
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021 3512612

A Noise-Boosted Remaining Useful Life Prediction
Method for Rotating Machines Under

Different Conditions
Lei Xiao , Fabing Duan , Junxuan Tang, and Derek Abbott , Fellow, IEEE

Abstract— Remaining useful life (RUL) prediction methods
for rotating machines have been successfully developed in
recent decades. More attention should be paid to predictions
with inconsistent data distributions under different conditions.
To solve this problem, this article proposes a new RUL prediction
method that includes two phases. In the first phase, degradation
features are extracted from both the training and testing data
sets using probabilistic principal component analysis (PPCA).
In the second phase, additive white Gaussian noise (AWGN) is
intentionally injected into the degradation features; thereafter,
the features that are mixed with manually injected noise are
imported into a bidirectional long short-term memory (BLSTM)
network. The AWGN can enhance the robustness of the RUL
prediction method and achieve prediction for machines under
different conditions. In contrast to most deep learning-based
RUL prediction methods, the training samples are intentionally
“polluted” by manually injected noise. The effectiveness of the
proposed method is validated using the C-MAPSS lifetime data
set for aeroengines and compared with the effectiveness of state-
of-the-art approaches.

Index Terms— Additive white Gaussian noise (AWGN),
bidirectional long short-term memory (BLSTM) recurrent neural
network, noise-boosted prediction, rotating machines, remaining
useful life (RUL).

I. INTRODUCTION

IN THE era of Industry 4.0, a modern and critical rotating
machine is always required to be precise and high speed

with a high level of reliability considering safety and costs [1].
By analyzing condition monitoring data, the health status and
remaining useful life (RUL) of a machine can be estimated.
The existing RUL prediction models for rotating machines

Manuscript received November 15, 2020; revised February 22, 2021;
accepted February 25, 2021. Date of publication March 9, 2021; date of
current version March 22, 2021. This work was supported in part by the
National Natural Science Foundation of China under Grant 52075094 and
Grant 51705321; in part by the Fundamental Research Funds for the Cen-
tral Universities under Grant 2232019D3-29; in part by the China Post-
Doctoral Science Foundation under Grant 2017M611576; and in part by
the Initial Research Funds for Young Teachers of Donghua University. The
Associate Editor coordinating the review process was Loredana Cristaldi.
(Corresponding author: Lei Xiao.)

Lei Xiao and Junxuan Tang are with the College of Mechani-
cal Engineering, Donghua University, Shanghai 201620, China (e-mail:
leixiao211@dhu.edu.cn).

Fabing Duan is with the Institute of Complexity Science, Qingdao Univer-
sity, Qingdao 266071, China.

Derek Abbott is with the Centre for Biomedical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia, and also with the School of
Electrical and Electronic Engineering, The University of Adelaide, Adelaide,
SA 5005, Australia.

Digital Object Identifier 10.1109/TIM.2021.3064810

can be roughly divided into three categories: physics-based
methods [2]–[4], data-driven methods [5]–[10], and hybrid
methods [11], [12]. Regardless of which category of methods
is used, most methods require the samples for training or
estimating parameters to be in the same condition or subject
to consistent data distribution. However, a machine usually
experiences various operating conditions (OCs) and fault con-
ditions (FCs); therefore, the collected condition monitoring
data are always subject to different data distributions. Transfer
learning (TL) is an effective method to solve such an RUL
prediction problem.

TL has been successfully applied to fault diagno-
sis [13]–[16]. However, its application to RUL prediction
is relatively limited. Mao et al. [7] developed a TL-based
RUL prediction method for rolling bearings. Fan et al. [17]
predicted the RULs for turbofan engines using TL and con-
sensus self-organizing models. Zhang et al. [18] proposed a
TL algorithm based on bidirectional long short-term mem-
ory (BLSTM) networks for the RUL estimation of aero-
engines. Shen et al. [19] combined transfer compact coding
for hyperplane classifiers with an exponential semidetermin-
istic extended Kalman filter to transfer the RUL prediction
models among bearings under multiple working conditions.
Sun et al. [20] predicted the RUL of tools in manufacturing
based on deep TL. Da Costa et al. [21] proposed a method
based on deep domain adaption to predict RULs for machines
under different conditions. In addition to TL, improving the
robustness of the RUL prediction method is also an effective
method.

The condition monitoring data from different conditions
have different distribution characteristics. If the data distri-
bution characteristics from the training data sets and testing
data sets are the same or close, more accurate RUL prediction
results can be obtained. In other words, the data distribution
bias may generate negative impacts and decrease the RUL
prediction accuracy. However, most current machine learning
algorithms are constructed based on an independent and iden-
tical distribution (i.i.d.), which demands that the data distrib-
ution for training and testing should be kept the same [7].

The collected condition monitoring data always contain
measurement errors that are generated due to vibrations,
current fluctuations, or sensor delays. These errors are always
regarded as disturbance and background noise. Smoothing
is usually adopted to remove such noise in a machine
learning-based RUL prediction method [22].

1557-9662 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6909-7240
https://orcid.org/0000-0003-1210-6825
https://orcid.org/0000-0002-0945-2674

3512612 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

In fact, noise is not always undesirable for fault diagnostics.
If properly used, noise can be beneficial to extract information
on fault characteristics. Some noise-boosted methods for weak
fault-signal detection have been developed based on the sto-
chastic resonance (SR) or vibrational resonance (VR) mech-
anism [23]–[27]. In the SR and VR mechanisms, stochastic
noise and high-frequency interference are manually generated
and injected into a nonlinear system.

An artificial neural network (ANN) can be regarded as
a nonlinear system. Many experiments have demonstrated
that injecting uncorrelated noise can enhance the information
transmission among neurons [28], [29]. For example, inten-
tionally added noise can boost the performance of CNNs [30]
and adversarial learning in bidirectional backpropagation [31].
However, these experiments can be categorized as classifica-
tion experiments. ANNs usually utilize regressions when pre-
dicting RULs for machines. However, there are few precedents
for RUL prediction boosted by the injection of noise into an
ANN. For example, the RUL prediction methods [32]–[34]
that are based on deep learning (DL) do not have man-
ually generated noise intentionally injected. This article is
a primary exploration of RUL prediction boosted by noise
injection.

Based on the above analysis, this article proposes a new
RUL prediction method that includes two phases: degrada-
tion feature representation and BLSTM network-based RUL
prediction. In the first phase, all data sets, including training
samples and testing samples, are jointly analyzed to extract the
common characteristics based on probabilistic principal com-
ponent analysis (PPCA), which is a nonlinear unsupervised
feature extraction method. The extracted principal components
(PCs) can represent the main degradation characteristics and
avoid redundant information.

In the second phase, the BLSTM network is adopted to
employ its good ability to handle time-series data. The input
of the BLSTM is the extracted degradation features with
manually generated noise. Due to the existence of manually
generated noise, the degradation features have more noise and
bias from their real characteristics. The adoption of manually
generated noise aims at improving the robustness of the
proposed RUL prediction method even though the training and
testing data sets are from different conditions; therefore, this
method is referred to as the noise-boosted RUL prediction
method.

The main contributions of this article are summarized as
follows. A new RUL prediction method that improves the
robustness by introducing manually generated additive white
Gaussian noise (AWGN) into a BLSTM network is proposed.
This is the first primary exploration of noise-injection DL for
RUL prediction to solve the prognostics of machines under
different conditions.

The remainder of this article is organized as follows.
Section II describes the proposed noise-boosted RUL predic-
tion method. In Section III, the proposed method is validated
using the C-MAPSS of the aeroengine lifetime data set. Some
state-of-the-art approaches are compared, and the results are
discussed in Section IV. The entire paper is concluded in
Section V.

Fig. 1. Illustration of the focal problem of RUL prediction for machines
under different conditions.

Fig. 2. Framework of the proposed noise-boosted RUL prediction method.

II. NOISE-BOOSTED RUL PREDICTION METHOD

The focal problem in this article is the RUL prediction for
machines under different conditions, which can be illustrated
in Fig. 1. Here, MC means machine condition. From Fig. 1,
separate machines from the training and testing data sets are
under different MCs. For example, the condition monitoring
data from the machines under MC 1 are used to predict
the RULs of machines under MC 2–4. The framework of
the proposed noise-boosted RUL prediction method is given
in Fig. 2.

A. Representative Feature Extraction

The representative degradation features are usually extracted
from condition monitoring data. However, the originally

XIAO et al.: NOISE-BOOSTED RUL PREDICTION METHOD FOR ROTATING MACHINES UNDER DIFFERENT CONDITIONS 3512612

collected condition monitoring data may contain measurement
errors and redundant information. Therefore, preprocessing
including constant value deletion and measurement error
reduction should be conducted.

The collected data from a sensor may be constant over time
when a machine is under a certain condition. However, the data
may vary when the machine is under a different condition.
If constant values are generated, the condition monitoring data
are biased and should be removed since constant values are
meaningless for a time-series regression problem. Smoothing
is a commonly adopted way to reduce measurement errors and
extract the general tendency of the degradation of a machine.

Degradation information from different sensors (or behind
the condition monitoring data) may be correlated, contain
redundant information, and have different contributions that
reflect a machine’s degradation. Based on these concerns,
PPCA, which considers the probabilistic distribution of each
variable, is adopted to extract the PCs but avoid redundant
information.

PPCA is simultaneously conducted on both the training and
testing samples in this article, which is different from most of
the existing studies. In this way, the similarities and common
characteristics among training and testing samples are mined
even though machines are under different conditions.

After processing using PPCA, the PCs with high contri-
bution levels to reflecting machine degradation are selected.
The selected PCs decrease the dimensions of the inputs of a
BLSTM network. Therefore, the training process of a BLTM
network may be lightweight. Due to the different orders
of magnitudes of the selected PCs, normalization should be
conducted. Here, z-score normalization is adopted as follows:

p∗k =
pk − μk

σk
(1)

for k = 1, 2, . . . , K , where pk denotes the kth PC and K
denotes the total number of selected PCs. The notations μk

and σk denote the mean value and standard deviation of pk,
respectively, and p∗k denotes the normalized PC. It is worth
noting that all the training and testing samples are considered
when calculating μk , σk , and p∗k . This is consistent with the
PPCA process.

B. Training Process of a BLSTM Network With AWGN

Before training a BLSTM network, manually generated
independent AWGN is injected into the normalized PCs. The
AWGN obeys a normal distribution NNN (0, 1). Noise can be
injected into the input layer, hidden layer, and output layer of
an ANN. In this article, noise is only injected into the input
data at the input layer of the BLSTM network. Therefore,
AWGN should be mixed with the normalized PCs, and the
mixed features are written as

Pnoisy= P∗ +NNN (2)

where Pnoisy denotes the matrix of normalized PCs after
injecting AWGN. The notations P∗ and NNN denote the matrices
of normalized PCs and AWGN, respectively.

Due to the impacts caused by the AWGN on the normalized
PCs, normalization should be conducted on the “polluted”

degradation features, which are Pnoisy in (2). The normalization
method is also the z-score. The notation P∗noisy denotes the
normalized Pnoisy.

A BLSTM network is used to predict the RULs of machines
under different conditions. A BLSTM is an improvement of
LSTM that is governed by gates, including input, forget, and
output gates. Compared with LSTM, BLSTM consists of two
separate hidden layers to handle the sequence data in the
forward and backward directions. By combining the output
from the two hidden layers, information related to the past
and future is captured and fully used.

Suppose that there is a training set {Xs , Ys}, for s =
1, 2, . . . , S, where S denotes the total number of training
samples. In terms of a training tuple, the input set is Xs = [x1

s ,
x2

s , . . . , x t
s, . . . , x T

s], where Xs is the time-series data of sample
s and x t

s is the corresponding input data at time t . The dimen-
sion of x t

s is determined by the feature extraction method.
For example, assume that a vibration signal is collected from
condition monitoring, and the wavelet packet analysis is used
to extract degradation features. The wavelet base is “db4,” and
the decomposition level is three. Therefore, the degradation
features are 8-D. Consequently, the dimension of the input
set is 8 at time t . In this article, the dimension of x t

s is
determined by the selected PCs. The output set is Ys = [y1

s ,
y2

s , . . . , yt
s, . . . , yT

s], with yt
s is the output at time t . Since an

output value represents the RUL of a machine, the dimension
of yt

s is 1 at time t . The outputs from the forward and
backward calculation of a BLSTM network can be obtained
from (3)–(14) according to [35]

−→
ht = tanh

(−→ct
)�−→ot (3)

−→ot = σ
(−→

WoXN∗t +
−→
R o
−→
h t−1 +−→b o

)
(4)

−→ct = −→zt �−→it +−→c t−1 �−→ft (5)
−→
ft = σ

(−→
W f XN∗t +

−→
R f
−→
h t−1 +−→b f

)
(6)

−→
it = σ

(−→
W i XN∗t +

−→
R i
−→
h t−1 +−→bi

)
(7)

−→zt = tanh
(−→

WzXN∗t +
−→
R z
−→
h t−1 +−→bz

)
(8)

←−
ht = tanh

(←−ct
)�←−ot (9)

←−ot = σ
(←−

WoXN∗t +
←−
Ro
←−
h t+1 +←−bo

)
(10)

←−ct = ←−zt �←−it +←−c t+1 �←−ft (11)
←−
ft = σ

(←−
W f XN∗t +

←−
R f
←−
h t+1 +←−b f

)
(12)

←−
it = σ

(←−
Wi XN∗t +

←−
Ri
←−
h t+1 +←−bi

)
(13)

←−zt = tanh
(←−

WzXN∗t +
←−
Rz
←−
h t+1 +←−bz

)
. (14)

In (3)–(14), the notations
−→
�BLSTM and

←−
�BLSTM denote

the parameter sets in the forward and backward processes,
respectively. The notations

−→
Wz ,
−→
Wi ,
−→
W f ,

−→
Wo and

←−
Wz,
←−
W i ,←−

W f
←−
Wo denote the input weights with respect to the current

input XN∗t , respectively. The notation XN∗t is the normalized
input at time t . The notations

−→
R z ,
−→
R i ,
−→
R f ,
−→
Ro and

←−
Rz ,
←−
Ri ,←−

R f ,
←−
R o are the recurrent weights with respect to previous

recurrent input
−→
h t−1 and future recurrent input

←−
h t+1 of the

3512612 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

forward and backward processes, respectively. The notations−→
bz ,
−→
bi ,
−→
b f ,
−→
bo and

←−
bz ,
←−
b i ,
←−
b f ,
←−
bo are the bias weights of the

forward and backward processes, respectively. The notations σ
and tanh are the activation functions using the logistic sigmoid
and hyperbolic tangent, respectively. The notations

−→
it and

←−
it

are the input gates in the forward and backward processes,
respectively. The notations

−→
ft and

←−
ft represent the forget

gates in the forward and backward processes, respectively.
The notations −→ot and ←−ot are the output gates in the forward
and backward processes, respectively. The notation � is the
pointwise multiplication operator. The notations −→ct and ←−ct

are the memory cells in the forward and backward processes,
respectively.

The output from the BLSTM can be calculated by combin-
ing the outputs from the two directions as

yt =W−→
hy

−→
ht +W←−

hy

←−
ht + by (15)

where yt denotes the calculated output at time t . The notations
W−→

hy
and W←−

hy
denote the weights connected to the hidden layer

with the output layer. The notation by denotes the bias at the
output layer.

The input samples of the BLSTM network are P∗noisy during
the training process. It is acceptable that the more complex the
configuration of an ANN is, the more time-consuming the
training process is. To decrease the calculation time and com-
plexity, only one BLSTM layer is adopted in this article. The
number of hidden neurons in the BLSTM can be determined
by an empirical formula [36] as follows:

Nh = Ns

α × (Ni + No)
(16)

where Nh , Ns , Ni , and No denote the number of hidden units
in the BLSTM network, the number of samples in the training
data set, the number of input neurons, and the number of
output neurons, respectively. The notation α represents an
arbitrary scaling factor in the interval of [2, 10].

The outputs of the BLSTM network are the machine RULs.
A negative RUL is meaningless in real applications. Therefore,
a leaky rectified linear unit (ReLU) layer is constructed follow-
ing the BLSTM layers. The leaky ReLU is an improvement
of the ReLU. In a ReLU layer, even though a negative
output is revised to zero, its derivative is zero accordingly.
Consequently, the corresponding neurons are unable to update
and die. The leaky ReLU avoids dead neurons and creates a
small gradient for the derivative. Therefore, neurons are still
able to update. Thus, the training process is more effective.

Dropout is a widely used technique to reduce the training
process overhead when training deep ANNs. It randomly
discards a subset of neurons and their neural connections [37].
An ANN that applies the dropout method can be regarded as
an ensemble learning framework because randomly discarding
neurons is equivalent to sampling a subnetwork from the
original network [38]. Besides, dropout can increase the base
model’s generalization ability to avoid overfitting.

The optimization algorithm for the loss function is the
adaptive moment estimation (Adam). The network parameter
update process of the Adam algorithm in the lth iteration can

TABLE I

C-MAPSS DATA SET

be calculated as follows:
θ l = θ l−1 − η × m̂l√

n̂l + ε
(17)

m̂l = ml

1− β l
1

(18)

n̂l = nl

1− β l
2

(19)

ml = β1ml−1 + (1− β1)gl (20)

nl = β2nl−1 + (1− β2)g2
l

(21)

where θ denotes the parameter set. Here, η and ε denote the
step size and the numerical stability constant, respectively.
The notations m̂ and n̂ denote the deviation corrections for
m and n, which represent the first moment estimate and the
second estimate of the gradient, respectively. The notation gl

denotes the gradient of the loss function in the lth iteration.

III. EXPERIMENT AND VALIDATION

A. Data Set Description

The C-MAPSS data set for turbofan engine degradation
simulation1 is used for validation. The data set contains
four subdatasets that are further divided into training and
testing trajectories. Each trajectory indicates an engine’s cycle
records. The details of the data set are listed in Table I.
The engines in data set FD001 suffered the failure of a
high-pressure compressor with a single OC. The engines
in data set FD002 suffered the failure of a high-pressure
compressor with six OCs. The engines in data set FD003 suf-
fered the failure of a high-pressure compressor and fan with
a single OC. The engines in data set FD004 suffered the
failure of a high-pressure compressor and fan with six OCs
according to [39].

B. Evaluation Indicators of Prediction Performance

Regarding the OCs and FCs, the four data sets are dif-
ferent from each other. In this article, the proposed method
focuses on RUL prediction under different conditions; namely,
the training and testing data sets are drawn from different
conditions (OC and/or FCs). Therefore, there are 12 training
and testing tuples in total. It is worth noting that only the
training trajectories are used to validate the proposed method.

Three criteria are defined to evaluate the prediction accuracy
of the proposed RUL prediction method. The first criterion,

1https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

XIAO et al.: NOISE-BOOSTED RUL PREDICTION METHOD FOR ROTATING MACHINES UNDER DIFFERENT CONDITIONS 3512612

TABLE II

DIMENSION OF CONSTANT VALUES

which is provided by the data creators [39], is given in the
following equation:

Escore =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J∑
j=1

exp

(
− Pj − R j

13

)
− 1, if Pj − R j < 0

J∑
j=1

exp

(
Pj − R j

10

)
− 1, if Pj − R j ≥ 0.

(22)

Equation (22) is used to illustrate the penalty to the late
prediction more than early prediction. The positive or negative
prediction error (Pj − R j) has different impacts on the final
score result.

The second criterion, which is (23), is the root mean square
error (RMSE). It is widely used to evaluate the prediction
accuracy and extent of the deviation

ERMSE =
√√√√ 1

J

J∑
j=1

(
Pj − R j

)2
. (23)

The third criterion is the prediction error percentage Eperc,
as given in (24). It is a rigorous criterion to evaluate the
prediction confidence interval

Eperc = 1

J

J∑
j=1

√(
Pj − R j

R j

)2

. (24)

In (22)–(24), J denotes the total number of engines as
testing samples. The notations Pj and R j denote the predicted
and real RULs, respectively. In the three criteria, smaller values
represent better prediction accuracy in the different views.

C. Approach Validation

From Section II, constant values should be removed from
the original condition monitoring data. The original condition
monitoring data have 24 dimensions. The dimension of con-
stant values is listed in Table II, where “FD001 and FD002”
mean that data set FD001 or FD002 is the training sample and
the other data set is the testing sample. Even though seven
sensory measurements are constants in FD001, they remain if
FD001 and FD002 are grouped as the training–testing tuples.

A one-step moving mean is used to smooth and reduce
the measurement errors. After smoothing, PPCA is used to
extract the PCs from both the training and testing samples. The
PCs that explain 98% of the first cumulative summation are
selected. These scores of the selected PCs are shown in Fig. 3,
where the engines are randomly selected.

Fig. 3. Scores of the selected PCs of the training and testing samples.
(a) FD001 and FD002. (b) FD001 and FD003. (c) FD001 and FD004.
(d) FD002 and FD003. (e) FD002 and FD004. (f) FD003 and FD004.

From Fig. 3, only two or three PCs are extracted from the
six training–testing tuples. The 2-D or 3-D PCs can reduce
the training time for a BLSTM network compared with using
all the 24-D raw features. The selected PCs show different
tendencies: increasing, decreasing, and oscillating.

The selected PCs have different orders of magnitude and
vary greatly. Normalization was conducted before the manu-
ally generated AWGN injection. Otherwise, the AWGN injec-
tion has little influence. After normalization and AWGN injec-
tion, the PCs that contain mixed noise should be renormalized.

3512612 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

TABLE III

THEORETICAL NUMBER OF HIDDEN UNITS ACCORDING TO (16)

It is worth noting that noise is only injected into the input
samples during the training process rather than the output
samples of the BLSTM network. In addition, noise is not
injected into the input data when predicting the RULs of the
testing engines.

The output of the BLSTM network is the RULs of the
engines. In fact, the label value of the RUL has a significant
impact on the prediction performance. Some researchers have
proven that piecewise linear labeling of the C-MAPSS engine
data set is effective and beneficial [5], [33], which means
that the RUL of an engine is labeled with a constant value
at the early stage of its lifetime and then decreases linearly.
The constant value of the RUL label is suggested to be
125 cycles [5], [33].

The minimum batch size is set to 5; therefore, there are 20,
52, 20, and 50 batches for data sets FD001, FD002, FD003,
and FD004, respectively. The average numbers of training
samples in a batch are 1031.55, 1033.83, 1236, and 1224.98
for the four subdatasets, respectively. The number of hidden
units is determined by (16) and the enumeration method. The
scaling factor α in (16) is set in the interval of [5, 10]. To
determine the proper number of hidden units, one-fold cross
validation is performed on the training samples. The maxi-
mum and minimum numbers of hidden units are 82 and 31,
respectively, as shown in Table III. To reduce the calculation
cost, the number of hidden units is varied from 30 to 80 by
increments of 10 in each experiment, each of which is run five
times to avoid randomness. Then, the proper number of hidden
units is determined according to the minimum average Escore,
ERMSE, and Eperc. Here, the number of hidden units should be
set to 70, 70, 40, and 60 when the data sets are FD001, FD002,
FD003, and FD004, respectively. The corresponding α should
be 5 (for FD001 and FD002) or 7 (for FD003 and FD004).
Here, the dropout rate is set to 0.5, which is recommended
in [40].

There is a fully connected layer with the same number of
hidden units as in the BLSTM layer. The initial learning rate
is set to 0.01, and the learning rate is reduced by a factor
of 0.3 every 30 epochs. All the algorithms are programed in
MATLAB 2018b and run on a desktop computer with an Intel
i7 1.87-GHz CPU with 120 GB of RAM running Windows 10.

The prediction errors from the proposed method are listed
in Table IV, where “MC changes” indicate the changes in
engine conditions (including OCs and FCs) with respect to
the training and testing data sets. In Table IV, → denotes the
training and testing tuples. Although all the tuples are from
different OCs and/or FCs, the proposed method achieves high
performance in terms of the evaluation criteria. In particular,

TABLE IV

PREDICTION ERRORS FROM THE PROPOSED METHOD

Fig. 4. Histogram of prediction errors from the proposed method.

Escore is less than 70 with respect to the total scores from all
the engines in the testing data sets. The histogram of prediction
errors for the 12 training–testing tuples is shown in Fig. 4.

IV. RESULTS AND DISCUSSION

To illustrate the effectiveness and performance of the pro-
posed method, the following comparison examples are con-
ducted and compared.

Case 1: The proposed method.
Case 2: The same prediction procedures but without

AWGN.
Case 3: The same prediction procedures but without PPCA.
Case 4: Training using all the data sets but without AWGN.
Case 5: Training using all the data sets but without PPCA

or AWGN.
In case 2, the prediction procedures are the same as the

proposed method, but AWGN is not injected. Therefore,
the normalized selected PCs without noise injection are used
to train the BLSTM network. Then, the normalized PCs of
the testing samples are imported into the well-trained BLSTM
network for RUL prediction. Case 2 is used to illustrate the
effectiveness of AWGN injection.

In case 3, the prediction procedures are the same as the
proposed method, but PPCA is not performed to reduce the
dimension of the input samples of the network. Case 3 is used
to illustrate the reduction of the calculation time by using 2-D
or 3-D PCs in the proposed method.

In case 4, all the data sets are used to train a BLSTM
network. For example, the engines in data set FD001 are the
testing engines, and the engines in data sets FD002, FD003,
and FD004 are used to train the BLSTM network. Similar
to case 2, AWGN is not injected into the training samples

XIAO et al.: NOISE-BOOSTED RUL PREDICTION METHOD FOR ROTATING MACHINES UNDER DIFFERENT CONDITIONS 3512612

TABLE V

PREDICTION ERRORS FROM CASES 2 AND 3

because most of the existing RUL prediction methods based
on DL do not inject AWGN. Case 4 is used to illustrate the
effectiveness of the proposed method with respect to the few
training samples.

In case 5, all the engines in the data sets are used to train
the BLSTM network, which is similar to case 4, but PPCA is
not conducted. All the training samples are smoothed during
preprocessing, and then, the preprocessed data are normalized
and imported into the BLSTM network for training. In case 5,
neither PPCA nor AWGN injection was performed. Case 5 is
used to illustrate the effectiveness of adopting PPCA.

A. Validation of Performing AWGN and PPCA

The prediction errors from cases 2 and 3 are distinctly listed
in Table V. The overall prediction evaluation indicators from
cases 2 and 3 given in Table V are greater than the correspond-
ing values from case 1 listed in Table IV. This means that the
proposed method achieves better performance than the two
comparative cases. An engine is randomly selected from the
testing data set, and its predicted RULs from different cases
are shown in Fig. 5.

From Fig. 5, the prediction results from case 2
show good performance excluding the training–testing
tuples FD001→FD002, FD001→FD004, FD003→FD002,
FD003→FD004, and FD004→FD003, which means that the
prediction method is not steady. Here, “steady” indicates that
the results fluctuate within a small interval. It is obvious
that the prediction results from case 2 fluctuate greatly. Thus,
the robustness of the proposed method due to manually
injecting AWGN is illustrated by comparing the results from
cases 1 and 2.

In Fig. 5, the prediction results from case 3 have large
variations. In case 3, the minibatch size is set to 5, which
is the same as case 1. The dimensions of the input samples
are 24 or 18. The number of hidden units in case 3 is 10
according to (16), which is much less than the ones in case 1.
With the small minibatch size and number of hidden units,
a BLSTM cannot be trained well; therefore, the prediction
results show poor performance, as shown in Table V and
Fig. 5. By comparing cases 1 and 3, the effectiveness of PPCA
is illustrated.

Fig. 5. Real RULs and predicted RULs obtained from different cases.
(a) FD001 → FD002. (b) FD001 → FD003. (c) FD001 → FD004.
(d) FD002 → FD001. (e) FD002 → FD003. (f) FD002 → FD004.
(g) FD003 → FD001. (h) FD003 → FD002. (i) FD003 → FD004.
(j) FD004 → FD001. (k) FD004 → FD002. (l) FD004 → FD003.

The prediction errors from cases 4 and 5 are listed
in Table VI. To avoid the randomness caused by the parameters
in the BLSTM network, the two methods are run five times
each. The results listed in Table VI are the average values
from the five runs. In cases 4 and 5, the determination of the
parameters for a BLSTM network is the same as that in case 1.

In Table VI, the prediction method achieves good perfor-
mance using all the training samples without AWGN injection
(namely, case 4). The evaluation indicators are close to the
results from the proposed method. However, case 4 needs more

3512612 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

TABLE VI

PREDICTION ERRORS FROM CASES 4 AND 5

Fig. 6. Predicted and real RULs obtained from cases 4 and 5. (a) FD002 +
FD003 + FD004 → FD001. (b) FD001 + FD003 + FD004 → FD002.
(c) FD001 + FD002 + FD004→ FD003. (d) FD001 + FD002 + FD003→
FD004.

training samples. In case 5, PPCA and AWGN injection are
not conducted. Even though more training samples are used,
the obtained evaluation indicators are still greater than those
from the proposed method. The comparison of the real RULs
and predicted RULs from cases 4 and 5 are shown in Fig. 6,
where the predicted RULs are very close to the real RULs.
Comparing the results from cases 4 and 5 shows that adopting
PPCA is beneficial to RUL prediction.

B. Validation of the Calculation Time and Data Volume

In addition to the prediction accuracy, the required number
of training samples and the calculation time of an RUL
prediction method are critical to real applications. Even though
the RUL prediction methods in cases 4 and 5 achieve high
prediction accuracy, the BLSTM network needs a larger
volume of data and more training time than the proposed
method. The training times of the BLSTM networks in the
five comparative cases are shown in Fig. 7, where the four
columns indicate that the testing data sets are FD001, FD002,
FD003, and FD004, respectively. In cases 1–3, the average
training time of a BLSTM network is adopted. For example,
281 s in case 1 means it is the average training time of a
BLSTM network when FD002→FD001, FD003→FD001, and
FD004→FD001.

Fig. 7. Training time (seconds) of a BLSTM network.

Fig. 7 shows that the prediction methods of cases 4 and 5
need more training time for a BLSTM network than case 1
even though these three methods can obtain good prediction
results and are steady. However, cases 4 and 5 need more
training samples to guarantee the prediction performance.
In addition, the fact that prediction can be enhanced by noise
injection is illustrated by comparing cases 1 and 2. The
training time of a BLSTM network declines due to noise
injection. Compared with case 1, more dimensions are input
into a BLSTM network in case 3; thereafter, case 3 needs more
training time than case 1. Therefore, the proposed method
is more effective and needs fewer training samples and less
training time with high prediction accuracy.

Regarding the data volume for training a neural network,
the minibatch size is set to 5 in the proposed method. That is,
there are five engines gathered in a batch. To further validate
the effectiveness using a small number of training samples,
a series of comparisons are conducted, and the results are
shown in Fig. 8. In the comparisons, the minibatch is still set
to 5, but the number of total engines for training a BLSTM
network is increased by 20 engines during each prediction.
The number of engines in the testing samples is unchanged.

A simplified explanation is given from Fig. 8 as follows:
the initial number of total engines in the training samples is
20, and the minibatch is set to 5. The number of engines in
the testing samples is 260 when FD001→FD002. Then, 40
engines from FD001 are used as the training samples, 260
engines from FD002 are regarded as the testing samples in
the next prediction, and the minibatch is still set to 5.

The prediction results shown in Fig. 8 are from one pre-
diction; therefore, the results have the tendency to fluctuate.
Despite all this, the prediction results have small error indi-
cators when a small number of samples are used to train a
BLSTM network. Using a small number of engines as the
training samples can still obtain good prediction results as
measured by the evaluation indicators. From Fig. 8, regardless
of how many engines are used as the training samples,
the maximum score (namely, Escore) is still less than 200, and
the error deviation (namely, ERMSE) is less than ten cycles.

Using a small number of training samples to test another
whole data set means that the numbers of engines in the
training and testing data sets are unbalanced. For example,
the first point shown in Fig. 8 means that 20 engines from

XIAO et al.: NOISE-BOOSTED RUL PREDICTION METHOD FOR ROTATING MACHINES UNDER DIFFERENT CONDITIONS 3512612

Fig. 8. Prediction evaluation indicators and training time of BLSTM networks
when using different numbers of engines. (a) FD001 is the training data
set. (b) FD002 is the training data set. (c) FD003 is the training data set.
(d) FD004 is the training data set.

FD001 are used to predict the RULs of 260 engines in FD002.
The engines from FD001 and FD002 have different OCs and
FCs. In addition, there are ten times more test engines than
training engines. Even in such situations, the proposed method
still achieves good prediction performance according to the
evaluation indicators and needs less training time than the
traditional method.

C. Discussion of the State-of-the-Art Approaches

The C-MAPSS data set is popular and has been widely
used to validate the performance of different RUL prediction
models. In [18] and [21], the same prediction accuracy criteria
are used, which makes the methods comparable. In [18],
the model score and RMSE of the prediction error were used
as the evaluation indicators, and their calculations are the
same as (22) and (23), respectively, in this article. In [18],
10, 20, . . . , 90, and 100 engines from the testing data sets

TABLE VII

COMPARISON OF THE MEAN PREDICTION ERRORS FROM
THE PROPOSED METHOD AND [18]

were selected to calculate the mean Escore, which was used
for evaluation. That is different from the proposed method.
To make the results comparable, the mean Escore values are
recalculated and listed in Table VII, where “-” means that no
values are given in [18].

In Table VII, the mean Escore from the proposed method
is in the interval of (0, 1) and much smaller than values
from the method in [18]. In addition, the RMSE, which is
the same as (23) in the proposed method, is also smaller than
the corresponding values in [18]. Furthermore, the training
trajectories of FD001, FD002, FD003, and FD004 are used as
the testing samples in the proposed method. This is different
from the testing samples in [18].

Da Costa et al. [21] proposed an RUL prediction method
via deep domain adaptation. In their method, the RULs of
engines were piecewise separated by 125 cycles and then
rescaled into the interval of (0, 1). The RUL prediction results
are shown in Fig. 9 by the blue dotted lines. The magenta lines
and red lines in Fig. 9 represent the results from the target-
and source-only models. The black piecewise lines represent
the RULs of engines after rescaling, which are in the interval
of (0, 1). The engines listed in Fig. 9 are randomly selected
from the target data sets. In Fig. 9, the results from source-only
models and target-only models represent the lower bound and
the upper bound of the RUL prediction results, respectively.

In Fig. 9, the predicted RULs show better fitting ability
with the real RULs for FD004→FD002, FD003→FD001,
FD002→FD004, and FD001→FD003. One commonality
behind the four training–testing tuples is that the OCs of
FD004→FD002 versus FD002→FD004 and FD003→FD001
versus FD001→FD003 are the same. This is different from the
proposed method. Even though the OCs are different between
the training and testing tuples, the predicted RULs from the
proposed method still approximate the real RULs. This can
also be demonstrated in Fig. 5. To make the comparison
clearer, ERMSE and Escore are compared in Table VIII, where
ERMSE and Escore of the proposed method are obviously much
smaller than those from [21]. This is consistent with the
comparison between Figs. 5 and 9, which also demonstrates
the outperformance of the proposed method.

3512612 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 9. RUL predictions of the target-only, source-only and LSTM-DANN
models for one engine coming from target domain cross-validation data
sets [21] where (a) FD004 → FD001, (b) FD004 → FD002, (c) FD004 →
FD003, (d) FD003 → FD001, (e) FD003 → FD002, (f) FD003 →
FD004, (g) FD002 → FD001, (h) FD002 → FD003, (i) FD002 → FD004,
(j) FD001 → FD002, (k) FD001 → FD003, and (l) FD001 → FD004.

By comparing the state-of-the-art methods to the proposed
method, the performance of the proposed method is illustrated.
The predicted RULs from the proposed method are closer to
the real RULs, and the prediction evaluation indicators are
smaller than those from the proposed method. Regarding the

TABLE VIII

COMPARISON OF THE PREDICTION ERRORS FROM
THE PROPOSED METHOD AND [21]

comparisons in Sections IV-A and IV-B, the proposed method
needs fewer training samples and a lower time cost, while the
prediction accuracy is high.

V. CONCLUSION

In this article, a new method to solve the problem of
RUL prediction for rotating machines under different condi-
tions is investigated. This method exploits manually generated
and intentionally added AWGN to improve the robustness
of the RUL prediction method. Besides making predictions
under different conditions and achieving prediction robustness,
the proposed method also achieves RUL prediction when the
data sets are unbalanced, which means that there is a large
difference in the numbers of training and testing samples (in
different conditions).

Since the good performance of the proposed method
mainly depends on noise injection, this method is named the
noise-boosted RUL prediction method, which is the opposite
of most existing DL-based RUL prediction methods. This is
also a primary attempt at injecting noise into a DL-based RUL
prediction method. In addition, the proposed RUL prediction
method can achieve accurate prediction results even though
the training and testing data sets have small numbers of
samples. In other words, the method needs fewer training
samples and less training time; therefore, the training process
has less overhead. The performance of this method is also
demonstrated by comparing some methods commonly adopted
in practice and state-of-the-art methods.

Even though the preliminary work has been conducted in
this article, there is still space to improve the proposed method.
In the future, more research will be conducted on how to
adaptively set parameters for the network and how to construct
more reasonable added noise.

REFERENCES

[1] L. Xiao, T. Xia, E. Pan, and X. Zhang, “Long-term predictive opportunis-
tic replacement optimisation for a small multi-component system using
partial condition monitoring data to date,” Int. J. Prod. Res., vol. 58,
no. 13, pp. 4015–4032, Jul. 2020.

[2] E. Bechhoefer and R. Schlanbusch, “Calculating remaining useful life
in an embedded system,” in Proc. Annu. Conf. PHM Soc., Sep. 2018,
vol. 10, no. 1, p. 586.

XIAO et al.: NOISE-BOOSTED RUL PREDICTION METHOD FOR ROTATING MACHINES UNDER DIFFERENT CONDITIONS 3512612

[3] A. Cubillo, S. Perinpanayagam, and M. Esperon-Miguez, “A review of
physics-based models in prognostics: Application to gears and bearings
of rotating machinery,” Adv. Mech. Eng., vol. 8, no. 8, Aug. 2016,
Art. no. 168781401666466.

[4] Y. Lei, N. Li, and J. Lin, “A new method based on stochastic process
models for machine remaining useful life prediction,” IEEE Trans.
Instrum. Meas., vol. 65, no. 12, pp. 2671–2684, Dec. 2016.

[5] J. Wu, K. Hu, Y. Cheng, H. Zhu, X. Shao, and Y. Wang, “Data-driven
remaining useful life prediction via multiple sensor signals and deep long
short-term memory neural network,” ISA Trans., vol. 97, pp. 241–250,
Feb. 2020.

[6] H. Miao, B. Li, C. Sun, and J. Liu, “Joint learning of degradation assess-
ment and RUL prediction for aeroengines via dual-task deep LSTM
networks,” IEEE Trans. Ind. Informat., vol. 15, no. 9, pp. 5023–5032,
Sep. 2019.

[7] W. Mao, J. He, and M. J. Zuo, “Predicting remaining useful life of rolling
bearings based on deep feature representation and transfer learning,”
IEEE Trans. Instrum. Meas., vol. 69, no. 4, pp. 1594–1608, Apr. 2020.

[8] Y. Cheng, J. Wu, H. Zhu, S. W. Or, and X. Shao, “Remaining useful life
prognosis based on ensemble long short-term memory neural network,”
IEEE Trans. Instrum. Meas., vol. 70, pp. 1–12, 2021.

[9] B. Yang, R. Liu, and E. Zio, “Remaining useful life prediction based on
a double-convolutional neural network architecture,” IEEE Trans. Ind.
Electron., vol. 66, no. 12, pp. 9521–9530, Dec. 2019.

[10] T. Wang, Z. Liu, and N. Mrad, “A probabilistic framework for remaining
useful life prediction of bearings,” IEEE Trans. Instrum. Meas., vol. 70,
pp. 1–12, 2021.

[11] B. Wang, Y. Lei, N. Li, and N. Li, “A hybrid prognostics approach
for estimating remaining useful life of rolling element bearings,” IEEE
Trans. Rel., vol. 69, no. 1, pp. 401–412, Mar. 2020.

[12] H. Sun, D. Cao, Z. Zhao, and X. Kang, “A hybrid approach to cutting
tool remaining useful life prediction based on the Wiener process,” IEEE
Trans. Rel., vol. 67, no. 3, pp. 1294–1303, Sep. 2018.

[13] Z. Wu, H. Jiang, K. Zhao, and X. Li, “An adaptive deep transfer learning
method for bearing fault diagnosis,” Measurement, vol. 151, Feb. 2020,
Art. no. 107227.

[14] L. Guo, Y. Lei, S. Xing, T. Yan, and N. Li, “Deep convolutional
transfer learning network: A new method for intelligent fault diagnosis
of machines with unlabeled data,” IEEE Trans. Ind. Electron., vol. 66,
no. 9, pp. 7316–7325, Sep. 2019.

[15] C. Che, H. Wang, Q. Fu, and X. Ni, “Deep transfer learning for rolling
bearing fault diagnosis under variable operating conditions,” Adv. Mech.
Eng., vol. 11, no. 12, Dec. 2019, Art. no. 168781401989721.

[16] D. Xiao, Y. Huang, C. Qin, Z. Liu, Y. Li, and C. Liu, “Transfer learning
with convolutional neural networks for small sample size problem in
machinery fault diagnosis,” Proc. Inst. Mech. Eng. C, J. Mech. Eng.
Sci., vol. 233, no. 14, pp. 5131–5143, Jul. 2019.

[17] Y. Fan, S. Nowaczyk, and T. Rögnvaldsson, “Transfer learning for
remaining useful life prediction based on consensus self-organizing
models,” Rel. Eng. Syst. Saf., vol. 203, Nov. 2020, Art. no. 107098.

[18] A. Zhang et al., “Transfer learning with deep recurrent neural networks
for remaining useful life estimation,” Appl. Sci., vol. 8, no. 12, p. 2416,
Nov. 2018.

[19] F. Shen, J. Xu, C. Sun, X. Chen, and R. Yan, “Transfer
between multiple working conditions: A new TCCHC-based expo-
nential semi-deterministic extended Kalman filter for bearing remain-
ing useful life prediction,” Measurement, vol. 142, pp. 148–162,
Aug. 2019.

[20] C. Sun, M. Ma, Z. Zhao, S. Tian, R. Yan, and X. Chen, “Deep transfer
learning based on sparse autoencoder for remaining useful life prediction
of tool in manufacturing,” IEEE Trans. Ind. Informat., vol. 15, no. 4,
pp. 2416–2425, Apr. 2019.

[21] P. R. D. O. da Costa, A. Akçay, Y. Zhang, and U. Kaymak, “Remaining
useful lifetime prediction via deep domain adaptation,” Rel. Eng. Syst.
Saf., vol. 195, Mar. 2020, Art. no. 106682.

[22] F. Yang, M. S. Habibullah, T. Zhang, Z. Xu, P. Lim, and S. Nadarajan,
“Health index-based prognostics for remaining useful life predictions
in electrical machines,” IEEE Trans. Ind. Electron., vol. 63, no. 4,
pp. 2633–2644, Apr. 2016.

[23] S. Kumar, A. Kumar, and R. K. Jha, “A novel noise-enhanced back-
propagation technique for weak signal detection in Neyman–Pearson
framework,” Neural Process. Lett., vol. 50, no. 3, pp. 2389–2406,
Dec. 2019.

[24] Z. Qiao, Y. Lei, and N. Li, “Applications of stochastic resonance to
machinery fault detection: A review and tutorial,” Mech. Syst. Signal
Process., vol. 122, pp. 502–536, May 2019.

[25] Z. Qiao, Y. Lei, J. Lin, and F. Jia, “An adaptive unsaturated bistable
stochastic resonance method and its application in mechanical fault
diagnosis,” Mech. Syst. Signal Process., vol. 84, pp. 731–746, Feb. 2017.

[26] L. Xiao, J. Tang, X. Zhang, and T. Xia, “Weak fault detection in rotating
machineries by using vibrational resonance and coupled varying-stable
nonlinear systems,” J. Sound Vib., vol. 478, Jul. 2020, Art. no. 115355.

[27] L. Xiao, R. Bajric, J. Zhao, J. Tang, and X. Zhang, “An adaptive
vibrational resonance method based on cascaded varying stable-state
nonlinear systems and its application in rotating machine fault detec-
tion,” Nonlinear Dyn., vol. 103, no. 1, pp. 715–739, Jan. 2021.

[28] V. Pavlovic, D. Schonfeld, and G. Friedman, “Stochastic noise process
enhancement of hopfield neural networks,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 52, no. 4, pp. 213–217, Apr. 2005.

[29] M. Kawaguchi, H. Mino, and D. M. Durand, “Stochastic resonance
can enhance information transmission in neural networks,” IEEE Trans.
Biomed. Eng., vol. 58, no. 7, pp. 1950–1958, Jul. 2011.

[30] K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional
neural networks,” Neural Netw., vol. 78, pp. 15–23, Jun. 2016.

[31] O. Adigun and B. Kosko, “Noise-boosted bidirectional backpropagation
and adversarial learning,” Neural Netw., vol. 120, pp. 9–31, Dec. 2019.

[32] T. Xia, Y. Song, Y. Zheng, E. Pan, and L. Xi, “An ensemble framework
based on convolutional bi-directional LSTM with multiple time windows
for remaining useful life estimation,” Comput. Ind., vol. 115, Feb. 2020,
Art. no. 103182.

[33] X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation in
prognostics using deep convolution neural networks,” Rel. Eng. Syst.
Saf., vol. 172, pp. 1–11, Apr. 2018.

[34] W. Yu, I. Y. Kim, and C. Mechefske, “An improved similarity-based
prognostic algorithm for RUL estimation using an RNN autoencoder
scheme,” Rel. Eng. Syst. Saf., vol. 199, Jul. 2020, Art. no. 106926.

[35] C.-G. Huang, X. Yin, H.-Z. Huang, and Y.-F. Li, “An enhanced deep
learning-based fusion prognostic method for RUL prediction,” IEEE
Trans. Rel., vol. 69, no. 3, pp. 1097–1109, Sep. 2020.

[36] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural
Network Design. Oklahoma City, OK, USA: Martin Hagan, 2014.

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[38] K. Hara, D. Saitoh, and H. Shouno, “Analysis of dropout learning
regarded as ensemble learning,” in Proc. Int. Conf. Artif. Neural Netw.,
2016, pp. 72–79.

[39] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation
modeling for aircraft engine run-to-failure simulation,” in Proc. Int.
Conf. Prognostics Health Manage., 2008, pp. 1–9.

[40] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” 2012, arXiv:1207.0580. [Online]. Avail-
able: https://arxiv.org/abs/1207.0580

Lei Xiao was born in China, in 1988. She received
the Ph.D. degree in management science and engi-
neering from Chongqing University, Chongqing,
China, in 2016.

In 2014 and 2015, she studied as a joint Ph.D.
student at Rutgers University, New Brunswick, NJ,
USA. From 2016 to 2018, she was a Post-Doctoral
Fellow at Shanghai Jiao Tong University, Shanghai,
China. Since 2018, she has been with Donghua Uni-
versity, Shanghai, where she is currently an Assistant
Professor of mechanical engineering. Her research

interests are weak-fault signal detection, remaining useful life prediction, and
maintenance optimization.

3512612 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fabing Duan was born in China, in 1974.
He received the master’s degree in engineering
mechanics from the China University of Mining and
Technology, Beijing, China, in 1999, and the Ph.D.
degree in solid mechanics from Zhejiang University,
Hangzhou, China, in 2002.

From 2002 to 2003, he was a Post-Doctoral Fel-
low at the University of Angers, Angers, France.
Since 2004, he has been with Qingdao University,
Qingdao, China, where he is currently a Professor
of system science. His research interests are in
nonlinear systems and signal processing.

Junxuan Tang was born in China, in 1997.
He received the bachelor’s degree in mechanical
engineering from Donghua University, Shanghai,
China, in 2019, where he is currently pursuing the
master’s degree in mechanical engineering.

His research interests are in remaining useful life
prediction and fault detection.

Derek Abbott (Fellow, IEEE) was born in South
Kensington, London, U.K., in 1960. He received the
B.Sc. (Hons.) degree in physics from Loughborough
University, Leicestershire, U.K., in 1982, and the
Ph.D. degree in electrical and electronic engineer-
ing from The University of Adelaide, Adelaide,
SA, Australia, in 1997, under the supervision of
K. Eshraghian and B. R. Davis.

From 1978 to 1986, he was a Research Engi-
neer with the GEC Hirst Research Centre, London,
U.K. From 1986 to 1987, he was a VLSI Design

Engineer with Austek Microsystems, Australia. Since 1987, he has been
with The University of Adelaide, where he is currently a full Professor
with the School of Electrical and Electronic Engineering. His research
interests include multidisciplinary physics and electronic engineering applied
to complex systems, networks, game theory, energy policy, stochastics, and
biophotonics. He coedited Quantum Aspects of Life (Imperial College Press,
2008) and coauthored Stochastic Resonance (Cambridge Univ. Press, 2008)
and Terahertz Imaging for Biomedical Applications (Springer-Verlag, 2012).

Dr. Abbott is a Fellow of the Institute of Physics (IoP), U.K., and an
Honorary Fellow of Engineers Australia. He has received a number of
awards, including the Tall Poppy Award for Science in 2004, an Australian
Research Council Future Fellowship in 2012, the David Dewhurst Medal
in 2015, the Barry Inglis Medal in 2018, and the M. A. Sargent Medal
in 2019 for eminence in engineering. He has been an Editor and/or Guest
Editor for a number of journals, including the IEEE JOURNAL OF SOLID

STATE CIRCUITS, Journal of Optics B , Microelectronics Journal, PLOS ONE,
PROCEEDINGS OF THE IEEE, and the IEEE PHOTONICS JOURNAL. He is
currently on the Editorial Board of IEEE ACCESS, Nature’s Scientific Reports,
Royal Society Open Science, and Frontiers in Physics. He has served on the
Editorial Board of the PROCEEDINGS OF THE IEEE from 2009 to 2014 and
the IEEE ACCESS since 2015. He has been serving on the IEEE Publication
Services and Products Board (PSPB) since 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

