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Abstract. Parrondo has shown that it can happen that two games are both losing for
a player but that a random sequence of the two can be winning. This phenomenon is
not well understood and a number of open questions are extant. Answers are provided
for several of these.

INTRODUCTION

This article is a companion to one by Harmer et al. [1], appearing in abbreviated
form in these Proceedings, which addresses Parrondo's games' paradox as a version
of the discrete Brownian ratchet. The paradox involves two games in each of which
the player's capital increases or decreases by one unit, corresponding to a win or
a loss. With both games repeated play leads, with probability one, to the player
eventually losing all his capital. The paradox is that when the two games are played
in a random sequence with appropriate relative probabilities, the player's capital
has a mean upward drift, thus manifesting a Brownian ratchet phenomenon.

In [1] the outcomes of a range of simulations was presented as well as an analytical
derivation of a basic result. The analysis is based on a classical result of Markov
chain theory on hitting probabilities and carried out via the theory of difference
equations with constant coefficients. A number of open questions were raised.

The field of probability has long been a rich source of instructive paradoxes.
Perhaps the best known is the renewal paradox. The essence of this is captured
by the situation of a bus stop with the times separating consecutive buses being
independent samples from a common population. The expected waiting time of an
individual arriving at a randomly selected time point can exceed the mean inter-
arrival time between consecutive buses.

It is of some interest to explore further the scenarios envisaged in [1]. First
we present some formulae which are useful to this end. As with [1] they apply
to a skip-free Markov chain on the nonnegative integers. However unlike [1] the
analysis allows general transition probabilities and is not constrained to transition
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probabilities which are periodic functions of the state. This enables us to apply
directly the basic analytical tool of [I] in a more general setting.

We then proceed to some preliminary answers (in the affirmative) to some of the
questions posed in [I] and to further points of our own.

We are concerned with sequences of games in each of which the probability of
winning may be capital dependent. Logic suggests we should distinguish such a
sequence of repetitions of a game as a 'match'. However ease of reading this paper
in conjunction with [1] would appear to be better served by adopting an abuse of
terminology and referring to a sequence of games as a game too. This we do.

HITTING PROBABILITIES

Suppose that a discrete-time Markov chain (Pij) on the nonnegative integers
has one-step transition probabilities P^+i = Pi, P^i-i = I — Pi for each i > I and
denote by Xn the state at time n = 0. Let a^ be the probability, conditional on
XQ = i, that Xn = 0 occurs for some n > 0.

By a well-known theorem, bi = ai (i > 0) is a solution to the equations

&i=Pi&i+i + (l-pi)&i-i (i>l) (1)

with the boundary condition 60 — 1- Further, this solution is minimal in the sense
that if (bi)i>Q is any solution with 0 < bi < 1 for all i > 0, then bi > a^ for all i > 0.

We now solve these recurrence relations under the assumption that 0 < Pi < 1
for all i > 1. Define pi := IK=i[(l — Pi)/Pf\ (i > 1) and Po '•= 1. Equation (1) with
bi = ^ may be rearranged as Pi(a>i+i — a^ = (1 — Pi)(a,i — a^_i) (i > 1), whence
a0 = 1 yields a^+i — a$ = Pi(a\ — 1) for i > 0. Summation from i = Q to i = j — 1
provides aj — I = Y^l=o Pifai ~ 1) f°r J ' ^ 1? s° that CLJ = 1 — (1 — ai) Y^l=Q Pi (j ^ !)•

If Z}£o Pi = °°j then for (di)i>Q to be nonnegative we require a\ = 1 and con-
sequently we have a$ = 1 (i > 0). On the other hand, if Z^0 A converges, then
for nonnegativity and minimality we require (1 — ai) X)^0 Pi = 1 an^ accordingly

In the Parrondo paradox, Xn represents the capital of a player at time n in
a gambling game. Thus if J]£o Pi ~ °°5 tne P^yer will, with probability one,
eventually lose all his capital if he continues to play. If ]C^o A < °°5 there is a
positive probability that he will never run out of capital no matter how long he
plays. This we term a 'winning game'. In fact, Markov chain theory tells us that
in a winning game, if the player's capital never reaches zero, then there is zero
probability that it does not tend to infinity as n — )> oc.

APPLICATIONS

If the sequence fe)^ has period M, then ££0pi = E^PrES^oPM- Thus

the condition E£o Pi < °o for a winning game is equivalent to pM < 1. If Z^o Pi
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diverges, we may have either pM = 1, when we speak of a 'fair game', or pM > 1,
when we have a 'losing game'. This gives us generally the basis for the analysis
used in [1].

Suppose now we have two games A and B given respectively by Markov chains
with sequences (p\ }i>o and (pf ^>o- We may consider a mixed game in which
the probability of a step to state i -f 1 when the process is in state i is p]1' with

(2)probability 7 and p\ } with probability 1 — 7. The resultant game is equivalent to
a Markov chain (p*)i>Q with p* = ^p]1' -f (1 — 7)2^ .

The central example in [1] involves the choices pi* = p (i > 1) and p$ — pi for
i > 1, Psi+i — Psi+2 = Pi for i > 0. Thus game A has period M^ = 1 and game B
period M<2> = 3.

The respective conditions for games A and B to be losing are

(2)

l. (3)

It is noted in [1] that with the choices p = 5/11, pi = 1/121, p? = 10/11 (2) and
(3) both hold. Consider the mixed game formed from them with 7 = 1/2. If we
define <& = jp + (1 — 7)^ (i = 1, 2), then with the above choice of 7, we have

( l -9 i ) ( l -« 2 )V(9i92)<l , (4)

that is, the condition for the mix to give a winning game is satisfied.
Numerous related parametric choices were investigated in [1] by simulation.

These incorporated examples in which the period M^ took values in the range
3 < M^ < 10.

A number of open questions were raised in [1], some of which we now address.

Both games with period exceeding unity

First there is the question of whether mixing two losing games can produce a
winning game if both M^1) and M^ exceed unity. We remark that the mixed game
formed from such components has period M* which is the lowest common multiple
of M^ and M™. In particular if M^ = 2 and M^ = 3, then M* = 6. Consider
the following example.

We modify the example discussed analytically in [1]. Suppose game A is changed
/ O N /o\

to give a game C with p(
2i = pe (* ^ 1), Pzi+i — Po (i ^ 0)? where we shall require

that PO ̂  pe- Game B is as before. Then

Pi =Pl = 7Po + (1 -

P*2 = Pi = 7Pe + (1 -
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P = 7Po +

P6 = 7Pe + (l
The condition that the mixed game be winning is rdLi[(l ~ Pi)/Pi] < 1 or

Pi V PI / Pi \ Pi
The condition for game C to be losing is that

( l -p e)( l -p0) / (p ep0)>l . (6)

Suppose p, pi, p2, 7 are chosen as in [1] to make games A and B both losing and
the mixed game given by qi and <?2 winning. Then (2)-(4) all apply. By continuity,
we have for all p0, pe sufficiently close to p that (1 — p0)/p0 > 1 and (1 — pe)/pe > 1
and so (6) holds. Similarly for all p0, pe sufficiently close to p we have by (4) that

P \ P P \ P2

and so (5) holds.
This example shows that the Parrondo paradox can hold when both component

games have periods exceeding unity.

Multiple— component games

We may make a similar modification of game A to give a game D similar to B
with p^ — pe (i > 0) and p^+i = p0, pL+2 — Po (i ^ 0), as before maintaining
p0 ^ pe. We now form a mixed game by taking a step in games C, D, B with
respective probabilities 71, 72, 1 — 7, where 71+72 = 7- The mixed game has
period 6 and

Pi = Pi = 7iPo + 72Po + (1 - 7)P2,

P2 = Pi = 7lPe + 72Po + (1 - 7)P2,

PS = 7lPo + 72Pe + (1 - 7)Pl>

Arguing by continuity as in the previous subsection, we have for all po and pe

sufficiently close to p that (1 — p0)/p0 > 1 and (1 — pe)/Pe > 1, so that

and game D is losing. Similarly

I-PI(I-PI^
Pi
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so that
_ _ „„ _ ̂  _„„ _ ̂  ^
-LJ- ri* ,„* I „*
«=1 Pi P3 \ Pi

and the mixed game is winning.
This example answers in the affirmative the question of whether mixes of more

than two losing games can be winning games. The games C and D are also versions
of a common game with different periods. This shows that the Parrondo paradox
can occur when the period M is randomised, a further open question raised in [1].

Period two

The examples considered in [1] (and those above) all deal with mixes that have
periods of three or more. It is natural to raise the question of whether the Parrondo
effect can occur with mixes of losing games each of which has period 1 or 2. We
now show that this cannot happen.

To see this, first note that if (pi)i>i has period 1 or 2, then the condition for the
game to be losing is (1 — Pi}(l — P^KpiPi) > 1? which simplifies to p\ + p% < 1.

Now suppose that (pf }i>i corresponds to a losing game for k = 1 , . . . , ra with
each game of period 1 or 2, so that p{ + p% < 1 for 1 < k < m. Let p^ =
EfcLiTfcPJ > where each 7^ > 0 and EfcLi 7fc = 1, be a mix of these games. Then
this mix is also of period 1 or 2. Since a convex linear combination of quantities all
less than unity is itself less than unity, we have p\ -\-p^ = Z^/JLi 7fc (PI + P2 ) < 1-
Thus the mix is also a losing game.

Infinite periods

The questions considered so far follow [1] in that they all relate to component
games with finite periods. However this restriction is not necessary for our analysis.
Suppose we have games (p\ ) indexed by k = 1 , . . . , m for each of which £)g0 Pi —
oo. We may construct a new game with p* = EfcLiTfcPi ? where each 7^ > 0 and
Ys™=iJk = 1. We are interested in when this can be done in such a way that
Egotf <~-

We may modify the central example to obtain an example with m = 2. Take
P(? = Pi/(i + ! ) (*> 1) and p(£ = Pli/(i + 1) (i > I), p(£+l = p(£+2 = p2i/(i + 1)
(i > 0) to give games A', B1 respectively. We choose p, pi, p% and 7 to make (2)-(4)
hold.

Then for all i sufficiently large, we have from (2) that (1 —p\ }/p\ > 1, so that
pi is eventually increasing. Hence £]°^o Pi is divergent and A' is a losing game.
Similarly we can show that B1 is a losing game but that the mixed game is winning.

205



State—dependent mixing

Finally we remark that in some situations it may be appropriate to allow state-
dependent randomising of component games, that is, p* = £)/JLi7fc(OPi > where
each %(£) > 0 and £}fcLi7fc(fc) = 1- In a genetic context we might wish to reflect
variable biological fitness.

The extra degrees of freedom involved enable the Parrondo effect to occur much
more easily than in the situations we have considered hitherto. In particular, we
may even get the Parrondo paradox when the component games all have period 2.

Suppose there are two component games k = 1,2 with p$ = pW (i > 0) and
P2i+l = pW (i > 0). As before both games are losing if pW + pW < I (k = 1,2).
Choose ^2i = 7e (^ > 0), 72i+i = 7o (^ > 0). The mixed game is winning if
Pl + pi > 1, that is, if %\pW - pP)] + 7o[p(D - pOO] > 1 - p(2) _ p(2).

This is satisfied in many situations. For example, if p^ = 1/4, p^ = 3/5 and
p(2) = 3/5, pW = 1/4, then p^ +p^ < 1 (k = 1, 2) but the mixed game is winning
whenever 70 — 7e > 3/7.

CONCLUSION & OPEN QUESTIONS

We have established a general comparison criterion for a class of winning and
losing games representable as skip-free Markov chains in which the transition prob-
abilities away from the boundary are not necessarily state-independent. This we
have used to make preliminary investigations into a number of open questions raised
in the companion paper [1], which treats Parrondo's games as a discrete Brown-
ian ratchet. The questions have been treated via constructive examples based on
bootstrapping from known examples. This has enabled us to obviate searches in
multi-parameter spaces for what seem likely to be in the main quite small regions.

This still leaves open such questions as the following.
Question 1. To find usable necessary and sufficient conditions under which a given
collection of losing games will possess a mix which is winning.
Question 2. The extent of the parameter regions for which the mix is winning
and the magnitude of the effect in situations in which it occurs.

It is hoped that the present paper will be found by the reader to suggest useful
analytical machinery for the reconnaissance of these multi-parameter problems as
well as providing some initial answers to some of the questions raised in [1].
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