external noise is applied.
information bea”ng S|gnals In noisy environments. Stochas perimental (squares), electric neuron simulation (diamonds) and the theory
resonance plays an essential role in biological sensing systeéeag(solid line). The horizontal axis represents noise: hydrodynamic in the
and thus is Iikely to prove fruitful. case of the mechanoreceptors and electric in the case of the neuron model.

. Reproduced from [28] and [29].
The system of the mechanoreceptor cells found on the tail ofocuce fom [28] and [29]

the ordinary crayfishProcambarus clarkiiis described. These o . -
: e ) L stochastic time course [35]. The bistable perceptual process in
cells, which end in fine hairs, are specialized to detect weak (an(%)ved in the interpretation of ambiguous figures can be mod-

L . 0
probably periodic) water motions such as those generated ; i - ) .
the waving tail of a nearby predatory fish. The hair cells mo$i 4 by a noisy auto-associative neural network [33]. Using this

likelv serve as an early warning svstem. which mav explain th stem, the results indicate that SR can be demonstrated.
y Y gsy ' y exp Another aspect is the human visual system that derives from

;rrz{lfrl]sdh are one of the oldest and most well adapted ammﬁlﬁeshold theory [31] and is closely related to the dithering ef-

When moved, the hair generates a nerve impulse, measur f%fé[ [32.]' Consu_jer asystem tha_t is capable of transmitting S'Fg'e
of information, each of which marks a threshold crossing.

. A . S
as ashortduranor_\ electric sp|ke_. The '.mpl_]lse trav_elsto abun '?/isual realization of this is shown in Fig. 2, which was gen-
of nerve cells, which handle all incoming information from the ; ) -

. . - erated following the procedure in [31]. The original gray scale
hair cells. These nerve cells make basic decisions such as acth—1 e of the pooular ‘Lena’ used in sianal processing is de-
vating the animal’s escape reflexes. Evidence indicates that {We g hop gnal p 9

. ) . é)ressed beneath a threshold. Noise is added to the gray value
sensory neurons function much like nonlinear threshold detec- :
it each pixel and the result compared to the threshold value.

tors. Belowacertain level, veryvv_eak_m_otion ofthe hair does nBI{(eB valued above the threshold are made white, the others
generate nerve impulses. This simplicity of the system make%'ack. Every pixel contains one bit of information, whether or

a Lfffg)l(ogﬁr:;;u{gy'mimic the noisv environment in whichnOt the threshold has been crossed. Fig. 2 shows the result of
P y dding noise of three intensities, increasing from left to right.

f;ﬁ%fslsgeggrri?:clmn“\[lzeg]us_;_r;]ge a?oceexoiljsrgdessliﬁteiaﬁf Fr:\?gr:/ Se he optimal noise intensity in the center pane maximizes the
. . ) 12¢]. The P . y . ihformation content. Note that the pictures shown in Fig. 2 only
moving the tail periodically in water with an electromechanic

) . ave the noise varying spatially; additional improvement in per-
transducer until the nerve impulses were nearly undetectaa ying sp y P P

then adding noise. The resulting signal-to-noise ratio, shownﬁ%rr\:hd ;[)éclt]ure quality can be gained by varying the noise tem-
Fig. 1, illustrates stochastic resonance. y '
Fig. 1 shows the results for theoretical predictions and &0 Opinion Formation

electronic simulation of a threshold detector for comparison. the third le. SR lied to the f i f oubli
The discrepancies at high and low noise levels are due respeé-n € third example, IS applied o the formation ot public

tively to neurons exhibiting a refractory period and unavoidabf@!N'on pgtween two parties. The formation of an |nd|V|duaI.s
internal noise in sensory systems. opinion is influenced by the presence of groups of people with

the same or opposite opinion. The formation of the opinion
changes over time. Thus, there is a small periodic force that
changes the opinion from one side to another, which can be con-

Stochastic resonance can be observed when dealing withsidered as a bistable system. If the influences from the groups
sual perception of ambiguous figures [31], [33]. Perception of people with or without the same opinion are weak, then the
ambiguous figures, such as a wire frame cube, are charactdgrange of opinion must be influenced by external information.
ized by noisy bistable dynamics. Two different interpretatioriBhe addition of collective noise is sufficient to induce a sto-
of the cube are alternatively perceived by the observer withchastic change of opinion.

B. Visual Perception
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Fig. 2. Images are composed from a single 256 grayscale image. A randc =2
number from a Gaussian distribution with zero mean is added to the origini 3
gray value in every pixel. Thus, the noise is incoherent with that in all othe & x_=—(a/b) x =+(arb)
pixels. The noise intensity is increased from left to right. ] - z

By performing calculations using the nonlinear sociologica
model of public opinion formation introduced by Weidlich, the
signal-to-noise ratio can be determined. Determining the SN
as the collective noise is varied reveals that the formation ¢
public opinion exhibits stochastic resonance [34].
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I1l. BISTABLE SYSTEMS

. . Fig. 3. Quartic bistable potential (2) without any noise with minima.aand
Examples of bistable systems occur in areas such as phyg&i er hgghm_ P @ Y

[bistable super-conducting quantum interface device (SQUID)
loops [29], bidirectional ring lasers [17]], biology (sensory sys- 0 examples [40] of nonlinear dynamic systems are the
tems [28], [30]), Earth sciences [climate [14], [29], [36]] a”%nalog Hopfield neuron

electronics (Schmitt trigger [16], tunnel diode [37], [38]). Here,

a simple double well potential in a nonlinear system is described U(z) = az® — fln(cosh )

[16], [18], [23], [39].

A model of a one-dimensional nonlinear system that exhibi ere the state poini(t) denotes a cell membrane voltage and

stochastic resonance is the damped harmonic oscillator with tRE SQUID loop
Langevin equation of motion U(z) = az® — Beos(2rx)
mi(t) +yi(t) = - W) | VDE(t) (1) Whereu(t) denotes the magnetic field flux in the loop.
du By itself, the bistable system is stationary as described by the

where the dot represents the time derivative [37]. This equatigption of the particle. That s, if the particle is in one of the two

describes the motion of a particle of massnoving in the pres- wells, it will stay there indefinitely. By adding a periodic signal,

ence of frictiony. The restoring force is expressed as the gralsin(w;t) to the bistable system, the dynamics are governed by

dient of some bistable or multi-stable potential functiéf:). the following equation

In addition, there is an f’;\d_ditive stoch_astic_fof@t_a) with inten- d dU ()

sity D that has the statistical properties given in (7). i <— I
When U(z) is a bistable potential, (1) may model several

physical processes, ranging from the dynamics of a nonlineére bistable potential, which is now time dependent, becomes

elastic mechanical oscillator to the transient dynamics of a laser. U Ul — Awsi

A simple symmetric bistable potential has the form of a standard (1) =U(z) , (wst)

+ Asin (wst)> + \/Bﬁ(t) (4)

quartic =— a% + b% — Az sin (wst) (5)
2 4
U(z) = _a% + b%. (2) whereA andw, are the amplitude and the frequency of the pe-

riodic signal, respectively.
If the system is heavily damped, the inertiak: term can be  Throughout this analysis, it is assumed that the signal ampli-
neglected. Rescaling the system in (1) with the damping terntude is small enough that, in the absence of any noise, it is in-

gives the stochastic Ginzburg—Landau equation sufficient to force a particle to move from one well to another. It
is also assumed that the signal period is longer than some char-
. U (z) o 9
#(t) = — o+ VDE(t) (38) acteristic intrawell relaxation time for the system.
X

Due to the presence of the modulating signal, the double well
which is frequently used to model nonequilibrium critical phepotential U(z, ¢) is periodically tilted back and forth with the
nomena. Fot: > 0, the potential is bistable, as shown in Fig. 3same frequencyy; = 27 /7. Relating this to the potentials in
From simple algebra, there is an unstable state-atd and two Fig. 4, the effect is to weakly tilt the potential barriers to the
stable states at, = +./a/b, separated by a barrier of heightight and left sides, respectively. In one period of the signal,
of Al = a?/4b when the noisé(t) is zero. The position of the the potential is cycled through Fig 4 (a)-(d). The maxima and
particlexz(t) is considered to be the output of the system and hasnima of the signal correspond to when the potential barrier is
a power spectrun¥(w). at its lowest, which is in Fig. 4 (b) and (d).
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(a (b) [18], [32], [42]. The SNR is readily obtained from the output
Ui 4 m Ut 4 by forming the power spectrum, which measures the frequency
=0T, =T /4 content of a time series. For a sinusoidal signal, the power
\ Z ¥ spectral density (PSD) shows a sharp peak located at the signal

frequency on a broadband noise background; the SNR is the
ratio of the strength of this peak to the noise level. The SNR in
decibels is

S

_ X S (ws)
SNR = 10logy, <B(w5)> (6)
vw U} where S and B represent the values of the output PSD of the
\ =12 / =314 peak and the background level, respectively. Note that the SNR
must be taken at the fundamental frequency, that is, the fre-
guency of the input sinewave.

The signature of stochastic resonance is that the output SNR
rises sharply to a maximum at an optimal noise intensity and
decreases gradually for larger noise intensities as randomization
Fig. 4. Periodic driving signal causes the DWP to be tilted back and fortﬁ,\/(_:‘mdeS the cooperatlve effect. The detailed shape of this curve
antisymmetrically raising and lowering the left and right potential wells. epends on the signal frequency and other system parameters.

As the noise intensity approaches zero, there is no output as

The quartic potential system shown in Fig. 4 is of particuldhere are no switching or threshold crossings.
interest because it represents the simplest bistable system in a
continuous variable. It is seen that there are three fixed points, V. Noise
two stable and one unstable. All that is needed is a system withye ysed white Gaussian noise with mean and autocorrelation
a cubic characterlstlc_ that h_as three Qperatl_ng points for SOfiGen respectively by
parameter. A tunnel diode with a load line defining the operating
points would be an example of an electrical system that fits this (E®)=0 and (D)) =6(t—1). (7)
requirement [37]. o o ]

When considering the use of an electrical device to producd BiS implies thag(#) and¢(#') are statistically independent for
bistable system, the stability of the operating points needs to’hg ' and the angled bracketg denote an ensemble average.
considered. By considering small perturbations, usually in theFOr our SR measurements noise was realized using a gener-
input current or voltage, the stationary state can be determirfi@r that simulates nearly white noise directlyAW¢Tek model
to be stable or unstable. Itis concluded from [41] that there mus32 VCG/Noise Generatof)ln the absence of such a generator
be at least three stationary states if two stable states are to dkist also possible to generate white noise by band limiting the
and for bistability to occur. output of maximal length shift register with a low-pass filter

A natural simplification of the double-well problem is the disthat has a cut-off frequency well below the clock frequency of
crete two-state system, in which the dynamical variable can tdke register [43].
on only two discrete values. The Schmitt trigger is an example To measure the intensity of the noise, a simple averaging type
of such a discrete system. This is a useful system since its @g-voltmeter was used with the scale adjusted accordingly. This
namics are well modeled as a two-state system, except for g@ve the noise in units of root mean squared vadls.().
switching between the two voltages which takes a finite amountDifferent types of noise, or the colored Ornstein-Uhlenbeck
of time. Since this switching occurs at rates far faster than apgocess, for example, affect the stochastic resonance and are
signal frequency of interest, it can, for all practical purposes, legamined in [44]-[46].
considered as an ideal two-state system. An important feature
of the Schmitt trigger is that it has hysteresis—that is there is a VI. CIRCUITS

range of the input for which th_e circuitis blstab!e. In this section, we consider four circuits that can be con-
Another two-state system in common use is the threshcggructed using op amps

system. This is a simple system that produces an output voltag simple analysis of the Schmitt trigger reveals that the

whenever_ t_he input exceeds t.he threshold value. In b'°|og'(f esholds are symmetrically placed about the reference level,
systems, itis referred to as a fire-and-reset model and works{py as

sending a pulse of fixed width whenever the signal exceeds 5

. . i R R
certain threshold. Although there are two types of bistable SYSU = Vier — Ly [ 22 ) and Vi = Ve — L [ 22 (8)
tems, continuous and discrete, it is not obvious how to compare R, R,

the results between them [24]. wherel.,. are the supply voltages for the op amp. Itis seen that
the thresholds are controlled by positive feedback loop, formed

S
.

IV. QUANTIFYING SR

. . 1As the cutoff frequency of the white noise from thesVETEK generator, is
The most common way to quantify SR is through thg o higher than the signal frequency, then for all intents and purposes we can

signal-to-noise ratio [29], although other methods can be us&dsider this “ideal” white noise.
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Fig. 5. OP amp circuit used to form an N shaped transfer characteristic. The
portion enclosed in the dashed box was constructed with diodes and resistors
only, powered from the same source as used for the op amp. This eliminated the

need for extra voltage sources. This technique was also employed for the Cirgf 6. OP amp circuit used to form an S shaped transfer characteristic. This

R4
v R3
in e Iy
— | Vout
. It ————
Vin : D2 vl ] ;
Vout —| F—
r— | R2 ’I |
| |
| - |
| R1 D1 V1 |
| I
| |

shown in Fig. 6. has the nonlinear components in the feedback path.
by R, andR;. The values chosen fét; andR, can be arbitrary, 10
chosen to give a hysteresis of desired width and can easily e
changed to suit the output levels of the noise source. &l S. Op Am T
A threshold device can be constructed from a single opam  gf.| s1 og Ami
referred to as a level crossing circuit (LCC). The referenc o NZOp Amp It
voltage (i.e., threshold) is supplied to the inverting input an  4f IS
an output is produced whenever the input is greater than tt 5| B S N W
threshold. This functionality is similar to the biological neurors e s ! : P
system [28], [47]. 3 0= ] SA— e
Real neurons exhibit a refractory period, or “dead time,” afte” NRe I DO 3 /,,-"" -
each firing event. Thus, at high noise levels, the firings becon T T T
more frequent, but so do the refractory periods. This blanl =4 : UL :
out some of the subsequent noisy firings which keeps the SN _g| .. ‘ ; . -
higher than it would otherwise be. In all biological systems thel :
is unavoidable internal noise which is significant at low extern: ~ ~8[ " v
noise but becomes masked at high external noise levels. —qol . i
In our electrical LCC, the width of the pulse is determined b~ ~" -05 0 05 1

: . . . . V(v
how long the input is above the threshold, but is quantized in th.c in )
dlglta! S|mglat|_ons_. A Igrge proportion of papers rqurtmg I_ev%lig. 7. Transfer characteristic of the N and two S shaped op amp circuits. (The
crossing circuits differ in that they output a pulse of fixed widtliorizontal scale needs to be multiplied by 10 for the N op amp).

whenever the threshold is crossed in the increasing direction

EeS}"o[[ﬁZj].irT?;oi[hﬁsol? for our nonfixed pulse width LCC can The signal-to-noise ratio has been defined as the relationship

Adding some nonlinear elements in the form of diodes to &4FtWeen the output signal and the input noise at the signal fre-

op amp circuit, characteristics can be produced that have FENcY as described by (6). The spectrum analyzensTr

tentially bistable nature. Two instances of these circuits we fg2CKARD 35665A Dynamic Signal Analyzer) was set to give
PSD in units o¥/2,. /Hz. The noise, which is measured by

veloped are discussed. The circuit that produces an N shaﬂé‘“d s > “Vrms ' !
transfer characteristic curve is shown in Fig. 5 and its characté}¢ multimeter in rms, must have the same dimensions. It was

istic in Fig. 7. Intuitively, it can be seen that the N shape transfépnverted to the same units as the signal output PSD by use of
characteristic only modulates the input signal as it is piecewi§®. Where BW is the noise bandwidth of the noise generator
linear. The circuit is not bistable, which is one of the require-

2
ments for SR to exist. PSD,... = Vims )
To produce an S shaped transfer characteristic, nonlinear BW

feedback is required. The resulting circuit is shown in Fig. 6 Fig. 8 shows the results of three subthreshold signals with

where it is noted that the nonlllngar e'eme“FS are placed in t\/':L:‘ta‘rying amplitudes fed into the Schmitt trigger circuit. The
feedback loop. The characteristics of the circuit are shown et signal (1.8V,.) was set with an amplitude just below
. PP

Fig. 7. the threshold, the second (1.45;,) at about three quarters

of the threshold, and the third (1.U,,) at about half the

threshold. This figure shows the SR behavior for the three
The S curve op amp, LCC, and Schmitt trigger circuits werdgnal amplitudes. The further the signal from the threshold,

digitally simulated, built, and experimentally tested. The SNEhe more noise that is required to cause transitions; hence, the

was plotted at the fundemental frequency to show evidenceashount of improvement gained by SR decreases as the signal

SR. to threshold distance increases.

VII. RESULTS
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gig. 10. Results as the noise is increased for varying the slopes of S shaped
urves. The bottom to top lines are respectively $Jto S.. The curves have
gpen smoothed so the different lines can be easily distinguished.

Fig. 8. SNR for different signal amplitudes in the Schmitt trigger circuit. Th
thresholds were placed#tl.0 V giving a hysteresis of 2.0 V. The highest signa
(1.8 V,,,) was chosen so that transitions would occur with only the slighte
noise, whereas the lowest signal (1,Q,) was about half of the hysteresis.
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5
Noise (V
oise (Vipng) Fig. 11. SNR of a level crossing system that is commonly used to model

sensory systems. The signal amplitude is only a small amount below the
Fig. 9. SNR of the two S shape op amp circuits. The characteristics of thgeshold and hence there is only a small amount of decrease in the SNR for
circuits are shown in Fig. 7. The input signal was 0§ . To highlight the SR  |ow noise values.
peaks, a zoomed in region is shown in the inset.

where the output SNR is proportional to the input SNR and thus

Itis also noted from Fig. 8 that when the noise is initially inany improvement gained by SR is lost.
creased from zero, there are no transitions. This is due to tho explore this further, more S shape curves were generated
input signal and the added noise never crossing the threshaldd simulated. This shows more clearly the effects on the SNR
The effect is that there is an increased noise intensity for no icaused by varying the slopes of S shaped curves. Starting from
crease in output signal, thus the SNR decreases. Once the nthiseSchmitt trigger (ST) curve, which has zero slope, the slopes
increases enough to encourage transitions to occur, the SN&e progressively increased frofp to S.. Fig. 10 shows the
starts to increase sharply to the characteristic SR peak. SNR as the noise is increased. The bottom to top lines are re-

Results for two S shape transfer characteristic circuits thgiectively STS,, to S.. We can see forthe ST curve, the SR peak
have the same threshold values, but varying slopes are shasvthe largest, but once the slope of the characteristic increases,
in Fig. 9. The second circuitSg) has twice the slope of the even only by a little, the SR peak is vastly reduced. Once the
first circuit (S1). There was the initial decrease in SNR for lovslope of the characteristic exceeds a certain level, the SR peak
noise intensity, followed by a rather small SR peak. The reducdidappears and the SNR monotonically decreases as the noise is
SR peak is due to the fact that when the slope of the S cuinereased. There is a tradeoff between the magnitude of the SR
is increased, the nonlinearity of the circuit is reduced. Hengegak and the overall SNR and thus it would be expected that a
the circuit starts to behave according to linear response thecharacteristic with zero slope would have the best SR peak for
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TABLE I 70 T T T T T
GAIN IN SNR THAT 1S OFFERED BY EACH CIRCUIT sol Optimal Noise |
Circuit Type Name Improvement (dB) 50+ 4
High Noise
Schmitt Trigger ST 32.9 a0l 9
I ~
Sa 12.3 g 30+ ! \\\ ]
Sy 6.8 14 ,’ RN R
(% 201 ! I R N
S Op Amp Sc 5.6 ! -
108 | 1
Sd 2.1 i PR, PSD
0 L1 B . . m
S. 1.6 SNR
; L -10 1
Level Crossing Circuit
L . _ . ) . . .
{Variable width pulse) cC 19.8 200 0.2 04 0.6 0.8 1
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LCC 2.5 Fig. 12. SNR and the PSD of the 1.45,,, signal for the Schmitt trigger
15% ’ indicating the low, optimal and high noise positions. This was extracted from
Level Crossing Circuit LCCagy 31.1 Fig. 8.
(Fixed width pulse) LCCys9 33.5

shap shots were taken for the three positions shown on the SNR
LCCeoy 32.9 curves in Fig. 12. Fig. 13 shows the low, optimal, and high noise
LCCrsoe 29.7 positions_ in parts (a), (l_)), and (c), respectively._ Whil_e observing
stochastic resonance in the frequency domain, it is noted that
there is no actual increase in signal amplitude in the time do-
main. The amplitude of the signal is constant although the SNR
the SNR curve. The Schmitt trigger can be considered to ha¥&changing. In traditional resonating circuits it was the ampli-
zero slope and its SNR shows the largest SR peak, as seefyife of the output signal that peaked:; here it is the coherency
Fig. 10. of the signal. This increases the SNR as required, but does not
The level CrOSSing circuit is different from the other CirCUitactua”y increase the output Signa| Strength_ The SR phenom_
investigated as it is a threshold system. The signal-to-noise radifon could more appropriately be described as a noise induced
of the LCC is shown in Fig. 11. The peak of the LCC is not agignal-to-noise ratio enhancement, not such an elegant expres-
sharp as the previous two SNR curves (Figs. 8 and 9), but itsign, but a more accurate one [39].
higher for large noise intensities. This implies that this circuit Comparing the PSD and the SNR in Fig. 12, it is interesting
is more immune to noise, possibly why nature has adapted tfisnote that the SNR does not reach a maximum at the same
technology for use in biological systems. The SNR of the levgplitude as the PSD does. The reason is that the rate of increase
crossing circuit and other threshold systems [28], [29] is quits the signal component is far greater than that of the noise. In
comparable, seen by the similar shaped curves in Figs. 1 anddther words, the SNR has its maximum where the PSD has its
The amount of gain achievable in SNR is inherently depegreatest rate of change.
dent on the circuit characteristics. From simulations, the gain
for each of the circuits is tabulated in Table I. The gain (dB) has VIII. A PERIODICSR
been defined as the improvement on SNR due to SR, that is the ) ) o
difference between the valley at low noise intensities and the SR® large proportion of work in SR has been limited to systems
peak. The percentage value shown in the subscript of LCC in #{h periodic stimulus. Although it has served useful in many
Name column of Table | indicates the pulse width to that of tH€as, the applicability of SR to practical applications is limited.
signal periodZ.,. Itis clear from Table | that as the slope of the I his is due to many real world stimuli being aperiodic.
shaped characteristics increases, the amount of gain in the SNRIS limitation leads to the concept of ASR, first coined by
steadily decreases. Considering the LCCs, the gain in sNR@@llins et al. [52]._ASR introduces another hindrance, namely,
the variable width pulse is comparable to that of the LCC with3PW to measure it. The SNR measure essentually assesses the
width of approximately two to three percent®f. The gain in cohgre_nqe of the system response ywth the_ input signal. This
SNR offered by SR increases with pulse width until the widtf€tric is inappropriate for systems with aperiodic inputs.
reaches about fifty percent @f, where the SNR then starts to A Cross correlation based measure was introduced [52] that
decrease. considers the correlation between the stimulus signal and the

As stochastic resonance has been demonstrated in differ®¥fttem response. This is termed the power nGgrand is given

circuits, it is interesting to compare the time and the frequen
domain responses during the process of increasing the noise. -
Using the Schmitt trigger circuit with a signal of 1.45,,, Co = <[5(t) - S(t)} [R(t) - R(t)D (10)
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Fig. 13. Comparing the frequency and time domain as the noise is increased. In (a), only low noise has been added, causing intermittent trdirgitions. Ad
optimal amount of noise in (b) causes regular transitions, and adding high noise in (c) causes the transitions to be dominated by the noise.

whereR(t) is the mean firing rate constructed from the system * o6
output and the overbar denotes a temporal average. The norme 54 ’
ized power norn; is given by & 04
< 20 o
Co -
C = i VL (11) 10 0.2
([s0-50]") " ([r-7w) ) ; ;
0 5 10 0 5 10
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These measures assume the peak in the input-output cross-cor- o _ ' S
relation occurs at a time lag of zero. However, in certain systertjg 14 Numerical simulations of the LCC system with an aperiodic signal
showing the correlation§’y andC .

a lag may exist between the stimulus and response. In this case,
one should use the peak in the input-output cross-correlauonA criticism with usingCy from (11) is that it is a measure

furxznon. iodic sianal f db luti 10-s H for systems where the dynamics are linear [54]. Although it is
AN a_p((ejrlo |fc;|t3|gna was orlmed yﬂ(l:onvlo u(Ijng a : '‘Ahown that (noise induced) linearization occurs at large noise
ning window Tter was convolved with colored noise avmgamplitudes [55], itis probably not satisfactory when the systems

correlation time of 20 s. This has the effect of smoothing th sed are designed to have nonlinear dynamics. An information

signal like a low-pass filter, ensuring the time scale of tht('ﬁeoretical measure initiated by Stoeksl.[56], [57] would be

s!gnal 1S much.greater thgn that O.f the noise [52], [53]. .Th|%uch more appropriate than the linear signal processing tech-
signal is amplified and shifted to give zero mean and var|an§13que such as the cross-correlation measiire

1.5x 107 °. The threshold voltage for the LCC was set to 0. By utilizing a summing network ofV threshold devices,

V. The regults Sho"Y” in Fig. 14 (_:Iearly show ASR IS eXh'b'te% ocks defines the average mutual information (AMI) that is
Thus, using the simplest nonlinear system the mput-outptr nsmitted through the network as
correlation can be improved for any signal with addition o

noise. AMT = H(y) — H (y|z) (12)
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where H (y) is the information content of the outpytt) and It is seen that SR requires the threshold to be carefully set,
H(y|z) is the conditional entropy of the output given thehus not making it very robust for engineering applications.
input. Using the system andM I measure, Stocks describesA variation of SR is “suprathreshold stochastic resonance
a suprathreshold stochastic resonance (SSR), where the sig88R)” [56], where the threshold is set below the peak of the
is greater that the threshold. Providing there is more that osmulus. It is shown that a single suprathreshold element can
element in the network, the maximum transmitted informatigmerform as well as a network of suprathreshold elements [54].
is shown to occur at some nonzero noise intensity. Improvehis leads us to believe that SR may be applicable where a
ments to the AMI can be made by adjusting the distributigmoor choice of fixed threshold has been made; otherwise, the
of thresholds in theV devices [58]. This shows an importantthreshold can simply be varied for optimum performance in the
result, when the thresholds are set optimally for a certain sigrsaiprathreshold regime. Hence, to create a more robust motion
and noise distribution, the addition of noise only reduced tlietection scheme, SSR may be the answer.

AMI. This is similar to the well known suprathreshold systems
where noise only degrades the response [59]-[61].

There are also other methods and systems besides the one just
investigated that have been analyzed in terms of informationWWe have reviewed a number of circuits that demonstrate
theory. However, they are generally defined similarly to (13tochastic resonance. SR is more effective when the nonlinear
[40], [53], [59], [61]-[64]. system does not modulate any of the input noise on to the

In some cases, the entropy based measure does not fully cRgiput signal. In other words, the more nonlinear the system the
acterize the bandwidth the system. It assumes that the bandwlatger the gain in SNR, as seen in Table I. A system which has
is independent of noise, which is not always true. The appréiscrete set states, like the Schmitt trigger or a level crossing
priate measure should be based on Shannon’s channel capa@iit§uit, has better SR peak than a system with gain, like the S
This has recently been shown for a threshold system [65], wh&kaped transfer circuit. This is due to the increased slope of the
the channel capacity also shows a noise induced improvem®&rgghaped transfer function curves reducing the nonlinearity.
in performance. The proximity of the signal to the threshold is also an impor-
tant factor. As the signal amplitude becomes smaller (i.e., the
signal to threshold distance becomes larger), the size of the SR
peak in the SNR is reduced as more noise is required to cause

In most physica| Systemsy the Signa| and noise are fixed WH}@.nSitionS. We have h|ghl|ghted and clarified that the SR peak
a threshold at the receiver being variable. Even though noi§éhe SNR curve does not occur at the same noise value as the
could be added at the receiver in order to get an increase in SNEaximum for the PSD curve. Finally, we have presented simple
it is not going to be as good as using the minimal amount ppnlinear op-amp circuits suitable for demonstrating and mea-
noise possible and changing the threshold. Rather than thinkfing SR in the laboratory.
in terms of finding the optimal noise value for a given threshold, Future work should concentrate on utilizing SSR to create
it may be more useful to think of SR in terms of finding thét more robust system. In particular, for the motion detection
optimal threshold for given noise. Thus, in order for SR to bicheme and a system of parallel thresholding elements could
useful for a physical application, we ideally need a system witfilize SSR in detecting edges in noisy images. As a quantitative
a threshold, but where the value of the threshold is not critigii€asure, the information theoretical metric is a natural choice.
to the output.

This naturally lends itself to a binary threshold system with ACKNOWLEDGMENT
the output being in either one of two states. It has been demon- ) ]
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