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A Review of Stochastic Resonance:
Circuits and Measurement
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Abstract—Noise in dynamical systems is usually considered a
nuisance. However, in certain nonlinear systems, including elec-
tronic circuits and biological sensory systems, the presence of noise
can enhance the detection of weak signals. The phenomenon is
termed stochastic resonance and is of great interest for electronic
instrumentation.

We review and investigate the stochastic resonance of several
bistable circuits. A new type of S characteristic circuit is demon-
strated using simple nonlinear elements with an operational am-
plifier. Using this circuit, the effects on stochastic resonance were
determined as the slope of the S shaped characteristic curve was
varied.

Index Terms—Bistable circuits, level crossing circuits, stochastic
resonance.

I. INTRODUCTION

WHEN noise is added to a system, the output usually de-
teriorates in quality. However, in some systems, adding

the right amount of noise can enhance the system output or
response. For these systems, it can be shown that there exists
a nonzero value of noise that gives an optimal value for the
signal-to-noise ratio (SNR) of the system.

Stochastic resonance (SR) is characterized by the response
of a system to noise, the signal-to-noise ratio. The SNR rises
sharply to a maximum value, then gradually decreases for higher
noise intensities, where SR occurs, as noise is added to a system.
It is seen from this description of SR that it is not strictly a reso-
nance as the increased response isnotdue to a natural frequency
of the system. The alternative use of the wordresonanceis de-
rived from the SNR having a peak due to some other param-
eter—in this case, input noise amplitude.

The essential ingredient for SR is a nonlinear dynamical
system, which typically has a periodic signal and noise at the
input and an output that is a function of the inputs as well as
the internal dynamics of the system. The nonlinear component
of the dynamical system is sometimes provided by a threshold
which must be crossed for the output to be changed or detected.
A nonlinear system is essential for SR to exist, since in a system
that is well characterized by linear response theory, the SNR at
the output must be proportional to the SNR at the input. Thus,
any increase in the input noise will result in a decrease in the
output SNR, which is in contrast to the characteristic of SR.
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Engineers have normally sought to minimize the effects of
noise in electronic circuits and communication systems. Today,
however, it is acknowledged that noise or random motion is ben-
eficial in breaking up the quantization pattern in a video signal
[1], in the dithering of analog to digital converters (ADCs) [2],
in the area of Brownian ratchets [3], and in the physics of mixed
powders [4]–[6]. Also, it is known that when training a neural
network, adding noise to the training data set can improvenet-
work generalization, i.e., the neural network’s ability to fit real
data outside of the initial training set [7]. Noise even plays a
role in game theory [8], [9], number theory [10], and cosmology
[11]. Furthermore, recent research has established that noise can
play a constructive role in the detection of weak periodic signals
via a mechanism known as stochastic resonance. In essence, SR
is a nonlinear cooperative effect in which a weak periodic stim-
ulus influences large-scale fluctuations, the result being that the
periodic component is greatly enhanced.

Stochastic resonance is now known to occur in a wide range
of physical systems; however, it was originally proposed by
Benzi [12] in 1980, as an explanation of the behavior of the
Earth’s ice ages, which exhibit a 100 000 year periodicity.
This was closely followed by a number of papers [13]–[15]
describing a general dynamical mechanism whereby small
periodic perturbations could be greatly amplified by large
environmental fluctuations.

Experimentally, SR was first demonstrated with a noise
driven electronic circuit based on the Schmitt trigger [16]. This
work was also the first to characterize the phenomenon in terms
of a signal-to-noise ratio. It took more than five years before
the interest of physicists was sparked by the demonstration of
SR in a bistable ring-laser experiment [17].

Stochastic resonance has been reported in a variety of phys-
ical systems [18]–[20] and the classical theory is well estab-
lished [21]–[24]. The concept of SR has been extended to a
class of systems for which the signal-to-noise ratio may dis-
play a multiplicity of maxima with increasing noise. This was
shown for the first time in [25], where a response for a peri-
odic force is enhanced, not only for an optimized amount of
noise, but also at multiple values of the noise level. Now SR has
crossed disciplinary boundaries: its role in sensory biology is
being explored in experiments on single crayfish neurons and
in perceptive brain function by experiments on people’s ability
to resolve ambiguous figures. SR has been shown to enhance the
sensitivity of mechanoelectrical transduction in the ear of a frog
[26] and it is likely to occur in the human ear [27] also. These
new efforts, together with attempts to exploit SR for technolog-
ical advantage, are the main trends in current research on this
topic. There are even indications that SR may be useful in med-
ical and environmental science.
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Three case studies are considered to show the diversity of
disciplines that SR covers. Some theory is presented for noise
and bistable systems. Initially, simulations are used to check for
SR from electrical circuit characteristics. Then, we construct
some circuits to demonstrate the measurement of SR and outline
possible application areas.

II. EXAMPLES OF SR

In order to gain an appreciation of the concepts associated
with stochastic resonance and the diversity of fields it covers,
some case studies are reviewed. The first example examines the
sensing systems of the crayfish [28]–[30], the second relates
to visual perception [31]–[33], and the third to public opinion
formation [34].

A. Crayfish Sensory Systems

The primary objective of the sense organs is to detect faint
information bearing signals in noisy environments. Stochastic
resonance plays an essential role in biological sensing systems
and thus is likely to prove fruitful.

The system of the mechanoreceptor cells found on the tail of
the ordinary crayfish,Procambarus clarkii, is described. These
cells, which end in fine hairs, are specialized to detect weak (and
probably periodic) water motions such as those generated by
the waving tail of a nearby predatory fish. The hair cells most
likely serve as an early warning system, which may explain why
crayfish are one of the oldest and most well adapted animals
around.

When moved, the hair generates a nerve impulse, measurable
as a short duration electric spike. The impulse travels to a bundle
of nerve cells, which handle all incoming information from the
hair cells. These nerve cells make basic decisions such as acti-
vating the animal’s escape reflexes. Evidence indicates that the
sensory neurons function much like nonlinear threshold detec-
tors. Below a certain level, very weak motion of the hair does not
generate nerve impulses. This simplicity of the system makes it
a useful one to study.

An experiment to mimic the noisy environment in which
crayfish normally live using an excised piece of crayfish
tail is described in [28]. The procedure essentially involved
moving the tail periodically in water with an electromechanical
transducer until the nerve impulses were nearly undetectable,
then adding noise. The resulting signal-to-noise ratio, shown in
Fig. 1, illustrates stochastic resonance.

Fig. 1 shows the results for theoretical predictions and an
electronic simulation of a threshold detector for comparison.
The discrepancies at high and low noise levels are due respec-
tively to neurons exhibiting a refractory period and unavoidable
internal noise in sensory systems.

B. Visual Perception

Stochastic resonance can be observed when dealing with vi-
sual perception of ambiguous figures [31], [33]. Perception of
ambiguous figures, such as a wire frame cube, are character-
ized by noisy bistable dynamics. Two different interpretations
of the cube are alternatively perceived by the observer with a

Fig. 1. SNR of the crayfish mechanoreceptors when external noise is applied.
Experimental (squares), electric neuron simulation (diamonds) and the theory
[29] (solid line). The horizontal axis represents noise: hydrodynamic in the
case of the mechanoreceptors and electric in the case of the neuron model.
Reproduced from [28] and [29].

stochastic time course [35]. The bistable perceptual process in-
volved in the interpretation of ambiguous figures can be mod-
eled by a noisy auto-associative neural network [33]. Using this
system, the results indicate that SR can be demonstrated.

Another aspect is the human visual system that derives from
threshold theory [31] and is closely related to the dithering ef-
fect [32]. Consider a system that is capable of transmitting single
bits of information, each of which marks a threshold crossing.
A visual realization of this is shown in Fig. 2, which was gen-
erated following the procedure in [31]. The original gray scale
image of the popular ‘Lena’ used in signal processing is de-
pressed beneath a threshold. Noise is added to the gray value
in each pixel and the result compared to the threshold value.
Pixels valued above the threshold are made white, the others
black. Every pixel contains one bit of information, whether or
not the threshold has been crossed. Fig. 2 shows the result of
adding noise of three intensities, increasing from left to right.
The optimal noise intensity in the center pane maximizes the
information content. Note that the pictures shown in Fig. 2 only
have the noise varying spatially; additional improvement in per-
ceived picture quality can be gained by varying the noise tem-
porally [31].

C. Opinion Formation

In the third example, SR is applied to the formation of public
opinion between two parties. The formation of an individual’s
opinion is influenced by the presence of groups of people with
the same or opposite opinion. The formation of the opinion
changes over time. Thus, there is a small periodic force that
changes the opinion from one side to another, which can be con-
sidered as a bistable system. If the influences from the groups
of people with or without the same opinion are weak, then the
change of opinion must be influenced by external information.
The addition of collective noise is sufficient to induce a sto-
chastic change of opinion.
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Fig. 2. Images are composed from a single 256 grayscale image. A random
number from a Gaussian distribution with zero mean is added to the original
gray value in every pixel. Thus, the noise is incoherent with that in all other
pixels. The noise intensity is increased from left to right.

By performing calculations using the nonlinear sociological
model of public opinion formation introduced by Weidlich, the
signal-to-noise ratio can be determined. Determining the SNR
as the collective noise is varied reveals that the formation of
public opinion exhibits stochastic resonance [34].

III. B ISTABLE SYSTEMS

Examples of bistable systems occur in areas such as physics
[bistable super-conducting quantum interface device (SQUID)
loops [29], bidirectional ring lasers [17]], biology (sensory sys-
tems [28], [30]), Earth sciences [climate [14], [29], [36]] and
electronics (Schmitt trigger [16], tunnel diode [37], [38]). Here,
a simple double well potential in a nonlinear system is described
[16], [18], [23], [39].

A model of a one-dimensional nonlinear system that exhibits
stochastic resonance is the damped harmonic oscillator with the
Langevin equation of motion

(1)

where the dot represents the time derivative [37]. This equation
describes the motion of a particle of massmoving in the pres-
ence of friction . The restoring force is expressed as the gra-
dient of some bistable or multi-stable potential function .
In addition, there is an additive stochastic force with inten-
sity that has the statistical properties given in (7).

When is a bistable potential, (1) may model several
physical processes, ranging from the dynamics of a nonlinear
elastic mechanical oscillator to the transient dynamics of a laser.
A simple symmetric bistable potential has the form of a standard
quartic

(2)

If the system is heavily damped, the inertial term can be
neglected. Rescaling the system in (1) with the damping term
gives the stochastic Ginzburg–Landau equation

(3)

which is frequently used to model nonequilibrium critical phe-
nomena. For , the potential is bistable, as shown in Fig. 3.
From simple algebra, there is an unstable state at and two
stable states at , separated by a barrier of height
of when the noise is zero. The position of the
particle is considered to be the output of the system and has
a power spectrum .

Fig. 3. Quartic bistable potential (2) without any noise with minima atx and
barrier height�U .

Two examples [40] of nonlinear dynamic systems are the
analog Hopfield neuron

where the state point denotes a cell membrane voltage and
the SQUID loop

where denotes the magnetic field flux in the loop.
By itself, the bistable system is stationary as described by the

motion of the particle. That is, if the particle is in one of the two
wells, it will stay there indefinitely. By adding a periodic signal,

to the bistable system, the dynamics are governed by
the following equation

(4)

The bistable potential, which is now time dependent, becomes

(5)

where and are the amplitude and the frequency of the pe-
riodic signal, respectively.

Throughout this analysis, it is assumed that the signal ampli-
tude is small enough that, in the absence of any noise, it is in-
sufficient to force a particle to move from one well to another. It
is also assumed that the signal period is longer than some char-
acteristic intrawell relaxation time for the system.

Due to the presence of the modulating signal, the double well
potential is periodically tilted back and forth with the
same frequency, . Relating this to the potentials in
Fig. 4, the effect is to weakly tilt the potential barriers to the
right and left sides, respectively. In one period of the signal,
the potential is cycled through Fig 4 (a)-(d). The maxima and
minima of the signal correspond to when the potential barrier is
at its lowest, which is in Fig. 4 (b) and (d).
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Fig. 4. Periodic driving signal causes the DWP to be tilted back and forth,
antisymmetrically raising and lowering the left and right potential wells.

The quartic potential system shown in Fig. 4 is of particular
interest because it represents the simplest bistable system in a
continuous variable. It is seen that there are three fixed points,
two stable and one unstable. All that is needed is a system with
a cubic characteristic that has three operating points for some
parameter. A tunnel diode with a load line defining the operating
points would be an example of an electrical system that fits this
requirement [37].

When considering the use of an electrical device to produce a
bistable system, the stability of the operating points needs to be
considered. By considering small perturbations, usually in the
input current or voltage, the stationary state can be determined
to be stable or unstable. It is concluded from [41] that there must
be at least three stationary states if two stable states are to exist
and for bistability to occur.

A natural simplification of the double-well problem is the dis-
crete two-state system, in which the dynamical variable can take
on only two discrete values. The Schmitt trigger is an example
of such a discrete system. This is a useful system since its dy-
namics are well modeled as a two-state system, except for the
switching between the two voltages which takes a finite amount
of time. Since this switching occurs at rates far faster than any
signal frequency of interest, it can, for all practical purposes, be
considered as an ideal two-state system. An important feature
of the Schmitt trigger is that it has hysteresis—that is there is a
range of the input for which the circuit is bistable.

Another two-state system in common use is the threshold
system. This is a simple system that produces an output voltage
whenever the input exceeds the threshold value. In biological
systems, it is referred to as a fire-and-reset model and works by
sending a pulse of fixed width whenever the signal exceeds a
certain threshold. Although there are two types of bistable sys-
tems, continuous and discrete, it is not obvious how to compare
the results between them [24].

IV. QUANTIFYING SR

The most common way to quantify SR is through the
signal-to-noise ratio [29], although other methods can be used

[18], [32], [42]. The SNR is readily obtained from the output
by forming the power spectrum, which measures the frequency
content of a time series. For a sinusoidal signal, the power
spectral density (PSD) shows a sharp peak located at the signal
frequency on a broadband noise background; the SNR is the
ratio of the strength of this peak to the noise level. The SNR in
decibels is

(6)

where and represent the values of the output PSD of the
peak and the background level, respectively. Note that the SNR
must be taken at the fundamental frequency, that is, the fre-
quency of the input sinewave.

The signature of stochastic resonance is that the output SNR
rises sharply to a maximum at an optimal noise intensity and
decreases gradually for larger noise intensities as randomization
overrides the cooperative effect. The detailed shape of this curve
depends on the signal frequency and other system parameters.
As the noise intensity approaches zero, there is no output as
there are no switching or threshold crossings.

V. NOISE

We used white Gaussian noise with mean and autocorrelation
given respectively by

and (7)

This implies that and are statistically independent for
and the angled brackets denote an ensemble average.

For our SR measurements noise was realized using a gener-
ator that simulates nearly white noise directly (WAVETEK model
132 VCG/Noise Generator).1 In the absence of such a generator
it is also possible to generate white noise by band limiting the
output of maximal length shift register with a low-pass filter
that has a cut-off frequency well below the clock frequency of
the register [43].

To measure the intensity of the noise, a simple averaging type
ac voltmeter was used with the scale adjusted accordingly. This
gave the noise in units of root mean squared volts ().

Different types of noise, or the colored Ornstein-Uhlenbeck
process, for example, affect the stochastic resonance and are
examined in [44]–[46].

VI. CIRCUITS

In this section, we consider four circuits that can be con-
structed using op amps.

A simple analysis of the Schmitt trigger reveals that the
thresholds are symmetrically placed about the reference level,

as

and (8)

where are the supply voltages for the op amp. It is seen that
the thresholds are controlled by positive feedback loop, formed

1As the cutoff frequency of the white noise from the WAVETEK generator, is
a lot higher than the signal frequency, then for all intents and purposes we can
consider this “ideal” white noise.
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Fig. 5. OP amp circuit used to form an N shaped transfer characteristic. The
portion enclosed in the dashed box was constructed with diodes and resistors
only, powered from the same source as used for the op amp. This eliminated the
need for extra voltage sources. This technique was also employed for the circuit
shown in Fig. 6.

by and . The values chosen for and can be arbitrary,
chosen to give a hysteresis of desired width and can easily be
changed to suit the output levels of the noise source.

A threshold device can be constructed from a single op amp,
referred to as a level crossing circuit (LCC). The reference
voltage (i.e., threshold) is supplied to the inverting input and
an output is produced whenever the input is greater than this
threshold. This functionality is similar to the biological neuron
system [28], [47].

Real neurons exhibit a refractory period, or “dead time,” after
each firing event. Thus, at high noise levels, the firings become
more frequent, but so do the refractory periods. This blanks
out some of the subsequent noisy firings which keeps the SNR
higher than it would otherwise be. In all biological systems there
is unavoidable internal noise which is significant at low external
noise but becomes masked at high external noise levels.

In our electrical LCC, the width of the pulse is determined by
how long the input is above the threshold, but is quantized in the
digital simulations. A large proportion of papers reporting level
crossing circuits differ in that they output a pulse of fixed width
whenever the threshold is crossed in the increasing direction
[48], [49]. The theory for our nonfixed pulse width LCC can
be found in [50], [51].

Adding some nonlinear elements in the form of diodes to an
op amp circuit, characteristics can be produced that have po-
tentially bistable nature. Two instances of these circuits we de-
veloped are discussed. The circuit that produces an N shaped
transfer characteristic curve is shown in Fig. 5 and its character-
istic in Fig. 7. Intuitively, it can be seen that the N shape transfer
characteristic only modulates the input signal as it is piecewise
linear. The circuit is not bistable, which is one of the require-
ments for SR to exist.

To produce an S shaped transfer characteristic, nonlinear
feedback is required. The resulting circuit is shown in Fig. 6
where it is noted that the nonlinear elements are placed in the
feedback loop. The characteristics of the circuit are shown in
Fig. 7.

VII. RESULTS

The S curve op amp, LCC, and Schmitt trigger circuits were
digitally simulated, built, and experimentally tested. The SNR
was plotted at the fundemental frequency to show evidence of
SR.

Fig. 6. OP amp circuit used to form an S shaped transfer characteristic. This
has the nonlinear components in the feedback path.

Fig. 7. Transfer characteristic of the N and two S shaped op amp circuits. (The
horizontal scale needs to be multiplied by 10 for the N op amp).

The signal-to-noise ratio has been defined as the relationship
between the output signal and the input noise at the signal fre-
quency as described by (6). The spectrum analyzer (HEWLETT

PACKARD 35 665A Dynamic Signal Analyzer) was set to give
the PSD in units of Hz. The noise, which is measured by
the multimeter in rms, must have the same dimensions. It was
converted to the same units as the signal output PSD by use of
(9), where BW is the noise bandwidth of the noise generator

PSD
BW

(9)

Fig. 8 shows the results of three subthreshold signals with
varying amplitudes fed into the Schmitt trigger circuit. The
first signal (1.8 ) was set with an amplitude just below
the threshold, the second (1.45 ) at about three quarters
of the threshold, and the third (1.0 ) at about half the
threshold. This figure shows the SR behavior for the three
signal amplitudes. The further the signal from the threshold,
the more noise that is required to cause transitions; hence, the
amount of improvement gained by SR decreases as the signal
to threshold distance increases.
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Fig. 8. SNR for different signal amplitudes in the Schmitt trigger circuit. The
thresholds were placed at�1.0 V giving a hysteresis of 2.0 V. The highest signal
(1.8 V ) was chosen so that transitions would occur with only the slightest
noise, whereas the lowest signal (1.0V ) was about half of the hysteresis.

Fig. 9. SNR of the two S shape op amp circuits. The characteristics of the
circuits are shown in Fig. 7. The input signal was 0.6V . To highlight the SR
peaks, a zoomed in region is shown in the inset.

It is also noted from Fig. 8 that when the noise is initially in-
creased from zero, there are no transitions. This is due to the
input signal and the added noise never crossing the threshold.
The effect is that there is an increased noise intensity for no in-
crease in output signal, thus the SNR decreases. Once the noise
increases enough to encourage transitions to occur, the SNR
starts to increase sharply to the characteristic SR peak.

Results for two S shape transfer characteristic circuits that
have the same threshold values, but varying slopes are shown
in Fig. 9. The second circuit ( ) has twice the slope of the
first circuit ( ). There was the initial decrease in SNR for low
noise intensity, followed by a rather small SR peak. The reduced
SR peak is due to the fact that when the slope of the S curve
is increased, the nonlinearity of the circuit is reduced. Hence,
the circuit starts to behave according to linear response theory

Fig. 10. Results as the noise is increased for varying the slopes of S shaped
curves. The bottom to top lines are respectively ST,S to S . The curves have
been smoothed so the different lines can be easily distinguished.

Fig. 11. SNR of a level crossing system that is commonly used to model
sensory systems. The signal amplitude is only a small amount below the
threshold and hence there is only a small amount of decrease in the SNR for
low noise values.

where the output SNR is proportional to the input SNR and thus
any improvement gained by SR is lost.

To explore this further, more S shape curves were generated
and simulated. This shows more clearly the effects on the SNR
caused by varying the slopes of S shaped curves. Starting from
the Schmitt trigger (ST) curve, which has zero slope, the slopes
were progressively increased from to . Fig. 10 shows the
SNR as the noise is increased. The bottom to top lines are re-
spectively ST, to . We can see for the ST curve, the SR peak
is the largest, but once the slope of the characteristic increases,
even only by a little, the SR peak is vastly reduced. Once the
slope of the characteristic exceeds a certain level, the SR peak
disappears and the SNR monotonically decreases as the noise is
increased. There is a tradeoff between the magnitude of the SR
peak and the overall SNR and thus it would be expected that a
characteristic with zero slope would have the best SR peak for
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TABLE I
GAIN IN SNR THAT IS OFFERED BYEACH CIRCUIT

the SNR curve. The Schmitt trigger can be considered to have
zero slope and its SNR shows the largest SR peak, as seen in
Fig. 10.

The level crossing circuit is different from the other circuits
investigated as it is a threshold system. The signal-to-noise ratio
of the LCC is shown in Fig. 11. The peak of the LCC is not as
sharp as the previous two SNR curves (Figs. 8 and 9), but it is
higher for large noise intensities. This implies that this circuit
is more immune to noise, possibly why nature has adapted this
technology for use in biological systems. The SNR of the level
crossing circuit and other threshold systems [28], [29] is quite
comparable, seen by the similar shaped curves in Figs. 1 and 11.

The amount of gain achievable in SNR is inherently depen-
dent on the circuit characteristics. From simulations, the gain
for each of the circuits is tabulated in Table I. The gain (dB) has
been defined as the improvement on SNR due to SR, that is the
difference between the valley at low noise intensities and the SR
peak. The percentage value shown in the subscript of LCC in the
Name column of Table I indicates the pulse width to that of the
signal period, . It is clear from Table I that as the slope of the S
shaped characteristics increases, the amount of gain in the SNR
steadily decreases. Considering the LCCs, the gain in SNR of
the variable width pulse is comparable to that of the LCC with a
width of approximately two to three percent of. The gain in
SNR offered by SR increases with pulse width until the width
reaches about fifty percent of where the SNR then starts to
decrease.

As stochastic resonance has been demonstrated in different
circuits, it is interesting to compare the time and the frequency
domain responses during the process of increasing the noise.
Using the Schmitt trigger circuit with a signal of 1.45 ,

Fig. 12. SNR and the PSD of the 1.45V signal for the Schmitt trigger
indicating the low, optimal and high noise positions. This was extracted from
Fig. 8.

snap shots were taken for the three positions shown on the SNR
curves in Fig. 12. Fig. 13 shows the low, optimal, and high noise
positions in parts (a), (b), and (c), respectively. While observing
stochastic resonance in the frequency domain, it is noted that
there is no actual increase in signal amplitude in the time do-
main. The amplitude of the signal is constant although the SNR
is changing. In traditional resonating circuits it was the ampli-
tude of the output signal that peaked; here it is the coherency
of the signal. This increases the SNR as required, but does not
actually increase the output signal strength. The SR phenom-
enon could more appropriately be described as a noise induced
signal-to-noise ratio enhancement, not such an elegant expres-
sion, but a more accurate one [39].

Comparing the PSD and the SNR in Fig. 12, it is interesting
to note that the SNR does not reach a maximum at the same
amplitude as the PSD does. The reason is that the rate of increase
of the signal component is far greater than that of the noise. In
other words, the SNR has its maximum where the PSD has its
greatest rate of change.

VIII. A PERIODICSR

A large proportion of work in SR has been limited to systems
with periodic stimulus. Although it has served useful in many
areas, the applicability of SR to practical applications is limited.
This is due to many real world stimuli being aperiodic.

This limitation leads to the concept of ASR, first coined by
Collins et al. [52]. ASR introduces another hindrance, namely,
how to measure it. The SNR measure essentually assesses the
coherence of the system response with the input signal. This
metric is inappropriate for systems with aperiodic inputs.

A cross correlation based measure was introduced [52] that
considers the correlation between the stimulus signal and the
system response. This is termed the power normand is given
by

(10)
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(a)

(b)

(c)

Fig. 13. Comparing the frequency and time domain as the noise is increased. In (a), only low noise has been added, causing intermittent transitions. Adding
optimal amount of noise in (b) causes regular transitions, and adding high noise in (c) causes the transitions to be dominated by the noise.

where is the mean firing rate constructed from the system
output and the overbar denotes a temporal average. The normal-
ized power norm is given by

(11)

These measures assume the peak in the input-output cross-cor-
relation occurs at a time lag of zero. However, in certain systems
a lag may exist between the stimulus and response. In this case,
one should use the peak in the input-output cross-correlation
function.

An aperiodic signal was formed by convoluting a 10-s Han-
ning window filter was convolved with colored noise having
correlation time of 20 s. This has the effect of smoothing the
signal like a low-pass filter, ensuring the time scale of the
signal is much greater then that of the noise [52], [53]. This
signal is amplified and shifted to give zero mean and variance
1.5 10 . The threshold voltage for the LCC was set to 0.1
V. The results shown in Fig. 14 clearly show ASR is exhibited.
Thus, using the simplest nonlinear system the input-output
correlation can be improved for any signal with addition of
noise.

Fig. 14. Numerical simulations of the LCC system with an aperiodic signal
showing the correlationsC andC .

A criticism with using from (11) is that it is a measure
for systems where the dynamics are linear [54]. Although it is
shown that (noise induced) linearization occurs at large noise
amplitudes [55], it is probably not satisfactory when the systems
used are designed to have nonlinear dynamics. An information
theoretical measure initiated by Stockset al.[56], [57] would be
much more appropriate than the linear signal processing tech-
nique such as the cross-correlation measure.

By utilizing a summing network of threshold devices,
Stocks defines the average mutual information (AMI) that is
transmitted through the network as

(12)



HARMER et al.: REVIEW OF STOCHASTIC RESONANCE: CIRCUITS AND MEASUREMENT 307

where is the information content of the output and
is the conditional entropy of the output given the

input. Using the system and measure, Stocks describes
a suprathreshold stochastic resonance (SSR), where the signal
is greater that the threshold. Providing there is more that one
element in the network, the maximum transmitted information
is shown to occur at some nonzero noise intensity. Improve-
ments to the AMI can be made by adjusting the distribution
of thresholds in the devices [58]. This shows an important
result, when the thresholds are set optimally for a certain signal
and noise distribution, the addition of noise only reduced the

. This is similar to the well known suprathreshold systems
where noise only degrades the response [59]–[61].

There are also other methods and systems besides the one just
investigated that have been analyzed in terms of information
theory. However, they are generally defined similarly to (12)
[40], [53], [59], [61]–[64].

In some cases, the entropy based measure does not fully char-
acterize the bandwidth the system. It assumes that the bandwidth
is independent of noise, which is not always true. The appro-
priate measure should be based on Shannon’s channel capacity.
This has recently been shown for a threshold system [65], where
the channel capacity also shows a noise induced improvement
in performance.

IX. A PPLICATIONS

In most physical systems, the signal and noise are fixed with
a threshold at the receiver being variable. Even though noise
could be added at the receiver in order to get an increase in SNR,
it is not going to be as good as using the minimal amount of
noise possible and changing the threshold. Rather than thinking
in terms of finding the optimal noise value for a given threshold,
it may be more useful to think of SR in terms of finding the
optimal threshold for given noise. Thus, in order for SR to be
useful for a physical application, we ideally need a system with
a threshold, but where the value of the threshold is not critical
to the output.

This naturally lends itself to a binary threshold system with
the output being in either one of two states. It has been demon-
strated that the information capacity in an asymmetric binary
channel reaches at a maximum with the addition of noise [61]
and the effects of varying the thresholds are also shown.

Another area of interest of SR is in signal processing where
weak signals are embedded in noise. SR can be used to enhance
the signal-to-noise ratio of the output making it useful in a re-
ceiver. These signals need not be periodic as SR has been dis-
played to be present in nonperiodic signals [18].

Since 1992, our group has worked on a model of the insect
visual system to detect motion [66]–[68]. Motion is determined
by detecting edges in the image plane and comparing them over
time. In this case, the signals from the insect vision sensor can be
noisy. Edges that are determined by comparing different pixels
to a threshold could use SR to enhance their detection. Since the
noise varies spatially as well as temporally, a large improvement
in the image quality is expected [31]. Such schemes may prove
critical in the initiative to perform insect vision processing in
the millimeter-wave region [69].

It is seen that SR requires the threshold to be carefully set,
thus not making it very robust for engineering applications.
A variation of SR is “suprathreshold stochastic resonance
(SSR)” [56], where the threshold is set below the peak of the
stimulus. It is shown that a single suprathreshold element can
perform as well as a network of suprathreshold elements [54].
This leads us to believe that SR may be applicable where a
poor choice of fixed threshold has been made; otherwise, the
threshold can simply be varied for optimum performance in the
suprathreshold regime. Hence, to create a more robust motion
detection scheme, SSR may be the answer.

X. CONCLUDING REMARKS

We have reviewed a number of circuits that demonstrate
stochastic resonance. SR is more effective when the nonlinear
system does not modulate any of the input noise on to the
output signal. In other words, the more nonlinear the system the
larger the gain in SNR, as seen in Table I. A system which has
discrete set states, like the Schmitt trigger or a level crossing
circuit, has better SR peak than a system with gain, like the S
shaped transfer circuit. This is due to the increased slope of the
S shaped transfer function curves reducing the nonlinearity.

The proximity of the signal to the threshold is also an impor-
tant factor. As the signal amplitude becomes smaller (i.e., the
signal to threshold distance becomes larger), the size of the SR
peak in the SNR is reduced as more noise is required to cause
transitions. We have highlighted and clarified that the SR peak
in the SNR curve does not occur at the same noise value as the
maximum for the PSD curve. Finally, we have presented simple
nonlinear op-amp circuits suitable for demonstrating and mea-
suring SR in the laboratory.

Future work should concentrate on utilizing SSR to create
a more robust system. In particular, for the motion detection
scheme and a system of parallel thresholding elements could
utilize SSR in detecting edges in noisy images. As a quantitative
measure, the information theoretical metric is a natural choice.
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