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Abstract. We introduce Parrondo’s paradox that involves games of chance. We
consider two fair games, A and B, both of which can be made to lose by changing a
biasing parameter. The apparently paradoxical situation arises when the two games
are played in any alternating order. A winning expectation is produced, even though
both games A and B are losing when we play them individually. We develop an
explanation of the phenomenon in terms of a Brownian ratchet model, and also develop
a mathematical analysis using discrete-time Markov chains. From the analysis we
investigate the regions of parameter space in which Parrondo’s paradox can occur. We
also consider some open questions that arise from this paradox and possible areas it
could be applied.

INTRODUCTION

Random motion or ‘noise’ in physical systems is usually considered to be a dele-
terious effect. However, the rapidly growing fields of stochastic resonance [1,2] and
Brownian ratchets [3] have brought the increasing realization that random motion
can play a constructive role. Furthermore, noise also plays a constructive role in
the creation of noise-induced patterns [4] and noise-induced phase transitions [5,6],
where it has been shown that noise can induce an ordered phase in a spatially

extended system.
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The apparent paradox that two losing games A and B can produce a winning
expectation, when played in an alternating sequence was devised by Parrondo as a
pedagogical illustration of the Brownian ratchet [7]. However, as Parrondo’s games
are remarkable and may have important applications in areas such as electronics,
biology and economics, they require analysis in their own right.

In this paper, we first introduce the concept of the Brownian ratchet and then
illustrate Parrondo’s games. Graphical simulations of the outcomes of Parrondo’s
games are then explained, in terms of the Brownian ratchet model.

Brownian Ratchets

A ratchet and pawl device was introduced in the last century as a proposed
perpetual motion machine — the aim was to try and harness the thermal Brownian
fluctuations of gas molecules, by a process of rectification. An explanation of the
mechanics for the ratchet and pawl device is given in The Feynman Lectures on
Physics [8].

In 1912, Smoluchowski [9] was the first to explain why there is no net motion
under equilibrium for the ratchet and pawl device, which he called Zahnrad mit
einer Sperrklinke in German. This device was later revisited by Feynman [8]. Even
though Feynman’s work was flawed [10], it has been the source of inspiration for
the ‘Brownian ratchet’ concept.

The focus of recent research is to harness Brownian motion and convert it to
directed motion, or more generally, a Brownian motor, without the use of macro-
scopic forces or gradients. This research was inspired by considering molecules
in chemical reactions, termed molecular motors [11]. Recently, many man-made
Brownian ratchets have been developed [3]. The roots of these Brownian devices
trace back to Feynman’s exposition of the ratchet and pawl system. By supplying
energy from external fluctuations or non-equilibrium chemical reactions in the form
of a thermal or chemical gradient, for example, directed motion is possible even in
an isothermal system [12,13]. These types of devices have been shown to work
theoretically [11,14], even against a small macroscopic gradient [15,16].

There are several mechanisms by which directed Brownian motion can be
achieved [17,18]. We will consider one of the mechanisms, termed flashing ratchets
[15,16], that may prove fruitful when considering Parrondo’s games. Consider a
system where there exists two one-dimensional potentials, U,, and U,g, as shown
in Figure 1. Let there be Brownian particles existing in the potential diffusing to
a position of least energy. Time modulating the potential U, and U,z can induce
motion, hence the term flashing ratchets. When the U, is applied, the particles
are trapped in the minima of the potential so the concentration of the particles
is peaked. Switching the potential off allows the particles to diffuse freely so the
concentration is a set of normal curves centered around the minima. When Uy,
is switched on again there is a probability Pp.q that is proportional to the darker
shaded area of the curve that some particles are to the right of L. These particles
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FIGURE 1. This shows how the mechanism of the ratchet potential works. The diagrams on
the left, (a)-(c) shows when there is no macroscopic gradient present and the net movement of
particles is in the forward direction (defined by arrow). The diagrams on the right, (d)-(f) have
a slight gradient present, this causes the particles to drift backwards while Uyg is acting. Hence
the net flow of particles in the forward direction is reduced.

move forwards to the minima located at L. Similarly there is a probability Py
(lightly shaded) that some particles are to the left of —(1 — &)L, and move to the
left minima located at —L. Since o < 1/2 in Figure 1, then Ppyg > Py and the
net motion of the particles is to the right. We can define the probability current as
J = Prwa — Py for a particle diffusing forward one step in the potential.

When a tilted periodic potential is toggled ‘on’ and ‘off’ — by solving the Fokker-
Planck equation for this system, Brownian particles are shown to move ‘uphill’ [15].
If the potential is held in either in the ‘on’ state or the ‘off’ state the particles move
‘downhill’. This is the inspiration for Parrondo’s paradox: the individual states are
said to be like ‘losing’ games and when they are alternated we get uphill motion or
‘winning’ expectations.

Parrondo’s Games

Game A, which is described by (1) is straight forward and can be thought of as
tossing a weighted coin, or going on a biased random walk.

Game A: P|winning] = p (1)
Pllosing] =1 —p

Game B is a little more complex and can be generally described by the following
statement. If the present capital is a multiple of M then the chance of winning is
p1, if it is not a multiple of M the chance of winning is ps;. It can be described
mathematically by (2),
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Game B: P[winning|capital mod M = 0] = p,
P[losing|capital mod M =0] =1 —p, 9
P[winning|capital mod M # 0] = p» (2)
P[losing|capital mod M # 0] =1 — p,

We refer to capital and gain as if anyone playing these games is against a common
opponent, the bank for example. The gain is based upon a one unit capital where
negative gains indicate a loss, thus a gain of five is equivalent to five units of capital.

If we require to control the three probabilities p, p; and ps via a single variable, a
biasing parameter ¢ can be used to represent a subset of the parameter space with
the transformation p = p' — ¢, p; = p}| — ¢ and p; = p}, — €. Substituting p' = 1/2,
pi = 1/10 and p) = 3/4 with M = 3 gives Parrondo’s original numbers for the
games [7].

We will digress for a moment to discuss what constitutes a fair game. The
behavior of game B differs from game A in that the starting capital affects whether
we are likely to win or not. If the starting capital is a multiple of M then we will
lose a little, and vice versa. The concept of what it means for a game to be winning,
losing or fair can be defined precisely in terms of hitting probabilities and expected
hitting times of discrete-time Markov chains as is done in our analysis section.
Before then we shall be a little looser with this terminology. We shall consider
a game to be winning, losing or fair according as the probability of moving up n
states is greater than, less than, or equal to the probability of moving down n states
as n becomes large.

Using the above criterion, both game A and game B are fair when ¢ is set to
zero. This is true of game A because the probabilities of moving up and down n
states are equal for all n. It is also true of game B even though the value of the
starting capital influences the probability of going up and down n states for small
values of n. Using this criterion both game A and B lose when ¢ > 0.

SIMULATION RESULTS

It can be deduced by a detailed balance and simulations that both game A and
game B lose when € > 0. Now, consider the scenario if we start switching between
the two losing games, play two games of A, two games of B, two of A, and so on.
The result, which is quite counter intuitive, is that we start winning. That is, we
can play the two losing games A and B in such a way as to produce a winning
expectation. Furthermore, deciding which game to play by tossing a fair coin also
yields a winning expectation. Figure 2 shows the progress when playing games A
and B, as well is the effect of switching periodically and randomly between the
games. The switching sequence affects the gain as the games are played, which is
shown by the different finishing capitals in Figure 2.

How well-behaved is the randomized game? We want to determine how erratic
the final capital is after a number of games have been played. We have evaluated
this by calculating the standard deviation of the final capital over the 10000 trials.
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FIGURE 2. The effect of playing A and B individually and the effect of switching between
games A and B with Parrondo’s original numbers (see text). The simulation was performed with

£ = 0.005 playing game A a times, game B b times and so on until 100 games were played, which
was averaged over 50 000 trials. The values of ¢ and b are shown by the vectors {a, b].

The thick lines in Figure 3a show games A and B played individually and the
randomized game. The standard deviation has been plotted for game B and the
randomized game. Let us first consider game A as its characteristics are well known.
The distribution for game A is approximately a normal curve, and has a standard
deviation of 2,/npq, which is proportional to y/n [7]. From Figure 3, the standard
deviation of the randomized game is approximately the same shape as for game A,
hence it is also proportional to /7, and may be written as k+y/n where k < 2,/pg.
Thus, we can conclude that the behavior of the randomized game is approximately
the same, if not better than that of game A.

Observations

We have two similar systems, the Brownian ratchet requires that the energy
profile be flashed on and off to get directed movement of particles, and Parrondo’s
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FIGURE 3. (a) The solid lines show the result as the games are played with € = 0.005 averaged
over 10000 trials. The thin lines show one standard deviation for the randomized and game A.
(b-d) Histograms of the capital after the 100th game of game A, game B and the randomized
game respectively, all of which are approximately normal distributions.
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TABLE 1. This shows the relationship between quantities used for Parrondo’s para-
dox and the Brownian ratchet.

Quantity Brownian Ratchet Parrondo’s Paradox
Source of Potential Electrostatic, Gravity Rules of games

Duration Time Number of games played
Potential Potential field gradient  Parameter ¢

Switching Uon and Uy applied Games A and B played
Switching Durations for 1o and 7o aand b

Measurement /OQutput Displacement z Capital or gain

External Energy Switching Uy, and Uy Alternating games
Potential Asymmetry Depends on « Branching of B to p; or ps
Mode of Analysis Fokker-Planck equation Discrete-time Markov chains

games that require switching between games in order to win. We can use the
mechanics of the Brownian ratchet to explain how Parrondo’s games work. Game
A is well known, and after playing a number of times, the capital has a normal
distribution. This is equivalent to when the potential is off in Brownian ratchets,
seen by the particle distribution in Figure 1. Thus, an appropriate assumption
would be that game B has a potential associated with it like that of the ratchet.
With a little more investigation it is possible to find the potential associated with
game B [7]. Although the potential is a little more complicated, it works in a very
similar fashion to energy profiles shown in Figure 1.

We notice from the previously mentioned Brownian ratchet that it is continuous
in time and space. That is the particles can exist at any real displacement along
the potential, which can be ‘flashed’ on or off at any real time. This is in contrast
to Parrondo’s ratchet, which is discrete in both the analogous time and space. The
capital of the games is quantized, and only integer numbers of games can be played.
This is highlighted by the mode of analysis. The Brownian ratchet is analyzed via
continuous variables in the Fokker-Planck equation where as Parrondo’s ratchet is
via discrete-time Markov chain analysis. The analogy between various quantities
in the two types of ratchet are highlighted in Table 1.

When we consider the ratchet and pawl machine, we can only get directed motion
when energy is added to the system. Similarly for a flashing Brownian ratchet,
energy is taken up by switching between two states to produce ‘uphill’ motion
of Brownian particles. In the simulations of Parrondo’s games, from two losing
games we can yield a winning expectation. This creates a paradox, “money for
free.” Where is the ‘energy’ coming from in Parrondo’s games? This is an unsolved
problem and remains an open question. Perhaps the answer lies in the context in
which Parrondo’s games are applied. For instance, assuming they can be applied
to stock market models, the ‘switching energy’ can be thought of as the buying
and selling transaction cost. However, in the case of two individuals gaming, the
interpretation of switching energy becomes problematic as there is no apparent
‘cost’ in the process of switching — this appears truly paradoxical. One possible
view is to note that ‘winning’ is dependent on one player being ignorant of the
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games — hence there is an ignorance ‘gradient’ between the two players that will
eventually equilibrate over time. There may be a heuristic analogy to quantum
mechanics, in that a full description of the discrete ratchet could be dependent on
the players/observers.

ANALYSIS

The parameters of Parrondo’s games can be chosen such that individually each
game is losing but a randomization between the games is winning. In this section we
present the mathematical analysis that establishes this. We do this by establishing
conditions for recurrence of the corresponding discrete-time Markov chains.

The analysis of game A is elementary and can be found in many textbooks
(see, for example, Karlin and Taylor [19]) but we present it here in the interest of
motivating our analysis of game B.

The player wins a single round of game A with probability p and loses with
probability 1 — p. Assuming that they bet one unit on each round of the game,
we wish to calculate the probability f; that the player’s capital ever reaches zero
given that they start with a capital of j units. It is a consequence of Markov chain
theory [19] that either

1. f; =1 for all j > 0, in which case the game is either fair or losing, or

2. f; < 1for all j > 0, in which case there is some probability that our capital
will grow indefinitely and so the game is winning,.

The set of numbers { f;} is the minimal nonnegative solution to the set of equations

fi=pfin+{0-p)fia, 21 (3)
subject to the boundary condition fo = 1. The general solution to (3) is of the form
fi=A (1—;’3)] + B where A and B are constants. Invoking the boundary condition
fo =1, this becomes f; = A [(1—;13)] -1 +1. If l—gﬂ > 1, the minimal nonnegative

solution to (3) occurs when A = 0 and so f; = 1 for all j > 0. If 1—;-2 < 1, the

minimal nonnegative solution to (3) occurs when A =1 and so f; = (1—;2)] for all

J > 0. Thus we can write f; = min(1, (1—;2)]) and we observe that the game is
winning if 1—;’3 < 1, that is if p > 1/2. By symmetry, we can deduce that the game
is losing if p < 1/2 and is fair if p = 1/2. This result, of course, accords with our
intuition.

Now let us turn to game B. Here the probability that the player wins a single
round depends on the value of their current capital. If the capital is a multiple of
M, the probability of winning is p;, whereas if the current capital is not a multiple
of M, the probability of winning is ps. The corresponding losing probabilities are
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1—p; and 1—p, respectively. Let g; be the probability that our capital ever reaches
zero given that we start with a capital of j units. As with game A, Markov chain
theory tells us that either

1. g; =1 for all j > 0, in which case the game is either fair or losing, or

2. g; < 1for all j > 0, in which case there is some probability that the player’s
capital will grow indefinitely and so the game is winning.

Fori>1and j € {1,...,M — 1}, the set of numbers {g;} satisfies the equations
gumi = prguit1 + (1 — p1)gai-1 and (4)
guivj = P2gumririr + (1 — P2)garivj—1 (5)

subject to the boundary condition go = 1. For j € {1,...,M — 1}, the general
solution to equation (5) is

1— J
Imivy = A (‘*“‘m) + B, (6)
P2
with
o o — gurs (=22}
A= I gM(z-;;) and B = IM(i+1) — 9Md (1\1/}2 ) (7)
1- (m) 1— (1:22)
p2 P2

Substituting this into equation (4), we derive the equation
M
1—
[1 - ( pz) } g
D2
M
1- 1- 1—0p
=pm {gM(i—H) [1 - ( p2>] + g ( p2> - < 2) ]}
P2 b2 P2
M-1 M-1 M
1- 1-— 1-
+ (1 ~p1) {gMi ll - ( p2> + gnm-1) l( p2> - ( p2> ] }
b2 P2 D2

for 1 > 1. After some tedious manipulation, for 7 > 1, this reduces to

[(1 -p)(1— PQ)M_I} gM@-1) — [plpéw_l + (1 =p)(1 - p2)M_l] M
+ [Plpéw*l] gmi+1) = 0. (8)

For i > 0, the general solution to (8) is
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Use of the boundary condition gg = 1 yields

i = C [((1 -p)(1 —p2)M_1)i _1

ppy !

+1, (10)

and we deduce that

(1-p)(1 —P2)M_l> )

gni = min(1, ( =
plpé\/[ !

As for game A, we deduce that game B is winning, losing and fair if

(L =p)(1 —p)™"

ppy !

(12)

is less than 1, greater than 1 or equal to 1.

Now consider the situation where the player plays game A with probability ~
and game B with probability 1 —~. If our capital is a multiple of M the probability
of that we win the randomized game is ¢; = yp + (1 — ¥)p1, whereas if our capital
is not a multiple of M the probability that we win is ¢ = vp + (1 — ¥)p2. The
probabilities of losing are 1 — ¢; and 1 — ¢, respectively. We observe that this is
identical to game B except that the probabilities have changed. It follows from
(12) that the randomized game is winning, losing and fair if

(=)~} 03
q192

is less than 1, greater than 1 or equal to 1.
The existence of the paradox of Parrondo’s games will be established if we
M-1
can find parameters p, pi, p, and v for which =2 > 1, {(=p(-ps > 1
P

Pipy
and 51_—"‘(}%& < 1, this is graphically shown in [25]. If we take p = 5/11,
2

p = 1/121, p, = 10/11, v = 1/2 and M = 3, then =2 = 6/5 > 1,

epdlopl® = 6/5 > 1, but -2l — 917/300 < 1 which shows that, with
these 5arameters, games A and B z:re losing, but the randomized game in which
games A and B are both played with probability 1/2 is winning.

Using a similar type of analysis one can calculate the change of capital with

respect to the number of games played, that is, the slope of the lines in Figure 2.

2__(1_ _ 2
For large n, the slope for the randomized game is 3;'1_1;;2 i;gié)q(qu_?,) when M = 3.

DISCUSSION & CONCLUSION

So far we have used models of the flashing Brownian ratchet to help explain
what is happening in Parrondo’s games. Now that we have a reasonable idea of
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FIGURE 4. This shows the result when randomly switching games and randomly changing M
from the set {3,---,10}. The simulation used £ = 0.014 and was averaged over 50000 trials.

what is happening in Parrondo’s discrete Brownian ratchet, we can maybe use this
information to infer back some characteristics to the continuous Brownian ratchet.

The flashing model is not the only type of Brownian ratchet [3,11,12,16], there
is also the ‘changing force ratchet’ model, for instance. Both of these Brownian
ratchets have their own variations. Is it possible to devise games that emulate other
types of Brownian ratchets?

During the simulations we have only used one combination of p; and py for each
value of M. With the help of the DTMC analysis, we have found a continuous range
of probabilities to keep game B fair. Changing p; and p, affects the potentials,
which may affect the result of the games. We speculate that M changes the length
of the teeth in the ratchet potential while the values of p; and p, change the slope
of the teeth, like the value of « in Figure 1.

Simulations carried out by keeping p; = 0.1 fixed, randomizing M in the set
{3,---,10} and calculating p, by setting (12) to unity are shown in Figure 4. This
showed that the randomizing game no longer wins. It even affects game B when
played individually, while game A remains unaffected. When the biasing parameter
is increased enough, game A loses, the randomized game loses, but game B starts
winning. Are there conditions for which a randomized M would work? Application
to biological processes would seem to require this. Further investigation is required.

Another type of ratchet, not to be confused with Parrondo’s discrete ratchet is
Muller’s ratchet [20-22]. This describes a process where asexual populations would
necessarily decline in fitness (or reproductive success) over time if their mutation
rate were high, as they would accumulate harmful mutations. This process only
proceeds in one direction, each new mutation irreversibly eroding the populations
fitness - it is the irreversibility that is likened to a ratchet. Flashing ratchets differ in
that they use external energy to work against a gradient, not with it like Muller’s
ratchet - crudely speaking Muller’s ratchet goes ‘downhill’ whereas the flashing
ratchet goes ‘uphill’.

It would appear therefore that Muller’s ratchet is a misnomer. The introduc-
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tion of sexual reproduction into a species is said to “break Muller’s ratchet,” as
recombination allows selection of beneficial mutations. It is this process of breaking
Muller’s ratchet that can be likened to a real ratchet, as we are now moving against
disorder or a natural gradient.

Parrondo’s ratchet involves two games, to emulate the two potentials in the
Brownian ratchet. What would happen if we introduced more games? Observing
Figure 2, we see that as the values of a or b in [a, b] increase, the gain reduces. In
other words ‘fast’ switching produces the best gain. So introducing more games
[a,b,c,- -] would slow the overall switching rate and reduce the gain. Could this
class of model be used to partially explain why there are two sexes and not more?
Two sexes allows faster recombination and so the act of breaking Muller’s ratchet
is more efficient — this corresponds to the higher gain in Parrondo’s discrete ratchet
model, when two games and not more are used. This argument is appealing, but
remains an open question until further investigation. Other promising application
areas for investigation of Parrondo’s paradox could be in stochastic signal pro-
cessing, economics, biogenesis, genetics, sociological modeling and game theory.
Further open questions are:

e For randomized M, game B becomes a martingale and the mixed AB game
then becomes balanced. To produce a gain, in the mixed game, M must be
state dependent. Can the states be chosen in a chaotic way so that M is
pseudo-random?

e Mathematicians use a martingale as the definition of a fair game. However,
game B, on its own, is not a martingale yet is in a sense balanced/fair. Should
the definition of ‘fairness’ be extended to include such cases?

e Does Parrondo’s ratchet still operate if both games A and B are periodic
(i.e. both have ratchet ‘teeth’)?

e What happens if M is not dependent on capital but on game sequence, for
instance?

e Where does the correspondence between the continuous Brownian ratchet and
the discrete Parrondo ratchet break down? What would these points of de-
parture teach us?

¢ Using information theory, we can associate entropy with a chain of bits (0s
and 1s). If the chain is produced randomly with probability p for 1 and 1 —p
for 0, the entropy of the chain, per bit, is —plogp — (1 — p)log(l — p). If
the bits in the chain are correlated then the definition is more complicated.
Let S4 and Sp be the entropies of the chains generated by games A and B
respectively (the bits of the chains are 0 if losing or 1 if winning) and let Sap
be the entropy of the combination of games. Notice that for ¢ =0, 54 = 1 bit
and Ssp seems to be smaller (since it is biased). Open questions are: (1) is the
entropy related with the fairness of the games? (2) what is the relationship
between Sap and S4 and Sp? How can S4p can be smaller than S47
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e What happens if games A and B are recast with qubits, where negative quan-

tum probability amplitudes allow cancellation effects?

o With reference to Brownian ratchets, it is possible for a probability current

17.

18.
19.

20.
21.
22.
23.
24.
25.

J, to be reversed [23,24]. This means, that by changing some characteristics
of the ratchet system (switching rates or type of fluctuations for example) the
Brownian particles can be made to travel in the opposite direction. The open
question is whether this phenomena is possible in Parrondo’s games?
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