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Abstract. The Feynman-Smoluchowski Engine (FSE) is simply a ratchet and pawl
device, connected by a shaft to a vane, that is small enough to rectify the effect of
random bombardment of gas molecules on the vane. The significance of the FSE is that
it has inspired much activity in the area of Brownian ratchets. There is considerable
interest in both the FSE and Brownian ratchets as these models are finding increasing
use in a wide range of multidisciplinary applications from stochastic signal processing
to econophysics to biology and even sociological processes. In this paper we examine
the problem of detailed balance of the FSE and we introduce a new problem that
considers a ratchet wheel with multiple pawls.

INTRODUCTION

The Feynman-Smoluchowski Engine (FSE) consists of a ratchet connected to a
set of vanes via an axle. As the air molecules randomly bombard the vanes, the
ratchet oscillates. It would appear that the action of the ratchet & pawl ‘rectifies’
these oscillations and the system rotates in one direction, thus being able to per-
form useful work, in violation of the Second Law of Thermodynamics. In 1912,
Smoluchowski was the first to correctly suggest that there is no net motion, at
equillibrium, as fluctuations in the spring loaded pawl will occasionally allow the
ratchet wheel to rotate in the opposite direction — thus preserving detailed balance.
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Of course, for the non-equillibrium case, when energy is supplied into the system,
there is net motion without violation of the Second Law.

The ratchet & pawl device was revisited, in 1963, by Feynman [2] in greater
detail — detailed balance probabilities are given and engine efficiency calculations
are explored. It is now well-known that Feynman’s treatment was flawed, as he
incorrectly applied the quasi-static assumption to the FSE, leading to an incorrect
calculation of engine efficiency [3]. This paper now also questions Feynman’s treat-
ment of the detailed balance. Although Smoluchowski & Feynman only saw the
FSE as a ‘thought experiment,” the FSE is no longer hypothetical as the so-called
Feynman-micromotor [4] has been fabricated using MEMS technology and has in-
spired the ‘Brownian ratchet’ concept. Hence there is renewed interest in the FSE,
and correct analysis is now of importance.

Consideration of the case of a ratchet wheel with multiple pawls, inspired us to
scrutinize the treatment of detailed balance in [2]. Hence, we begin our discus-
sion by performing a detailed balance, using Feynman’s method based on energy
probabilities, to highlight the problems. Then we offer a solution by adopting a
different approach, based on crossing rates. Resulting further open questions are
then identified.

FEYNMAN’S APPROACH

Before we discuss the multiple pawl scenario, we briefly recall Feynman’s ap-
proach. Feynman begins by calling the threshold energy that the ratchet wheel
needs to rotate clockwise (CW) one notch passed the pawl, . He then states the
probability of the ratchet wheel attaining € is e=¢/*T. Also he states that this is
the same probability required for the pawl to fluctuate enough to disengage, thus
allowing the ratchet to rotate counterclockwise (CCW).

Without discussion, Feyman implicitely identifies these probabilities as the same
probabilities required for CW and CCW rotation. Thus he concludes that the
system is balanced and there is no net rotation on average. Of course, his final
conclusion is correct, as we cannot allow a violation of the Second Law of thermo-
dynamics. However, one question is the leap in logic from probabilities to do with
pawl and ratchet states, to probabilities of CW and CCW rotation.

The real situation is much more complex. For instance, when the pawl is disen-
gaged, the ratchet wheel can rotate in either direction! Also when pawl is engaged,
the ratchet wheel may attain the energy ¢, but in the wrong (CCW) direction, and
thus will be dissipated as heat.

These arguments demonstrate that in order to fully understand the FSE, a de-
tailed balance from first principles is required. But let us now use Feynman’s
approach, to examine the detailed balance of multiple and single paw! systems, to
further hightlight the difficulties.
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THE MANY PAWL PARADOX

An interesting question is to ask what happens if the ratchet has more than
one pawl? It would appear prima facie that as the fluctuations in all the pawl
springs are not totally correlated, then the chance of disengagement is reduced and
therefore the wheel will rotate in one direction. This cannot be correct as it would
then be possible to construct a machine that would disobey the Second Law.

Firstly, for the case of one pawl let the spring stiffness constant be A. If the
ratchet tooth height is ¥ then the energy to disengage, by Feynman, is ¢ = $AY?,
to produce CCW movement. By symmetry this is also equal to the energy required
to move the ratchet clockwise, against the pawl spring. The probability of clockwise
movement is e ~¢/*T which is also the probability of an counterclockwise movement.
Notice that we are ignoring any constant premultipliers to the probabilities, as these
will balance out anyhow.

Now, let there be ¢ pawls each with a different spring constant A;. For sim-
plicity let the spring constants be normalized by A, thus A; = n;A, where n; is a
unitless multiplier. Assuming worst case of no correlation between the pawls, the
probability that the ratchet moves clockwise is P(CW) = e~ 2™¢/*T whereas the
probability that the ratchet will move counterclockwise is P(CCW) = [e ™</*T =
e 2K = P(CW).

Hence a clockwise movement is equally probable to a counterclockwise movement
and therefore useful work cannot be done (at equillibrium). Although we will
later show the use of Feynman’s approach is not correct, it produces the correct
answer. It even produces the right heuristic interpretation: although many pawls in
parallel reduce the probability of disengagement, due to uncorrelated fluctuation,
the probability of clockwise movement is equally reduced by the parallel effect of
the spring constants!

THE SINGLE PAWL CASE

Now, for the single pawl case, let us consider the CW and CCW directions sepa-
rately. CW Rotation: As before, let the required energy threshold for the ratchet
wheel to rotate one notch passed the pawl be €. In general we can say that € = €, +€,,
where ¢, is supplied by the ratchet wheel fluctuation trying to move passed the pawl,
and ¢, is supplied by the pawl fluctuation trying to (partially) disengage. Now the
probability of attaining ¢, is e /*7 and attaining ¢, is e~ */¥7. But note that when
the ratchet wheel gets a ‘kick’ of energy equal to ¢, there is a chance of % that the
kick would be in the CW direction. Similarly, the pawl can fluctuate upwards (to es-
cape the ratchet teeth) or downwards (to dig into the ratchet teeth) and the chance
of attaining €, in the upwards direction will be 1e=%/¥T_ Therefore, the probabil-
ity of CW rotation is, P(CW) = Le~%/kTle=e/bT = Lle(-eomer)/kT — 1o=¢/kT
CCW Rotation: In this case, we require an energy ¢ from the pawl alone to
disengage from the ratchet wheel. When the the pawl is disengaged, there is
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a chance of % that the ratchet wheel will rotate in the CCW direction. Hence,
P(CCW) = %e“G/kT% = ie‘e/kT.

Therefore, P(CW) = P(CCW) and we have detailed balance. But do we? When
calculating P(CW), we ignored the case when ¢, acts in the direction to dig the
pawl deeper into the ratchet teeth — in this case the ratchet must attain ¢, + ¢ for
CW rotation. However, if we alter the probabilities to reflect this, we apparently
lose detailed balance.

An even more serious flaw is as follows. For CW rotation, the requirement is for
€, + ¢, > €. However, it is easily shown that, if ¢, and ¢, are independent and have
exponential distributions then, the probability of this is

/eoo dEp(E,)®p(E,) = (1+ e/kT)e—e/kT.

Hence we have that P(CW) is always unequal to P(CCW), which is clearly
not allowed. The question then arises, where is the flaw and what is the correct
approach?

BALANCE OF CROSSING RATES

In seeking an alternative method for analytically obtaining detailed balance,
we turned to the idea of calculating crossing rates [5] of the pawl over the top
of a ratchet tooth. For simplicity, a linear ratchet is considered as in Figure 1 —
equivalent results apply to the more familiar rotary ratchet. We define y = position
of pawl above bottom of ratchet teeth, z = position of ratchet. X = horizontal
pitch of ratchet tooth, ¥ = vertical height of ratchet tooth, y, = rest position of
pawl, z, = rest position of the ratchet, m, = mass of pawl, m, = mass of ratchet,
Ap = spring constant of spring connected to pawl, A, = spring constant of spring
connected to ratchet, d, = damper constant for damper connected to pawl, d, =
damper constant for damper connected to ratchet.

We take £ = 0 to correspond to when the bottom of the ratchet tooth is opposite
the pawl. There is a constraint that y/Y > z/X, for 0 < z < X since the pawl
cannot be below the ratchet tooth. Now, the ratchet slips one tooth to the right
(normal ratchet action) if z crosses the value X in the positive direction. Similarly, a
slip to the left occurs when z crosses the value 0 in the negative direction (abnormal
ratchet action).

The Hamiltonian of the system is: H = 3\, (z — z,)? + 3mpd? + 5 A (y —
Yo)? + £ m, y* where & = dx/dt and § = dy/dt. Notice this does not correspond
exactly to Figure 1 — we have added a second spring to the ratchet that can be
discarded at the end of the analysis. This is necessary to provide a constraint in z,
to enable the integrals that follow.

The steady state joint probability density function of these variables is given by
the Gibbs relation: p(z,#,y,9) = ZLO e~H/¥T where Z, is a normalising constant
called the partition function.
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FIGURE 1. Ratchet and pawl system

The crossing rates of z at some level zy, in Transition State Theory [5], are:
X0 oo o0
vt [Tdi [Tay [ dpin(e,a,0) (1)
0 Y1 —o0
0 e} e’}
—0 Y1 —

where 7, is the ratchet height when x = x;.
For the above probability density function »™ = v~ = v and is given by:

2_7T (kT)3 Q <(y1 B y")\/rp> e—)w (z1—20)2 /KT

Zo \| ApMpmy VkT

and Q(z) is the Gaussian error probability function.
Now for a right slip across z = X we must have y; = Y and hence:

2 (kT)? 0 ((Y — y")\/g) oM (X—a0)2/KT
VET

Zo \ Apmypmy
whereas for a left slip across z = 0 we have:

y _ 2m | (KT 0 (Y_y")\/)‘; oM (=@o)? /KT
teft Zo \ Apmypm, VET

since we must still have y; =Y for this slip to occur.

If we remove the extraneous ratchet spring, by letting A, — 0, then we have:
Viept = Urignt — thus detailed balance is preserved. It can be shown that this
treatment also works for the multiple pawl case. Note that even with the ratchet
spring included, balance occurs if z, = X/2 as might be expected.

The dampers do not explicitly appear in any of the above analysis, but will affect
the nature of the fluctuations.

vV =

Vright
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CONCLUSIONS AND OPEN QUESTIONS

The analysis presented shows that there is no paradox associated with the FSE,
but questions Feynman’s approach. Note that it was necessary to initially include
the spring connected to the ratchet in order to properly treat the constraint between
the ratchet and pawl positions, but this spring was later discarded. The analysis
opens up a number of other questions: (a) Is there a deeper significance to including
the extraneous spring? Is there a thermodynamical principle that can be invoked
here? For instance, did the spring function as load to thermodynamically complete
the system (cf. [6])7 (b) Is there a way Feynman’s type of approach can be corrected
and be made to work? (c) If we calculate the crossing rate for a case where the
Hamiltonian is the energy of a simple harmonic oscillator with a natural frequency
wp, we find that v* = £Le~/*T By inspection, £ is the frequency of attempts
to cross the barrier, and e~¢/*T is the fraction of successful attempts. How do we
reconcile this interpretation of the exponential term, with the idea that it is the
probability of attaining an energy greater than ¢? (d) Suppose the ratchet had
teeth with irregular heights, what happens then? (e) If a weight is connected to
the ratchet which tends to move it to the left, the ratchet will slip backwards more
often than forwards. Since the weight is doing work on the system, it would be
a useful pedagogical exercise to discuss where this energy is going. (f) Is there
any fundamental difference between the non-equillibrium mode of the FSE and
a Brownian ratchet? Both are ratchets, both give directed motion under non-
equillibrium conditions and both require an input of external energy to operate. Is
the difference semantics or fundamental?
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