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Abstract. Recently Parrondo's paradoxical games have been connected with the
Brownian ratchet. We consider some open questions raised in that context.

INTRODUCTION

Noise is associated with unpredictability and disorder, which are measured by
entropy. A main line of development can be traced from the work of Clausius
and Boltzmann in physics last century through Shannon's work fifty years ago on
what is now information theory to the ideas of Kolmogorov in 1955 on entropy as
a measure of capacity in metric spaces. The area is rich in surprises and unex-
pected connections. An example of the former is a result of Plaskota [1] that noisy
information can sometimes be better than exact information. An example of the
latter is provided by an invited paper at this conference [2], which draws together
the Brownian ratchet and Parrondo games that can be represented as skip-free
Markov chains.

The latter paper raises a number of open questions. In particular, suppose we
associate such a chain with a sequence of bits, a one being produced whenever an
rightward step is taken and a zero for each leftward step. We may further associate
an entropy with such a sequence. How does this entropy relate to the underlying
game? We present some preliminary ideas from an information-theoretic stand-
point on the open questions raised in [2].

PARRONDO GAMES AND ENTROPY
The central example in [2] involves two games, which can be represented as skip-

free discrete-time Markov chains on the integers, each with a leftward drift. In
game A, the player makes a sequence of steps, each being either rightward (with
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probability p) or leftward (with probability 1 — p). Game B is similar except that
the probabilities are state-dependent and periodic, the rightward ones being being
Pi for states of the form 3i

and P2 for all other states. A mixed game C is formed with p^ replaced by

ft = 7P+(l-7)Pi, (* = 1,2) (1)

with 7 (0 < 7 < 1) representing a mixing probability. It is shown in [2] that passage
to the origin from an initial positive state is certain for games A and B under the
respective conditions

( l -p ) /p> l , ( l -P l)( l-p2)2 / (piP2)2>l, (2)

while game C will escape to infinity (without visiting the origin) with positive
probability if

(l-qi)(l-q2Y/(qiql)<l. (3)

If (2) and (3) hold, then the mixed chain drifts to the right while the component
chains drift to the left. Remarkably, this is the case for p — 5/11, pi = 1/121,
p2 = 10/11 and 7= 1/2.

A game is fair if there is no drift. This occurs if the corresponding inequality
from (2) and (3) instead occurs as an equality. When (3) holds we refer to game C
as winning.

Harmer et al raise a number of questions including the following. Each chain
can be associated with the production of a sequence of bits, zeros corresponding
to downward steps and ones to upward. Game A is then associated with a corre-
sponding entropy SA '•= —plogp — (1 — p) log(l — p}. Correspondingly SB, Sc are
entropies associated with games B and C. The following questions are proposed.
Question 1. Are the entropies related to the fairness of the games?
Question 2. What is the relationship between Sc and SA and SB and how can
Sc be smaller than 5U?

As noted in [2], the definitions of SB, Sc are more complicated because of succe-
sive steps being correlated. Indeed, we have a further complication in that entropy
is usually defined for a Markov chain only if the chain is irreducible and positive
recurrent, which is not the situation here.

We propose the following, which is consistent with the above definition of SA
and easily extended in an obvious way whenever the transition probabilities are
periodic functions of state. Associate with A a Markov chain A' with state space
{1,2,3}, A1 being in state j G {1,2,3} whenever A is in a state congruent to j
modulo 3. (For the version of the game on the nonnegative integers with zero as
an absorbing state, we regard A as restarting in 3 whenever it enters state zero.)
The same device provides associated Markov chains B', C' corresponding to B and
C. The derived chains then have one-step transition matrices of the form
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1 - n \
P = I 1 - r2 0 r2 , (4)

0 y

with Ti = p for A', ri = r2 = P2 and r3 = pi for 5' and ri — r2 = #2 and r3 = <?i
for C".

These three new chains are all positive recurrent and irreducible and generate bits
1 corresponding to transitions i — >• i -\- 1 (mod 3) and 0 corresponding to transitions
i — »• i — 1 (mod 3). The chains correspond to unifilar sources (see [3, Section 6.5]).
The chain A1 has equilibrium probabilities TTZ

A = 1/3 (i = 1,2,3) and associated
entropy SA-

The results for B' and C' are more complicated. We may solve the global balance
equations ?rf = £}|=1 rfP^i (i = 1, 2, 3) for chain C" with the normalizing condition
Z)f=i fif7 = 1 to obtain the equilibrium probabilities

c_ 1-42 -\-qiQ2 c _ ! -4i

where Dc := 3 — q\ — 2q2 + 2<?i#2 + ^|- ^he ergodic probabilities for B' are given
by the same expressions with pi, p2 replacing respectively qi and q%. We refer to
the version of (5) for B as (5').

Since these chains constitute unifilar Markov sources, the corresponding entropies
are

SB = ?rf + Trf J(p2] + Trf J(pi), 5C = TT? + 2̂
C J(g2) + 3̂

C J((?i), (6)

where J(x) := — xlogx — (1 — x) log(l — x) (0 < x < 1). Because J(x) is strictly
concave and is symmetric about x = 1/2, it is strictly monotone increasing on
[0, 1/2] and we have that J ( x ) > J(y] whenever x - 1/2| <\y- 1/2| and that J ( x )
takes its maximum at x = 1/2. We are now in a position to address the proposed
questions.

Question 2

We have SA — J(p), which with (6) indicates a quite complicated relation be-
tween SA, SB and Sc- Turning to the latter part of the question, we shall show
first that SA > Sc for a range of parameter values subsuming those of [2]. A
comprehensive numerical analysis is beyond our page limits, but some indicative
results can be given. To begin we remark that p2 > Pi suffices to give

1 - Pi + PiP2 >1~P2+ PiP2 (i = 1,2),

so (57) yields TTJ > Trf and ?rf > vrf . Hence TTJ < 1/2. Also, p% > Pi implies
Q2 > <7i, so we have also TT^ > Trf > Trf .
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Suppose game C is winning and p = 5/11. For 0 < 7 < 1, having 1/2 > p > pi
provides

J(p] > J(qi) > J(pi). (7)

Since #1 < 5/11, we have (1 — qi)/q\ > 6/5, so from (3) game C can be winning
only if (1 - q2)/q2 < y/5/6, that is, if q2 > 1/(1 + ^/5/6). Thus game C can be
winning only for 7 < 7o := [10 - 11/(1 4- ̂ /5/6)]/5 w 0.849896. When this holds,
qi<q-= (5/ll)7o + (1 - 7o)/121 « 0.386316 and again for (3) to hold we require
(1 - qrf/ql < q/(l - q), or q2 > (1 - g)1/2)/^1/2 + (1 - tf)1/2] (« 0.55695) > 6/11.

Thus 6/11 < q2 < pi, so that

J(p) > Jfe) > J(P2)- (8)

By (6), 5c is a convex linear combination of J(q\) and J(q2) and so by (7), (8)
SA — J(p] > Sc whenever C is winning.

In fact it is also the case that SB < SA whenever 1 > p2 > 1/2 and pi < 1/6.
For p2 > Pi and p2 > 1/2 gives 2p2(p2 — Pi) > Pi — Pi and so

Hence Trf + TT^ < 27nf and since Y$=i ^f — 1? we can deduce that Tnf > 1/3 and
thus ?rf + 7if < 2/3. Therefore from (6) SB < (2/3)J(l/2) + (l/2)J(pi). It suffices
for SB < SA - J(p) that J(px) < 2 [J(5/ll) - (2/3)J(l/2)] w 0.654725 (taking
logs to base 2). The desired result follows from the monotonicity of J ( x ) on [0, 1/2],
since J(l/6) « 0.650022.

Question 1

As a preliminary we note that for a matrix of the form (4) the entropy is maxi-
mized when r\ — r2 = r3 = 1/2. This may be deduced from [3, Problem 6.13].

Game A is fair only when p = 1/2, which corresponds to the case of maximum
entropy.

In game B, each choice of p2 induces a corresponding pi for which fairness occurs.
These pairs (PI,PI) will not correspond to maximum entropy except when p2 = 1/2,
which induces p\ = 1/2.

Consider game C with p, p1? p2 fixed, so that (1) defines q\, q2 as continuous
functions of 7 G [0, 1] and thus f ( j ) := (1 - #i)(l - #2)2 / '(qiq2) is also a continuous
function of 7. Suppose that p, pi, p2 are such that games A and B are losing and
that there exists a 7 — 70 G (0, 1) such that C is winning. For 7 = 0, 1, we have
(<?i,92) = (pi,Pi) and (qi,q2) = (p,p) and (2) yields /(O) > 1 and /(I) > 1. On the
other hand, (3) holds for 7 = 70, so that /(7o) < 1. By continuity there must be
at least one 71 G (0,70) and one 72 G (70, 1) for which / assumes the value unity.

Fairness entails 7(7) = 1 and so q± = (1 — q2)2/[q2 + (1 — qi}'2} or
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( l -<Z2)2] . (9)

We may also eliminate 7 between (1) for i = I and i — 2 to derive

~ P~Pl n I ^(1 ~ P) ~ p(l ~ Pi)
•— —————— #2 + ——————————————————— •

P2 - Pi P2~P

Thus if the mixed game is fair, it will occur for a value of q% G (0, 1) at which
£fe) — ̂ fe)- We readily verify that R is convex with an increasing positive
derivative on (0, 1/2) and concave with a decreasing but positive derivative on
(1/2,1).

Suppose as in the example in [2] that P2 > P > Pi (so that L is strictly increasing),
that p2(I -P) > P(! ~Pi) (so that L(0) > 0) and that L(l/2) > 1/2. Then L(0) >
R(0) and £(1/2) > #(1/2) and consequently L(q2) > R(q^ throughout [0,1/2].
Further, L(q^) = R(qz) can occur for at most two values of q% G (1/2,1]. Thus
under the given assumptions there is exactly one 71 G (0,7o) and one 72 G (70, 1)
for which the mixed game is fair. If the associated values of (#1, #2) are respectively
(q?\q£}) and ($\q$\ we must have q(l} < q(? <p< q%] < q£] .

/rj\ /^N

We now demonstrate that the entropy value associated with q\ , q% must exceed
that associated with q[ , ̂  • Note that the condition (1 — #i)(l — ̂ 2)2/(^i^i) ~ 1
for fairness can be interpreted as the unique nontrivial Kolmogorov-cycle condition
for the Markov chain C' (see [4, Section 1.5]), so that C' is reversible. This enables
us to simplify the expression for Sc in (6).

Reversibility implies that the equilibrium probabilities for C' satisfy the detailed
balance equations yrf q% = 7^(1 ~~ ^2) and Tv^q? — ̂ (1 ~ ^i)- Equation (9) and the
normalization Y^i rf — 1 provide

where 5 := 5(g2) = 1 + <ll + (1 ~ ^)2- We deduce from (6) that

where Hn(pi, • • • ,pn) := E?=iP* Iog(l/Pi) for a set {pi, - • - ,pn} of probabilities sum-
ming to unity.

It is readily shown that the second and third arguments of H± are strictly in-
creasing functions of q% and the first and fourth strictly decreasing. Hence

2 T~< ~ m ? < V4 < %-fJK < -^TTK (fc = l > 2 ) -

Also for i = 1,2,
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We deduce that if q% is associated with entropy H± (i — 1,2), then H± > H±'.
A similar argument shows that H^ < HZ • Hence Sc(q^ ) > Sc((& )> so the
two fair mixed games have different entropies. This leaves open the nature of the
connection between fairness and the value of the entropy in the mixed game.

CONCLUSION & OPEN QUESTIONS

We have found expressions for the entropies of the two component losing games
in [2] and a winning mix made up from them. For a natural range of parameter
values, game A has the greater entropy than games B or C. We have analyzed the
structure of the entropy of a mixed game when it is fair. Again for a substantial
domain of the parameter space, there are two fair games and we have shown that
they have different entropies.

It should be noted that although a fair game corresponds to a reversible Markov
chain, such a chain still has an entropy which increases with time unless equilibrium
has already been attained (see [4, Section 1.4]).

The expression (10) obtained for the entropy of a fair game is striking and invites
further consideration. It also suggests the following.
Problem. To investigate the entropy of an arbitrary reversible Markov chain of
form (4), or more generally, its n x n generalization

/ 0 n 0 ••• 0
1 - r2 0 r2 • • • 0

rn 0 0 ••• l - rn 0

In particular we conjecture that if the numbers {ri? 1 — r^; 1 < i < n} are made
'more equal' in an appropriate sense, then the entropy of the chain will be increased.
Such a result would constitute an interesting extension of [3, Problem 6.13] and a
useful tool for investigating questions such as those considered here.
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