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Abstract—Energy management in power systems is a thorny
optimization problem. With the sizes of systems rising, central-
ized optimization methods are restricted by their complexities
of communications, while distributed optimization methods have
emerged as a powerful tool for dealing with increasingly complex
systems. However, convergence rates of some widely used dis-
tributed optimization methods, such as the standard alternating
direction method of multipliers (ADMM), still have room for im-
provement. In this paper, a parallel and distributed optimization
method for energy management of microgrids (MGs) is proposed
to boost the convergence rate without sacrificing the accuracy of
the optima, in which agents calculate, exchange and update in
parallel. At first, a decomposition method is presented, where the
objective functions and constraints of an original optimization
problem with separable variables are decomposed into local
objective functions and constraints for agents, which is the key
to our method. Further, agents solve their local optimization
problems independently and then exchange determined optima
with their neighbors. Finally, the method is evaluated to solve
economic dispatch with demand response for microgrids. The
simulation results show that compared to the standard ADMM,
for a given accuracy, the number of iterations in our method is
only one third or even less than that of ADMM. Furthermore, our
method can minimize the cost functions of distributed generation
on supply side and maximize the profit functions of flexible loads
on the demand side.

Index Terms—Microgrids, Energy management, Demand re-
sponse, Distributed optimization, Multi-agent systems.

I. Introduction

THE rapid development in world population and economic
growth poses a significant challenge in terms of both

energy demand and protection of the environment [1]. Thus
an increase number of countries are progressively turning to
the utilization of renewable energies, such as wind and solar,
which shifts the paradigm towards distributed generation (DG).
However, the intermittent outputs of DGs may disturb the
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performance of the main grid, if DGs connect to the main
grid directly. To reduce the disturbance, a microgrid (MG)
technology is developed, which integrates DGs, loads, energy
storage systems (ESS), and monitoring and protection devices
as a system, where advanced inverters and converters are
widely used [2], [3]. As a controllable system, an AC or DC
MG can connect to the main grid by the point of common
coupling (PCC) or run independently, i.e., grid-connected or
islanded mode [4], [5]. In the islanded mode, the control and
economic dispatch of MGs become more difficult without the
support of the main grid.

In recent years, centralized optimization methods have been
widely employed to solve the economic operation and optimal
dispatch of MGs, where dynamic programming (DP) [6],
[7], genetic algorithm (GA) [8], [9], particle swarm opti-
mization (PSO) [10], [11], mixed integer linear programming
(MILP) [12] and second-order cone relaxation (SOCR) [13]
have demonstrated reasonable performance in terms of eco-
nomic dispatch of MGs. For example, advanced DP was ap-
plied to improve the energy utilization efficiency and decrease
gas emissions [6]. To reduce the operating costs of community
MGs with ESS, a modified PSO was proposed to find the
optimal strategies for battery management with the change of
real-time electricity rates [11]. Additionally, new methods are
also developed. To solve economic dispatch problems with
numerous constraints and decision criteria, an improved GA
and an enhanced MILP were combined [14]. If the long-
term operating costs of grid-connected MGs are considered, a
robust two-stage optimization approach to schedule the power
generation and ESS, and manage energy trading with the
main grid under uncertainties can be employed [15]. For more
general convex cost functions in economic dispatch problems,
a secant approximation method was proposed to do the one-
dimensional search and solve economic dispatch in power
systems with high penetration of renewable energies [16].

More recently, prosumers have the opportunity to take
part in economic dispatch via use of demand response
(DR) technology, where there are two typical programs,
(i) incentive-based programs (IBP) and (ii) price-based pro-
grams (PBP) [17]. Moreover, IBP has two forms: (i) direct
load control (DLC) [18] and (ii) interruptible load programs
(ILP) [18], [19], e.g., ILP can be realized by MILP, which
utilizes both spinning reserve and interruptible loads as the
operating reserve [19]. In [18], DLC and ILP are combined
to provide instantaneous reserves for ancillary services, while
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instead of scheduling loads on the demand-side directly, PBP
influences the power consumption behaviors of consumers
by changing electricity rates [20]–[22]. To better deal with
uncertainties in the system, Tushar et al. proposed a real-time
decentralized method for demand-side management, where
flexible loads were regulated real-time to follow a day-ahead
plan [23]. For MGs with large numbers of electric vehicles
(EVs), a multi-objective optimization model for load dispatch
was proposed to minimize the operating costs, when stochastic
access of EVs was considered [24]. In fact, MGs were also
established for buildings or small districts, to minimize the
costs to consumers in buildings by employing an energy
management framework to especially deal with electricity and
heat demand response [25].

Centralized optimization methods for economic operation
and dispatch can more readily find optima due to having global
information, when compared to distributed optimization meth-
ods. Nevertheless, it increases the communication complexity
due to collecting information from all DGs and loads. And it
is worse that it adds a heavy burden to the central controller
due to processing large scale optimization problems, which
may cause failure of the central controller. Therefore, research
methods for energy management are shifting from centralized
methods to distributed or decentralized methods [26]–[29].
The alternating direction method of multipliers (ADMM) [30],
as a distributed optimization method, has been widely used for
economic dispatch problems. To decrease the operating costs
of MGs, ADMM was used to coordinate central controller
and local controllers [31], and it was also extended to multi-
time scale optimization of MG clusters to eliminate the influ-
ence of uncertainties [32]. Moreover, a distributed algorithm
based on ADMM with convergence assurance was proposed
to minimize the overall energy costs among multiple MGs
clusters [26]. Alternatively, another widely applied distributed
method is the consensus-based distributed algorithm [33].
For example, a consensus-based algorithm was presented to
achieve optimal economic dispatch, when delay effects were
considered [34]. Moreover, economic dispatch with DR has
also been studied [35]. Further, the average consensus algo-
rithm was also combined with ADMM, which was applied to
solve dynamic economic dispatch problems [36].

In summary, the economic dispatch problems of minimiz-
ing the costs can be solved by the widely-used consensus
algorithm in a distributed manner, when incremental costs
reach a consensus. However, for more general optimization
problems, it is not always true to find a variable for consensus.
In this case, the consensus algorithm does not work, so we
have to turn to the alternating direction method of multipliers
(ADMM), a widely-used distributed optimization method.
Unfortunately, the standard ADMM can solve more general
optimization problems, but it works in cascade, which means
that on a ring network composed of agents the next agent starts
to calculate and update, after it receives the information from
the previous agent. For a complex optimization problem with
many variables, this serial process may cause ADMM needs
more number of iterations to find optima with the rise of sizes
of optimization problems. If a distributed optimization method
works in parallel, maybe it will converge faster, because infor-

mation can be exchanged and processed among more neighbor
agents instead of one by one and agents can search their
subspaces simultaneously (in parallel), which accelerates the
process of finding optima. Therefore, in this paper, to increase
the convergence rate, a parallel and distributed optimization
method (PDOM) has been proposed, and then this method is
applied to the optimization of economic dispatch with demand
response in MGs.

There are three main technical contributions. First, the
decomposition method for objective functions and constraints
of an optimization problem with separable variables is p-
resented. After the decomposition, local objective functions
and local constraints for agents are formed, which is the
necessary preparation for the parallel and distributed opti-
mization method. Second, the parallel and distributed opti-
mization method with decomposition of objective functions
and constraints is proposed, where agents calculate, exchange
and update in parallel. Third, two propositions and a corollary
are proved, which guarantee the sum of local constraints are
consistent with the original constraints, and the optima can
be iteratively obtained. Compared to the standard ADMM,
our method can find better optima and more importantly the
number of iterations in our method is only one third or even
less than that of ADMM.

The rest of the paper is organized as follows. Section II
introduces the preliminaries of Graph Theory and then the par-
allel and distributed optimization method with decomposition
of objective functions and constraints is proposed. In Section
III, an optimization model of economic dispatch with demand
response is presented, where supply-side and demand side
cooperate with each others. An MG model for tests are built
in Section IV and the parameters of DGs and loads are listed.
In Section V, cases are designed to compare the accuracy and
rate of convergence of our method and other typical methods.
We evaluate the performance of the MG, when our method is
applied to the optimization of economic dispatch with demand
response.

II. Parallel and Distributed OptimizationMethod (PDOM)

In this section, some terms to describe graphs or networks
composed of agents are introduced first. And then local areas
on the network of agents are given, which are formed only
by agents and their neighbors, and each of which corresponds
to a local objective function and local constraints. Next, the
method to derive local objective functions and local constraints
is presented, and then a parallel and distributed optimization
method is proposed. Finally, the convergence of the method is
analyzed, where two propositions and a corollary are proved.

A. Topology of Network Composed of Agents

In this paper, the distributed optimization is carried out by
agents cooperatively. Therefore, a network composed of agents
has to be formed first, where a network can be built by adding
links among agents and no isolated agents are permitted on the
network, such as that shown in Fig. 1. On the network, agents
can send or collect information, if there is a link between them.
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Fig. 1. A ring network composed of agents.

Note that a self-loop is added to collect and process its own
information.

In terms of Graph Theory, the formed network is a bidi-
rectional graph G(V, E), where V is a set of nodes (agents),
and E is a set of edges or links. To describe the relationships
among agents, an adjacency matrix A = [ai j]n×n is defined.
If there is an outgoing link from agents i to j, then ai j = 1.
Otherwise, ai j = 0. Noting that the adjacency matrix of the
network is a symmetric matrix satisfying ai j = a ji, because of
the property of a bidirectional graph. Moreover, all diagonal
entries of the adjacency matrix are one, since agents have self-
loops. Further, a diagonal matrix D is defined to indicate the
outdegrees of agents, where the outdegree dii of an agent i
denotes the number of outgoing links of the agent, namely,

dii =

n∑
j=1

ai j. (1)

Moreover, the outdegree is at least equal to two, because an
agent has a self-loop and at least an outgoing link. Further, a
weighted matrix W can be defined as follows,

W = A · D−1, (2)

and it has the property
n∑

i=1

wi j =
a1 j + · · · + ai j + · · · + an j

d j j

=
a j1 + · · · + a ji + · · · + a jn

d j j
= 1,

(3)

which means the sum of elements of a column of the weighted
matrix W is one. Note that a network with similar degrees,
such as a nearest neighbor network, is recommended, but
avoiding using a scale-free network whose degree follows
the power-law degree distribution. In this type of networks,
there exists some nodes with huge degrees who look like
central controllers, e.g. collecting a lot of information and
having heave burden, which violates the original intention of
distributed optimization.

On the network G, a local area of an agent i is defined as the
subgraph of G induced by all agents adjacent to the agent i,
i.e., it consists of the agent i itself (indicated by a yellow
diamond) and its neighbors (indicated by black diamonds) con-
necting to the agent i, as shown in Fig. 2. In a local area, there
are a local objective function and local constraints derived
from the original optimization problem. So, agents solve the
local objective functions with local constraints simultaneously,
and then the obtained optima are exchanged among agents.

Finally, the optima obtained over local areas will iteratively
approach to the optima of the original optimization problem
in a parallel and distributed manner. This is the idea of the
parallel and distributed optimization method, and it will be
developed in the successive sections.
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Fig. 2. Local areas for agents on a communication network G(V, E)

B. Decomposition of Objective Functions for Local Areas

Assume the original optimization problem is a convex
optimization problem with an equality constraint (a often used
paradigm for optimization problems [30], [37]), which can be
described as

min
n∑

i=1

fi(xi), (4a)

s.t.
n∑

i=1

cixi = b, (4b)

where X = [x1, x2, · · · , xn] ∈ Rn×1 is the vector for minimizing
the objective function, namely the optima, fi(xi) is a convex
function, and C = [c1, c2, · · · , cn] ∈ R1×n contains the coeffi-
cients of constraints, b ∈ R is the value of constraints.

If the original optimization problem needs to be solved in
a distributed manner, such as solved by ADMM, a network
composed of n agents will be formed first according to the
previous section, where an agent i handles a function fi(xi).
However, the distributed optimization by ADMM is carried
out in a serial way, which slows down the convergence rate of
the method. Therefore, in this paper, a parallel and distributed
optimization method is proposed to reduce the number of it-
erations. Accordingly, the above mentioned objective function
and the constraint will have to be decomposed into n local
objective functions and n local constraints for n local areas,
respectively. In this section, the decomposition method for
objective functions is introduced, while the decomposition of
constraints is given in the next section.

For a local area i, it only contains the agent i and its
neighboring agents, so the local objective function is made up
of functions of the agent i and its neighboring agents. Thus,
the local objective function for the local area i in Fig. 2 takes
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form as

min Fi(Xi) = wi1 f1(x1) + · · · + wi,i−1 · fi−1(xi−1) + wii fi(xi)
+ wi,i+1 · fi+1(xi+1) + · · · + win fn(xn)
= wi,i−1 fi−1(xi−1) + wii fi(xi) + wi,i+1 fi+1(xi+1)

(5)
where Fi(Xi) is the local objective function of the local area
i and Xi = [ai1x1, ai2x2, · · · , ainxn]. In terms of the weighted
matrix W, we can derive the local objective functions for all
local areas as

F1(X1)
...

Fi(Xi)
...

Fn(Xn)


=



w11 · · · w1i · · · w1n
...

. . .
...

...
...

wi1 · · · wii · · · win
...

...
...

. . .
...

wn1 · · · wni · · · wnn


·



f1(x1)
...

fi(xi)
...

fn(xn)


. (6)

Observing Eq. (6), it can be seen that there are n local
objective functions for n local areas. If one of these local
objective functions, e.g. Fi(Xi), is solved, we will find a vector
of optima of X, which means that there are n vectors of optima
of X for all n local areas. To indicate the vector of optima of
X found by a local area, we define a matrix Z as follows,

Z(k) =



a11z11(k) · · · a1iz1i(k) · · · a1nz1n(k)
...

. . .
...

...
...

ai1zi1(k) · · · aiizii(k) · · · ainzin(k)
...

...
...

. . .
...

an1zn1(k) · · · anizni(k) · · · annznn(k)


. (7)

For example, the ith row of Z represents the vector of optima
found on the local area i by the kth iteration. Therefore, the
relationship between X and Z at the kth iteration can be defined
as

X =



x1(k)
...

xi(k)
...

xn(k)


=

[
Z(k) · D−1

]T

n×n
· 1n×1

=



w11z11(k) · · · w1iz1i(k) · · · w1nz1n(k)
...

. . .
...

...
...

wi1zi1(k) · · · wiizii(k) · · · winzin(k)
...

...
...

. . .
...

wn1zn1(k) · · · wnizni(k) · · · wnnznn(k)



T

· 1n×1,

(8)
where 1n×1 is a column vector of ones and (·)T denotes the
transpose of a matrix. From Eq. (8), it can be seen that agents
exchange obtained optima zi j with their neighbors, and then
find the average to determine xi(k) at the kth iteration. Thus,
non-zero elements in a column of Z will iteratively converge
to a certain final value, which also makes X converge.

C. Decomposition of Equality Constraints for Local Areas

This paper focuses on the optimization problem with an
equality constraint,

∑n
i=1 cixi = b. As is mentioned above, to

develop the parallel and distributed optimization, decomposi-
tion of the equality constraint is necessary. Similarly to that
performed in the previous section, i.e., in the local area i its
local equality constraints are only associated with itself and
its neighbors, so the decomposition of the equality constraints
for the local area i (as shown in Fig. 2) on the kth iteration
can be represented as

wi1c1x1 + · · · + wi,i−1ci−1xi−1 + wiicixi + · · ·

+ wi,i+1ci+1xi+1 + · · · + wincnxn

= wi,i−1ci−1xi−1 + wiicixi + wi,i+1ci+1xi+1

= bi(k).

(9)

Before calculating bi(k), the value of cixi(k− 1) is transmitted
to its neighboring agents i − 1 and i + 1, so do the neighbors.
Therefore, bi(k) can be calculated as follows,

bi(k) =
[
wi1 · · · wii · · · win

]
·



c1x1(k − 1)
...

cixi(k − 1)
...

cnxn(k − 1)


= wi,i−1ci−1xi−1(k − 1) + wiicixi(k − 1) + wi,i+1ci+1xi+1(k − 1).

(10)
Noting that B(k) = [bi(k)]n×1 is initialised as

B(0) =



b1(0)
...

bi(0)
...

bn(0)


=



b
...
0
...
0


, (11)

which means that at the beginning only one agent knows the
value of the constraint in Eq. (4b).

Therefore, for all local areas, the decomposition of con-
straints has the form as

w11c1x1 + · · · + w1icixi + · · · + w1ncnxn
...

wi1c1x1 + · · · + wiicixi + · · · + wincnxn
...

wn1c1x1 + · · · + wnicixi + · · · + wnncnxn


= W·



c1x1
...

cixi
...

cnxn


=



b1(k)
...

bi(k)
...

bn(k)


,

(12)

B(k) =



b1(k)
...

bi(k)
...

bn(k)


= W ·



c1x1(k − 1)
...

cixi(k − 1)
...

cnxn(k − 1)


, (13)

and they satisfy the following two equations,

11×n ·


W ·



c1x1
...

cixi
...

cnxn




=

n∑
i=1

cixi, (14a)
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n∑
i=1

bi(k) = 11×n · B(k) = b, (14b)

where in fact Eqs. (14a) and (14b) are the left side and right
side of Eq. (12), and it is worth noting that the weighted
matrix W does not always have an inverse matrix. The proofs
of Eqs. (14a) and (14b) are given in Proposition 1 in the next
section.

Finally, the stopping criterion for our method is the presence
of non-improving iterations, as is expressed as

r =

k−1∑
j=k−3

√
(xi(k) − xi( j))2 < ε. (15)

So, the steps of our parallel and distributed optimization
method are summarized as follows,

Pseudocodes for Our Method (PDOM)
1: Find the adjacency matrix A, the degree matrix D and

the weighted matrix W on a given network G(V, E)
2: Initialisation of B(0) in terms of Eq. (11), r, and ε

3: Decompose the objective function and the constraint in
Eq. (4) into local objective functions and constraints
for agents in terms of Eqs. (6), (12) and (13)

4: Do{
5: Solve local objective functions with constraints and

form the matrix Z in terms of Eq. (7)
6: Exchange [zi j]n×n with neighbors and then calculate X

in terms of Eq. (8)
7: Exchange [xi]n×1 with neighbors and update local

constraints in terms of Eq. (13)
8: Calculates r according to (15)
9: }While r > ε
10: Return X.

D. Convergency analysis

In terms of Eqs. (8) and (11), the objective functions and
constraints of the original optimization problem Eq. (6) can
be decomposed for all local areas. By exchanging information
with neighbors simultaneously among agents on local areas,
the optima of the original optimization problem can be found
in a parallel and distributed manner. In this section, proposi-
tions are proven, which indicates convergency for this work.
First, Proposition 1 is given as follows.

Proposition 1: Assume a network G(V, E) composed of
n agents is built for the optimization problem Eq. (4a). If
the constraints are decomposed by Eqs. (12) and (13), then
Eqs. (14a) and (14b) will always hold.

Proof: First, we prove that Eq. (14a) holds, so we begin
with the left side of Eq. (14a). Calculating the left side of

Eq. (14a), we have

11×n ·


W ·



c1x1
...

cixi
...

cnxn




= w11c1x1 + · · · + w1icixi + · · · + w1ncnxn

+ · · · + wi1c1x1 + · · · + wiicixi + · · · + wincnxn

+ · · · + wn1c1x1 + · · · + wnicixi + · · · + wnncnxn

= c1x1

n∑
j=1

w j1+· · ·+cixi

n∑
j=1

w ji+· · ·+cnxn

n∑
j=1

w jn.

(16)

Applying Eq. (3) to Eq. (16), it yields

11×n ·


W ·



c1x1
...

cixi
...

cnxn




=c1x1 + · · · + cixi + · · · cnxn =

n∑
i=1

cixi.

(17)
So, Eq. (14a) holds.

Next, we prove Eq. (14b) and calculate its left side as
follows,

n∑
i=1

bi(k) = 11×n · B(k) = 11×n ·W ·



c1x1(k − 1)
...

cixi(k − 1)
...

cnxn(k − 1)


=

w11c1x1(k − 1)+· · ·+w1icixi(k − 1)+· · ·+w1ncnxn(k − 1)+· · ·
+wi1c1x1(k − 1)+· · ·+wiicixi(k − 1)+· · ·+wincnxn(k − 1)+· · ·
+wn1c1x1(k − 1)+· · ·+wnicixi(k − 1)+· · ·+wnncnxn(k − 1)

= c1x1(k − 1)
n∑

j=1

w j1+· · ·+cixi(k − 1)
n∑

j=1

w ji+· · ·

+cnxn(k − 1)
n∑

j=1

w jn.

.

(18)
Still applying Eq. (3) to Eq. (18), it yields

11×n · B(k) = c1x1(k − 1)+· · ·+cixi(k − 1)+· · ·+cnxn(k − 1)

=

n∑
i=1

cixi(k − 1) = b.

(19)
So, Eq. (14b) holds. �

Moreover, there is a special case for Proposition 1, when
the degrees of all nodes are identical, so the proposition 1 has
a corollary below.

Corollary: Assume a network G(V, E) composed of n agents
is built for the optimization problem Eq. (4a). When the
degrees of all nodes are identical to d, Eqs. (12) and (13)
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can be reduced to

A ·



c1x1
...

cixi
...

cnxn


= A ·



c1x1(k − 1)
...

cixi(k − 1)
...

cnxn(k − 1)


. (20)

If the constraints are decomposed by the above equation, then
Eqs. (14a) and (14b) still hold.

Proof: If the degrees of all nodes are identical to d, the
matrix D is reduced to

D =



d11 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · dii · · · 0
...

...
...

. . .
...

0 · · · 0 · · · dnn


= d ·



1 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · 1 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 1


.

(21)
So, the weighted matrix W is reexpressed as

W = A · D−1 =
1
d
· A. (22)

According to Proposition 1, we have

W ·



c1x1
...

cixi
...

cnxn


=



b1(k)
...

bi(k)
...

bn(k)


= W ·



c1x1(k − 1)
...

cixi(k − 1)
...

cnxn(k − 1)


. (23)

Applying Eq. (22) to Eq. (23), it yields

A ·



c1x1
...

cixi
...

cnxn


= A ·



c1x1(k − 1)
...

cixi(k − 1)
...

cnxn(k − 1)


. (24)

In terms of Proposition 1, Eq. (24) satisfies Eqs. (14a)
and (14b), where it is worth noting that the inverse of the
matrix A does not always exist. �

Furthermore, after decomposition of objective functions and
constraints, our parallel and distributed optimization method
can approach the optima of the optimization problem Eq. (6)
by a number of iterations. We take the Proposition 2 as an
example to show how our method works.

Proposition 2: Assume a ring network G(V, E) composed of
n = 10 agents, as shown in Fig. (2), is built for an optimization
problem as below, 

min
∑10

i=1
x2

i

s.t.
∑10

i=1
ixi = 50

. (25)

Applying our parallel and distributed optimization method,
after 50 iterations, the maximum deviation between the global
optimal solutions X∗ and the solutions X found by our method
is less than or equal to 2 × 10−4.

Proof: From the ring network G(V, E), the adjacency ma-
trix A and the degree matrix D can be found and then the
weighted matrix W can be calculated,
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. (26)

In terms of Eqs. (6) and (12), the objective functions and
constraints of the optimization problem Eq. (25) can be
decomposed for all local areas as follows,

Local area 1:


min

1
3

x2
1 +

1
3

x2
2 +

1
3

x2
10

s.t.
1
3

x1 +
2
3

x2 +
10
3

x10 = b1(0) = 50,

...

Local area i:


min

1
3

x2
i−1 +

1
3

x2
i +

1
3

x2
i+1

s.t.
i − 1

3
xi−1 +

i
3

xi +
i + 1

3
xi+1 = bi(0) = 0,

...

Local area 10:


min

1
3

x2
9 +

1
3

x2
10 +

1
3

x2
1

s.t. 3x9 +
10
3

x10 +
1
3

x1 = b10(0) = 0.

(27)

Applying the centralized interior-point algorithm [38], the
global optimal solution X∗ = [x∗]n×1 of Eq. (25) can be found.
The absolute values of the deviation between X∗ and X after
10 and 50 iterations are listed below, respectively,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1(10) − x∗1
x2(10) − x∗2
x3(10) − x∗3
x4(10) − x∗4
x5(10) − x∗5
x6(10) − x∗6
x7(10) − x∗7
x8(10) − x∗8
x9(10) − x∗9

x10(10) − x∗10



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0.1359 − 0.1299
0.3173 − 0.2597
0.5373 − 0.3896
0.6942 − 0.5195
0.8092 − 0.6494
0.8846 − 0.7792
0.9386 − 0.9091
0.9900 − 1.0390
1.0566 − 1.1688
1.1488 − 1.2987



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=



0.0060
0.0575
0.1477
0.1748
0.1598
0.1053
0.0295
0.0489
0.1123
0.1499



, (28)
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x1(50) − x∗1
x2(50) − x∗2
x3(50) − x∗3
x4(50) − x∗4
x5(50) − x∗5
x6(50) − x∗6
x7(50) − x∗7
x8(50) − x∗8
x9(50) − x∗9

x10(50) − x∗10



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0.1299 − 0.1299
0.2598 − 0.2597
0.3898 − 0.3896
0.5197 − 0.5195
0.6496 − 0.6494
0.7794 − 0.7792
0.9091 − 0.9091
1.0389 − 1.0390
1.1687 − 1.1688
1.2985 − 1.2987



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=



0.0000
0.0001
0.0002
0.0002
0.0002
0.0002
0.0000
0.0001
0.0001
0.0002



. (29)

According to (29), it can be seen that the maximal deviation
is 2× 10−4. Thus, it is concluded that the optimal solutions X
found by our method approximately converge to the global
optimal solutions X∗. Moreover, it can be predicted that a
lower deviation will be achieved after more iterations. �

III. EnergyManagement forMGs

Generally, economic dispatch for MGs regulates outputs of
DGs for achieving optimal system performance. When demand
response is introduced to economic dispatch, the supply side
and demand side can cooperate with each other and then
improved performance can be reached. Recently, flexible loads
of consumers, as important sources for demand response, have
played a significant role in the economic dispatch of MGs,
such as for peak shaving and valley filling, in response to
time-based rates or other forms of financial incentives.

A. Model of Economic Dispatch with Demand Response

In this paper, an optimization model of economic dispatch
with demand response is shown in Fig. 3, which is built as a
communication network composed of agents (as the top layer)
over an islanded MG (as the bottom layer). In an islanded
MG, there is a DG working in the voltage and frequency
control (V/F control) mode, called V/F DG (indicated as a
rectangle in Fig. 3), which provides the voltage and frequency
reference for the MG. Therefore, if there is a mismatch in
the MG, the V/F DG will inject or absorb power to balance
the system, so the outputs pess(t) of the V/F DG indicate the
mismatch of the system. Here, a battery energy storage system
(BESS) is employed as the V/F DG. In addition, to improve the
penetration of renewable energies, the outputs of photovoltaics
(PVs) and wind turbines (WTs) are not regulated, so these
DGs are called non-dispatchable DGs (indicated as circles).
Conversely, the outputs of some DGs, like micro-turbines
(MTs), can be regulated according to control signals, so they
are called dispatchable DGs (indicated as diamonds). On the
demand side, besides the conventional loads, there are some
flexible loads that also can be regulated in terms of the needs
of the system.

On the top layer, the communication network consists of
two subgraphs (a subgraph with DG agents and a subgraph
with load agents) that are connected by the generation control
center and the load aggregator. Information is collected from
DGs and loads first, and then it is exchanged with neighbor
agents. Here, agents connecting to dispatchable DGs are called
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Fig. 3. The two layer optimization model of economic dispatch with DR,
where dispatchable DGs are indicated by diamonds, non-dispatchable DGs are
indicated by circles, and the ESS operates as a DG indicated by the rectangle.
Moreover, flexible loads are indicated by cylinders while conventional loads
are indicated by cubes.

DG agents and those connecting to flexible loads are called
load agents, while the generation control center connects to the
V/F DG. However, no agents connect to non-dispatchable DGs
and conventional loads, because the outputs pess(t) of the V/F
DG indicate the mismatch of the system, which is a way to
reduce the communication complexity. If a mismatch between
supply and demand occurs, the BESS will balance the system
by injecting or absorbing power immediately. However, the
stored energy of the BESS is limited, so the BESS cannot
inject or absorb constantly for a long time. In this case,
the generation control center sends the mismatch information
to a DG agent. Further, all information is processed on the
subgraph with DG agents, i.e. dispatchable DGs are regulated
in order to share the mismatch and minimize the generation
cost functions using our parallel and distributed optimization
method. After this operation, the outputs of the V/F DG will
return to zeros gradually.

On the other hand, if peak shaving or valley filling is needed,
the generation control center will send the values lc(t) of peak
shaving or valley filling to the load aggregator, who is an
important coordinator between supply side and demand side.
Next, the load aggregator sends the information to a load agent
and then the information is dealt with on the subgraph with
load agents by maximizing consumers profit functions in a
distributed manner. Finally, flexible loads are regulated.

B. Supply-side: Generation Cost Functions

On the supply-side, minimizing the generation costs in MGs
is a main task for economic dispatch. Generally, only the
generation costs of active power of dispatchable DGs, e.g.
MTs, are considered because fossil flue is consumed, while
the costs of renewables and reactive power are not considered.
Therefore, in this paper, the generation cost function for MTs
is given below and it is a quadratic convex function of active
power pi [39],

fi(pi) = αi p2
i + βi pi + γi, (30)

where the nonnegative values, αi, βi and γi, are the cost
coefficients of an MTi.
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If there are n MTs in an MG, the economic dispatch is
to minimize the total generation costs of these MTs. So, the
optimization model for the supply-side can be described as
follows, 

min
n∑

i=1

fi(pi(t))

s.t.
n∑

i=1

pi(t) =

n∑
i=1

pi(t − 1) + pess(t − 1)

. (31)

Further, the optimization model Eq. (31) can be decomposed
for DG agents in terms of the steps in Section II. Applying our
method, the minima of the problem can be found iteratively
and in a distributed way. When the minimized generation
cost is achieved, the incremental costs will reach a consensus,
where the incremental cost is defined as [39],

λi =
∂ fi(pi)
∂pi

= 2αi pi + βi (32)

which is the first derivative of the generation cost function
with respect to active power.

C. Demand-side: Consumers Profit Functions

On demand-side, flexible loads are regulated to maximize
consumers’ profit functions that consists of two parts, a utility
function Ui and a cost function for power consumption Ei.
The utility function of a flexible load has to follow the three
properties, i.e., a) the utility function should be nondecreasing;
b) the utility function is zero when no power is consumed by
the flexible load; c) there is a saturation point for the utility
function. Therefore, the utility function for a flexible load can
be defined as a quadratic function as below,

Ui(li(t)) =


δili(t) −

ωi

2
(li(t))2, 0 < li(t) <

δi

ωi

δ2

2ωi
, li(t) ≥

δi

ωi

, (33)

where li(t) is the magnitude of the flexible load i at time t and
the saturation point is at δi/ωi. Both ωi and δi are the utility
coefficients to differentiate flexible loads.

In addition, a cost function for power consumption of the
flexible load i can be expressed as

Ei(li(t)) = g(t) · li(t), (34)

where g(t) is the electricity rate at time t. Thus, the profit
function of the flexible load i takes form as

Hi(li(t)) = Ui(li(t)) − Ei(li(t)). (35)

Assume there are m flexible loads, the optimization problem
on demand side can be described as follows,

min
m∑

i=1

−Hi(li(t))

s.t.
m∑

i=1

li(t) =

m∑
i=1

li(t − 1) − lc(t − 1)

, (36)

where lc(t − 1) is the values of peak shaving or valley filling
received from the load aggregator.

IV. Microgrid System Architecture and Setup

For simulations, an islanded MG with twelve DGs and
twelve loads is established in MATLAB/Simulink as shown
in Fig. 4, where there are six PVs and WTs, five MTs, an
BESS and four conventional loads (CL) and eight flexible
loads (FL). PVs and WTs, {DGi|i = 2, 6, 8, 9, 10, 12}, work
in the maximum power point tracking (MPPT) mode, while
MTs, {DGi|i = 1, 3, 5, 7, 11}, work in in the active and reactive
power control (PQ control) mode. And the BESS, {DGi|i = 4},
works in the V/F control mode. Additionally, convention-
al loads, {Loadi|i = 4, 6, 8, 10}, can only be connected to
or cut from the system as a whole, while flexible loads,
{Loadi|i = 1, 2, 3, 5, 7, 9, 11, 12}, can be controlled according
to load agents.
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Fig. 4. The diagram of an islanded MG.

In all simulations, MTs can provide active and reactive
power, while WTs and PVs are restricted to only provide active
power. The frequency and line voltage of the MG are set at
50 Hz and 380 V, respectively. Besides, the line losses are
considered for the line impedance is set at 0.641+j0.101 Ω/km.
Furthermore, assume the MG works in a balanced state
initially. In summary, the detailed parameters and setups of
DGs and loads are listed in Table I and Table II, respectively.

Throughout all simulations, the outputs of WTs and PVs
are shown in Fig. 5(#1) and (#2), respectively. Moreover, the
load forecast (curve in red) and the expected loads after DR
(curve in blue) are shown in Fig. 5(#3), so the values lc(t) of
peak shaving or valley filling can be obtained by subtracting
the expected loads from the load forecast, while the time-of-
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TABLE I
Setup and parameters of DGs

Sources DG ratings Control α β γ
DG1 80 kW, 40 kVar PQ 0.059 6.71 80
DG2 36 kW, 0 kVar MPPT
DG3 85 kW, 42 kVar PQ 0.066 6.29 43
DG4 30 Ah V/F
DG5 90 kW, 50 kVar PQ 0.046 7.53 35
DG6 50 kW, 0 kVar MPPT
DG7 76 kW, 48 kVar PQ 0.069 4.57 48
DG8 48 kW, 0 kVar MPPT
DG9 38 kW, 0 kVar MPPT
DG10 52 kW, 0 kVar MPPT
DG11 95 kW, 36 kVar PQ 0.052 5.89 42
DG12 55 kW, 0 kVar MPPT

TABLE II
Setup and parameters of Loads

Load Max.Demand Load Type ω σ
Load1 0∼36kW, 25kVar Flexible Load -0.041 2.43
Load2 0∼48kW, 10kVar Flexible Load -0.040 2.86
Load3 0∼40kW, 15kVar Flexible Load -0.026 1.98
Load4 30kW , 20kVar Conventional Load
Load5 0∼28kW, 5kVar Flexible Load -0.081 3.21
Load6 15 kW , 10kVar Conventional Load
Load7 0∼30kW, 10kVar Flexible Load -0.053 2.52
Load8 30 kW , 15kVar Conventional Load
Load9 0∼36kW, 10kVar Flexible Load -0.029 1.98
Load10 25 kW , 10kVar Conventional Load
Load11 0∼42kW, 15kVar Flexible Load -0.063 3.62
Load12 0∼50kW, 15kVar Flexible Load -0.026 2.24

use electricity tariff (electricity rate) is shown in Fig. 5(#4).
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Fig. 5. Setups of WTs, PVs, loads and electricity rates. (a) Outputs of WTs.
(b) Outputs of PVs. (c) Total load forecast and total load after DR. (d) The
time-of-use electricity tariff.

V. Results

To test the performance of our parallel and distributed
optimization method, four cases are designed. The first case
focuses on the comparisons of the accuracy of found optima
and the convergence rate (or the number of iterations) for
our method, the interior point algorithm and the standard

ADMM, while the second case focuses on the comparison
of the system performance under three different optimization
methods. Finally, the last two cases examine the impacts
of different topologies of communication networks on the
performance of the MG, and the system performance when
plug-and-play occurs.

A. Case1: Comparison of Accuracy and Convergency Rate of
Different Optimization Methods

In this case, there are two parts, where in the first part,
the accuracies of the optima found by our method and the
centralized interior-point algorithm (IPA) are compared, while
the numbers of iterations of our method are compared with
those of the standard ADMM. To test the accuracy, four convex
functions are selected or modified from standard functions as
objective functions, like Eq. (4a), which are listed in Table III.

TABLE III
Description of Functions for Tests

No. Names of Functions for Tests Description
I Sphere Function min

∑n
i=1 fi(xi) = x2

i

II Sum of Squares Function min
∑n

i=1 fi(xi) = ix2
i

III Sum of Different Powers Functions min
∑n

i=1 fi(xi) = |xi |
i+1

IV Modified Zakharov Function
∑n

i=1(x2
i + 0.5ix2

i + 0.5ix4
i )

To create an optimization problem with constraints, an
equality constraint, such as Eq. (4b), is also needed, in which
the range of coefficients is given below,

−20 ≤ ci ≤ 20. (37)

For a function for test in Table III, a constraint is produced by
choosing a set of {ci|i = 1, · · · , n} at random and the value of b
should select carefully to guarantee the existence of minimums
of each function for test, so an optimization problem with
constraints, like Eq. (4), is formed. And then a communication
network is built for agents. When the scales of optimization
problems rise a lot, e.g. the number of fi(xi) rises from
ten to thirty, the number n of agents rises correspondingly.
For our method, there is no restriction on the structure of a
communication network, so a standard ring network as Fig. 1
is used when n = 10, while a ring network with degree of
three (not counting self-loop) is used when n = 20 and 30.
For the standard ADMM, a standard ring network is always
used for different n due to its working in cascade.

To reduce randomness, for each function in Table III, 100
constraints are produced by choosing ci at random, so 100
optimization problems with different constraints are formed.
After these optimization problems are solve by IPA, our
method and ADMM, respectively, minima are obtained, all of
which are drawn on one of twelve sub-figures in Fig. 6. Thus,
Fig. 6 shows the minima of four functions for tests, where the
minima obtained by IPA is represented as red points, those
by our method as blue circles and those by ADMM as black
crosses. From Fig. 6, it can be seen that the minima found by
our method overlap or almost overlap with those by IPA and
ADMM, no matter which test function is used, which means
the accuracy of our method is consistent to that of IPA.
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(c) n=30

Fig. 6. Comparison of accuracy between our method (PDOM), interior-point algorithm (IPA) and ADMM. Remarks: a logarithmic axis is used due to the
significant differences among the found minimums, and those minimums very close to zeros are not drawn on the figures with a logarithmic axis.

TABLE IV
Comparisons of Accuracy, Number of Iterations (NoI) and Computation Time

(CT)

Functions n
MAE MAE NoI NoI CT (s) CT (s)

(PDOM) (ADMM) (PDOM) (ADMM) (PDOM) (ADMM)

I
10 8.23 × 10−5 2.30 × 10−3 44 131 0.29 0.71
20 5.52 × 10−5 3.71 × 10−4 63 348 0.65 2.18
30 3.24 × 10−4 3.23 × 10−5 131 904 1.73 6.80

II
10 1.00 × 10−3 0.02 58 186 0.17 0.30
20 7.10 × 10−4 0.01 113 345 0.48 0.56
30 5.00 × 10−3 0.01 242 507 1.24 0.83

III
10 1.30 × 10−6 0.05 32 566 0.14 1.36
20 6.47 × 10−5 0.08 264 5940 1.94 11.31
30 4.61 × 10−4 0.04 279 10191 2.67 18.89

IV
10 8.53 × 10−6 0.16 54 1015 0.22 2.67
20 1.29 × 10−5 0.11 94 1443 0.54 3.86
30 9.91 × 10−5 0.08 220 1734 1.54 4.66

Under a different number n of agents, for each test function,
the mean absolute errors (MAEs) of minima and the statistical
averages of numbers of iterations are calculated, respectively,
where the minima found by IPA are considered as the true
values to find MAEs of our method and the standard ADMM.
Finally, the MAEs and the computation time of different
methods are listed in Table IV. Note that our parallel method is
simulated on a common computer, because a parallel computer
is not available.

As shown in Table. IV, comparing the MAEs, it can be
seen that all statistical averages are very close, which means
no matter which method, centralized or distributed, is used,
the minima can be found. On the other hand, when observing
the middle two columns and focusing on the numbers of
iterations, we can find the number of iterations grows with
the increased scale of optimization problems and it also grows
with the complexity of test functions. For example, the number
of iterations when n = 30 is much greater than that when
n = 10. Moreover, the number of iterations for the third
function is significantly greater than that for the first function
when n = 30.

Compared the number of iterations using our method with
that using ADMM, one can find that the number of iterations
using our method is much less than that using ADMM, no
matter what n is employed. With the rise of complexity of
functions, e.g. the third function, compared the number of
iterations using our method and ADMM when n = 30, it
can be seen that the number of iterations using ADMM reach

a very large number, whereas this is significantly smaller
using our method. In summary, under the same accuracy,
the convergence rate of our parallel and distributed method
(PDOM) is much faster than that of the standard ADMM. In
other words, the number of iterations in our method is only
one third or even less than that of ADMM.

B. Case2: Comparison of System Performance under Different
Optimization Methods

The economic dispatch with DR is a typical optimization
problem, which is modeled in Section III. To compare the
system performance under different optimization methods,
three methods, a centralized method (IPA), ADMM and our
method, are applied to solve the economic dispatch problems
in an MG. Note that Fig. 4 shows the structure of a radial MG
that is used for simulations, where its parameters are listed in
Table I and Table II, and the outputs of renewable energies
and the values of peak shaving or valley filling are shown in
Fig. 5. Before simulations, the topology of the communication
network composed of agents G1(V, E) is shown in Fig. 7,
where there are two subgraphs, i.e., G11(V, E) for supply side
and G12(V, E) for demand side.

Fig. 7. Topology of a communication network G1(V, E)

Under these settings, three optimization methods are applied
and the simulation results are shown in Fig. 8. Comparing
the results obtained by three methods, we can see the system
performance is almost the same no matter what method is
applied. Moreover, the voltage and the frequency stay very
close to 380 V and 50 Hz, respectively, except the regulations
of flexible loads. And the outputs of the BESS satisfy the
desire that it balances the system instantaneously and then its
outputs are shared by dispatchable DGs on supply side.
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(a) IPA
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(b) ADMM

0 1 2 3 4 5 6 7 8 9 10 11 12
360

380

400

(V
)

Time (h)

#6
 

 
Line Voltage

0 1 2 3 4 5 6 7 8 9 10 11 12
49.5

50

50.5

Time (h)

(H
z)

#5
 

 
Frequency of MG

5

10

15

20

In
cr

em
en

ta
l c

os
t

#3
 

 λ
1

λ
3

λ
5

λ
7 λ

11

−50

−25

0

25

50

E
S

S
 (

kW
, k

V
ar

)

#4
 

 
P

4 Q
4

0

20

40

60

80

100

A
ct

iv
e 

po
w

er
 (

kW
)

#2
 

 P
1

P
3

P
5

P
7 P

11

0

20

40

60

80

F
le

xi
bl

e 
Lo

ad
 (

kW
)

#1
 

 LP
1

LP
2

LP
3

LP
5

LP
7

LP
9

LP
11 LP

12

(c) PDOM

Fig. 8. Comparison of system performance when interior-point algorithm (IPA), ADMM and our method (PDOM) are applied, respectively.

In terms of Eq. (32), the incremental costs λ can be calculat-
ed according to the active power outputs of dispatchable DGs.
From the results, we can see that the incremental costs of all
dispatchable DGs reach a consensus, which indicates that the
minimal costs on the supply side are achieved. Summarily,
from these observations, they means the system works well
and its performance satisfies the requirements.

Moreover, the performance of DR on flexible loads of
consumers are investigated, when the values of peak shaving
or valley filling are given. So, simulations are carried out and
results are shown in Fig. 9, where the profits of consumers with
and without DR obtained by our method are compared. On
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Fig. 9. Simulation results of the profits with DR versus without DR.

demand side, in response to the requirements for peak shaving
or valley filling, flexible loads are regulated to join the demand
response and increase consumers’ profits. For example, when
valley filling is needed, a relatively low electricity rate is
given to attract consumers to increase their loads. In this way,
valley filling is completed and at the same time consumers
get more benefits. Compared the profits obtained with DR to
those without DR, as shown in Fig. 9, it can be found that the
profits with DR (curve in blue) are significantly greater than
those without DR (curve in red).

C. Case3: Impacts of Different Topology on System Perfor-
mance

In this section, another topology of a communication net-
work G2(V, E) as shown in Fig. 10 is used to investigate
the impacts of different topology on the system performance.
Compared to the network G1(V, E) in Fig. 7, it can be found
that the links of two subgraphs in G2(V, E) are less than
those in G1(V, E), where less links lower the cost to build

a communication network. To test the performance on the
economic dispatch with DR on the network G2(V, E), all
settings follow those in Case 2.

Fig. 10. Topology of a communication network G2(V, E)
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Fig. 11. Simulation results of economic dispatch on a different network
G2(V, E). (#1) and (#2) are flexible loads and outputs of dispatchable DGs.
(#3), (#4) and (#5) are the outputs of the BESS, the frequency and voltage in
the MG.

After simulations, the results are shown in Fig. 11. From
Fig. 11, observing the curves of frequency and voltage, they
indicate the MG runs well owing to the regulation of dispatch-
able DGs and flexible loads, where the references for DGs and
loads are obtained by our method. Compared to the results in
Case 2, the results on G2(V, E) is very similar to them. In
summary, it can be concluded that the our method can work
on different topologies of networks, which offers a way to
build communication networks without many constraints.
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D. Case4: Impacts of Plug-and-Play on System Performance

In an MG, a common operation is DG cutoff due to failures
or DG connection after recovery, a.k.a. plug-and-play. For
our method, DG cutoff or connection in an MG corresponds
to the increase or decrease of agents on the communication
network, which only changes the size of the adjacency matrix
A, so the proposed method still works due to its scalability.
For example, if a DG is cut off from the MG, then the
corresponding agent on the communication network will not
deal with any information but only forward information it
receives to its neighbors. It is worth noting that cutting off

agents from the communication network directly may cause
the communication network not connected, which makes the
method not work. This is why we do not cut off agents but
make them forward information.

Therefore, this case is designed to test the system perfor-
mance when the plug-and-play occurs in the MG, where DG5
fails at t = 3 h and it is cut off from the MG, while it recovers
at t = 5 h and connects to the MG again. Other settings follows
those in Case 2. Under these settings, simulations are carried
out and the results are shown in Fig. 12.
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Fig. 12. Simulation results of economic dispatch, when the plug-and-play
occurs.

From Fig. 12(#2), it can be seen that at t = 3 h DG5 is cut
off from the MG due to failure, so its outputs becomes zero.
Correspondingly, its incremental cost λ5 is not consistent with
others. However, the system still works well for the voltage
and frequency maintain at prescribed values. On the other
hand, when the DG recovers at t = 5 h, it reconnects to the
MG again. At this time, the corresponding agent restarts, so
the incremental cost λ5 returns to consistence again. As the
simulation results demonstrate, our method still works well,
even if plug-and-play occurs.

VI. Conclusion

We have proposed a parallel and distributed optimization
method for energy management of MGs. The aim of our
parallel and distributed optimization method is to increase
convergence rate of distributed optimization methods. So, the
objective functions and constraints of the original optimization
problem have to be decomposed, which forms the local

objective functions and local constraints for agents. The local
objective functions and local constraints are only related to an
agent and its neighbors, so agents can solve the decomposed
optimization problems locally and independently. Further, the
obtained optima are exchanged with their neighbors and then
they update their local constraints. Consequently, the optima of
the original optimization problem can be found in parallel by
iterations. Also, two propositions and a corollary are proved
to indicate the convergence of our method. Finally, an MG
is built in MATLAB/Simulink, where a typical optimization
problem, namely the economic dispatch with DR, is solved by
our method in a distributed manner.

Simulations are carried out and the results are summarized
specifically. First, the accuracy of optima using our method is
compared to that using IPA and ADMM, where the results
show that all these three methods find almost the same
optima. However, when the number of iterations in our method
is compared to that of ADMM, it can be seen that the
convergence rate of our method is significantly faster than
that of ADMM. Second, no matter what distributed methods
(our method or ADMM) or centralized methods are used, the
simulation results also show that both the minima of cost
functions on the supply side and the maxima of profit functions
on demand side are obtained, which means that our method
can complete the economic dispatch of MGs. Third, when
the startup and shutdown of DGs occur, the simulation results
show that our distributed method still can run the MG well due
to the scalability of the method. For future work, considering
nonlinear constraints and analyzing the convergence in more
general conditions in theory are significant questions.
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