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Abstract. For the first time we describe an apparent paradox concerning a moving
plate capacitor driven by thermal noise from a resistor. A demon restores the plates
of the capacitor to their original position, only when the voltage across the capacitor
is small - hence only small forces are present for the demon to work against. The
demon has to work harder than this to avoid the situation of perpetual motion, but
the question is how? We explore the concept of a moving plate capacitor, driven by
noise, a step further by examining the case where the restoring force on the capacitor
plates is provided by a simple spring, rather than some unknown demon. We display
simulation results with interesting behavior, particularly where the capacitor plates
collide with each other.

THE MOVING PLATE CAPACITOR DEMON

Consider a capacitor C with charge q and voltage v connected in parallel with a
resistor R at a temperature T. The average force of attraction between the plates of
a capacitor of area A and spacing x is given by {/} = —0.5 (v2) dC/dx — (q2)/2eA =
kT/2x since (q2) = kTC, where e is the permittivity of the material between the
plates (in our case, air or a vacuum). The force / does work when the plates move
together. Now suppose a demon is used to determine when the voltage across the
capacitor is zero (V = 0) and at that instant the resistor is disconnected. There
is no force between the plates, so they can be restored to their original position
and then the resistor is reconnected. Clearly, so that we do not violate the laws
of thermodynamics, the demon must do work, but the open question is where and
how exactly is this work done? Can the work of Szilard, for instance, be used to
explain this? Even if the voltage is not exactly zero, as long as it is small enough,
the work done in restoring the plates to their initial position will be negligible, and
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the 'paradox' still remains. This problem only arises due to the rectification effect
of force being proportional to the square of the voltage. This bears some similarity
to Penfield's paradox [1] where the torque of a motor was related to the square of
the current.

The dependence of the force on the square of either the voltage or the charge
is an interesting situation since the fluctuations create a net force of attraction.
The capacitor then acts as a rectifier of thermal fluctuations which is the aspect
that we will focus on in this paper. Moreover, it is related to the old 'adiabatic
piston problem' [2,3]. In that problem two gases with different densities and tem-
peratures, but the same pressure, are separated by an adiabatic wall. The gases
are in equilibrium from the point of view of classical thermodynamics, but it is
known that the fluctuations push the piston to the cold side. The adiabatic piston
problem is perhaps more involved than the present one, since the piston acts as a
heat conductor. Nevertheless, the two problems are related, because in both cases
a system is in equilibrium from the point of view of thermodynamics, but evolves
due to fluctuations. The capacitor paradox is useful in the study of this problem
because this effect is achieved without the use of adiabatic constraints. Note that
when references are made to 'paradoxes' or 'demons', in this paper, these are merely
heuristic devices used to highlight incompleteness in the present modelling of the
system. The open question is to find the simplest description that completes the
model, so that no apparent violations occur. This is of importance for increasing
our understanding of the modelling of fluctuating systems.

CAPACITOR WITH A SPRING

In order to gain further appreciation of this problem, we decided to simulate the
system shown in Figure 1. A spring of stiffness A is connected to a moving plate of
mass m, a resistor R is connected in parallel to provide noise, and i is the thermal
noise due to R with power spectral density Sa(f) — 2kT/R.

Noise

Figure 1. Capacitor, Mass and Spring System.

The relevant equations are:

dq q
-77 + ^77dt RC

d2x—- -
dt2 C = / = (1)
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where x0 is the distance the plates are apart when the the spring force is zero, and
x is the deviation from this value.

A mechanical damper was not included because the mechanical system is damped
by its coupling to the electrical system, and in addition to providing a force f = du
proportional to the velocity w, it has associated with it a thermal noise force gen-
erator of power spectral density S(f) = 2kTd which would obscure the interaction
between the electrical and mechanical parts of the system.

In the simulation, a demon was not included, the object being solely to investigate
the energy transfer between the electrical and mechanical systems. The parameters
were arbitrarily chosen so that the RC circuit had a bandwidth of 2 x 105 rad/sec
and the mechanical system was resonant at 105 rad/sec. For a system in thermal
equilibrium with independent degrees and harmonic of freedom, the energy in each
of the degrees of freedom would be expected to be \kT. For small perturbations
of the capacitor plate, the mean square values of g, x and u = dx/dt would be:

fA kT kT
r _ t^1 & — & — (9}G0 — —, <JX — ——, au — — (Z)

Xo A Tfl

The carets are used to designate that these may not be the true values as will be
discussed later. The parameters were initially chosen with ax = 0.2 x0 so that the
capacitor plate perturbations were small. With arbitrary choices of x0 = 0.1 mm
and C0 — 50 pF, the other parameters are then all determined. The values are
kT = 4.0 x 10~21 J, x0 • = 0.1 mm, C0 = 50 pF, R = 1.0 x 105 ft, A = 1.0 x 10~n

N/m, ra = 1.0 x 10~21 kg.
In the steady state, the average value of x will not be zero since the average

force due to the noise voltage on the capacitor will cause the spring to extend
slightly. Taking the ensemble average of the second equation in (1) and solving for
the displacement x gives:

kT
x + —————— « 0, x « -2.04 x 10~6 (3)2(x + x0)X v ;

where the approximation is q2 ~ kTcA/(x -f- x0). The approximation might be
expected to be valid if x and ax are both « x0. The approximate equation has
no solution if x2

0 < 2kT/X = 2<72.
Figure 2 shows simulation results when the system had reached an apparent

steady state. The variables plotted are normalised values Q = q/crq, X = x/ax and
U = u/aq, where aq, ax and au are defined by (2).

The plates have an initial spacing X0 = x0/ax = 5, so X from (3) is —0.102.
For the time interval shown, the mechanical variables X and U evolved only slowly
due to the lack of mechanical damping, so the values are not representative of the
average values. However the time average mean and variances calculated over the
last 5 ms of a 10 ms simulation were (Q) = -0.076, a2

Q = 0.968, (X) = -0.098,
a\ = 0.866, (U) = -0.003 and a2, = 0.853.
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If the capacitor plates were fixed, the 95% confidence limits for <JQ would be
approximately 0.88 < <JQ < 1.13 and for small perturbations the result might be
expected to be similar. The confidence limits for a2

x and a^ are difficult to estimate,
but are considerably wider because of the slow evolution of X and U.

With ax = 0.2x0, the plates of the capacitor remain separated for most of the
time and for the parameters chosen no collisions between the plates were observed
in the simulation. However if ax is increased, it was found that the plates collided
regularly. In the simulation these collisions were assumed elastic so there was no
energy loss. However it is not clear what should happen to q. If the plates are
shorted together, the charge q might be expected to go to zero. On the other hand,
if there is assumed to be an infinitesimally thin insulating sheet between the plates,
then q would remain unaltered. Since the capacitor voltage is zero at this point,
there does not seem to be any energy implications in setting q — 0, but clearly the
system will evolve differently in time.

L

Figure 2. Small Perturbations. Figure 3. Large Perturbations.

Figure 3 shows simulation results for the same system as before, except that A
and m were reduced by a factor of 6.25, for which ax — 0.5x0. The charge q was
not altered at the collision point. The simulation results show the plates colliding
regularly when X = -X0. In this case X0 = 2.0 and X = -0.293 from (3).

In the time interval shown, multiple collisions occurred rapidly. When this occurs,
Q can become large (due to the fact that the voltage across the capacitor is near
zero, so no charge is lost through the resistor). The time average means and
variances over an interval of 5.0 ms were (Q) = -0.258, 0g = 3.013, (X) = -0.284,
a\ = 0.903, (U) = -0.004 and a^ = 0.891.

The main points to note are that (X) was close to its predicted value and the
variances of X and U were close to unity, but the variance of Q was significantly
greater than unity. When elastic collisions between the plates occur at times ^
determined by x -f x0 = 0, the second equation in (1) becomes:

m du(i)
dt = 0 (4)
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where ti is an infinitesimally small time before the time of collision ^. The extra
term accounts for the fact that during an elastic collision, the velocity u(i) — dx/dt
reverses in sign so that u(t^) = —u(t~). Taking the time average of this equation
over 0 < t < T then yields:

(5)

Since — x0 < (x) < 0 and and u(t^} < 0, a positive value for (q2) is obtained.
However, whether it remains bounded or not depends on the number of plate
collisions in the interval (0,T) in relation to T. From considerations discussed
later, it seems that this number may grow faster than T.

If q is set to zero when the plates collide, the mechanical oscillations increase
without limit. This seems to correspond to a Maxwell demon, although it is not
clear how energy is being supplied to the system. Figure 4 shows a plot of the
mean square value of the velocity U computed over consecutive intervals of length
250 [is for the original simulation when q was unaltered and for the case when q
was set to zero.

Figure 4. Mean Square Velocity (a) q not set to zero, (b) q set to zero.

DISCUSSION
Classical thermodynamics gives the stationary joint probability density function

of g, x and u as

Ax2 mu
2eA (6)

where Z is a normalising constant.
Now (6) indicates that aj) = 1 and <JQ = oo regardless of the parameters, the

latter being a consequence of collisions between the plates. Since in the first sim-
ulation no collisions were observed, the system had clearly not reached a steady
state, and it would take an extremely long time to do so. The second simulation

557



confirmed that with collisions between the plates, Og becomes larger as expected.
The results from the third simulation were not consistent with (6), so it is concluded
that setting q = 0 at a collision is not correct.

A summary of the results obtained for the variable X are shown below. Sim-
ulation 1 (Figure 2) corresponds to X0 = 5 (for which no collisions occurred),
simulation 2 (Figure 3) corresponds to X0 — 2 with elastic collisions and leaving
q unaltered, and simulation 3 corresponds to X0 — 2 with elastic collisions and
setting q = 0. The theoretical values were obtained by numerical integration of the
probability density function in (6). The theoretical mean values agree well with
the approximate analysis presented earlier.

Sim(l) Theory(l) Sim(2) Sim(3) Theory(2,3)
Mean of X -0.098 -0.107 -0.284 1.376 -0.296
Variance of X 0.866 1.039 0.903 3.421 1.141

CONCLUSIONS AND OPEN QUESTIONS

We have shown that setting q = 0 cannot be correct, however:

• It seems that setting q = 0 when the plates collide drives the system out of
equilibrium via the boundary conditions, rather than by the more usual situ-
ation where explicit terms added to the equations break the detailed balance.
Can a prescription or a new generalised form of the fluctuation dissipation
relation (FDR) be formulated that automatically predicts whether a given
boundary condition yields equilibrium or not?

• Why does setting q = 0 seem to be a Maxwell demon? Theoretically there are
no energy implications, or are there?

• Is it necessary to include the radiation pressure or Casimir force between the
plates?

• While it is obvious how the electrical system couples energy into the mechan-
ical system, it is not clear how the electrical system provides damping to the
mechanical system.

• Does this problem have relevance to the 'adiabatic piston problem' [2,3], where
the system is in equilibrium from the point of view of thermodynamics (average
values) but not from the viewpoint of statistical mechanics (fluctuations)?
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