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Abstract A microstrip low-pass filter using T-shaped resonators is designed to achieve an

ultra-sharp transition band and high suppression level. The performance of the resonators is

investigated based on an LC equivalent circuit and a transfer function to compute the

equations of the transmission zeros. This filter has an acceptable stopband with high

insertion loss (28 dB) by adopting a rectangular suppressor. Also, the width of the tran-

sition band is 0.09 GHz (with – 3 and - 40 dB attenuation levels), that exhibits a very

high sharpness (n = 411 dB/GHz). The proposed filter with a 3 dB cut-off frequency (fc)

of 1.32 GHz presents a high return loss in the passband (17 dB) and high figure of merit of

57,073. The designed filter is fabricated and measured, demonstrating sufficient agreement

between the simulation and experimental results.

Keywords T-shaped resonator � LC equivalent circuit � Microstrip filter � Rectangular
stub

1 Introduction

To reject unwanted signals, microstrip LPFs with high insertion loss in the stopband, sharp

cut-off and low cost are utilized in wireless circuits [1]. In [2], a hairpin LPF with high

return loss in the passband was presented; nonetheless the sharpness of the transition band

is poor. In [3], a novel LPF using multi-mode resonators was reported. For increasing the

stopband width, two small multi-mode stubs were utilized; however, slow cut-off
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frequency, low insertion loss in the stopband and low return loss in the passband are

undesired features of this work. In [4], a hairpin filter with small dimensions was studied.

Slow transition band and low suppression level are drawbacks of this work. A dual-layer

LPF using a stepped-impedance resonator was presented in [5]. To expand the stopband

width, a defected ground plane was added; nevertheless this filter does not have a sharp

cut-off and has high insertion loss in the passband. In [6], an LPF using a dual-layer

structure was fabricated. In this filter, a defected ground plane was adopted to approach a

sharp transition band, although it suffers from a complex structure and weak sharpness. An

LPF with low suppression level, complex structure and slow transition band was reported

in [7]. By adopting several stepped-impedance stubs, an LPF with a simple topology was

fabricated in [8]. Weak sharpness and enormous size are disadvantages of this filter. A

hairpin LPF with large size and weak sharpness in the passband was designed in [9]. To

extend the stopband width, two hairpin resonators was cascaded in this filter. In [10], a

microstrip LPF using dual-plane structure was reported that it have a weak harmonic

suppression under - 20 dB suppression level and slow cut-off frequency. An LPF with

high suppression level in the stopband area using an spiral transmission line and stepped-

impedance stubs was introduced in [11]. In [12], an LPF with small dimensions and simple

topology using stepped-impedance structures was designed that its cut-off frequency is not

so sharp. A microstrip filter using dual plane structure was fabricated in [13]. High return

loss and sharp transition-band are benefits of this work. A dual-layer LPF using open-

circuited stubs was presented in [14], unfortunately it suffers from complex structure, large

size and weak sharpness. In [15–17], dual-plane LPFs were designed that they do not have

a sharp cut-off frequency and small dimensions. A symmetrical LPF using P-shaped and

Lattice-Shaped resonators was introduced in [18]. Although the return loss in the passband

is high, the dimensions of this filter are very large. In [19, 20], slow transition-band is the

greatest problem of these LPFs. In [21], to increase the stopband width, stepped-impedance

stubs are adopted at the beginning and end of transmission line; however, the sharpness of

transition-band is weak. In [22], for achieving a compact size, an spiral transmission line

was utilized. Also, the limited stopband and weak sharpness are problems of this circuit.

In this work, a low-pass filter with high return loss in the passband and ultra-sharp

transition band is presented. This filter is composed of T-shaped resonators and one

rectangular stub as a suppressing unit. Also, to achieve a compact size, this structure is

bent.

2 Design Process

2.1 T-Shaped Resonator

Figure 1a exhibits a T-shaped resonator composed of a high impedance stub and one

rectangular open-circuited stub, which they are connected to the transmission line. The LC

equivalent circuit of this resonator is presented in Fig. 1b. The transmission line with L1,

L2 and C1 is modelled as inductances and capacitance, respectively. L3 and C2 exhibit the

inductance and capacitance of the high-impedance stub and L4 and C3 are equivalent

inductance and capacitance of the open-circuited stub. The values of the lumped elements

using equations cited in [1] are computed and they are as follows: L1 = 16.34 nH,

L2 = 5.21 nH, L3 = 10.22 nH, L4 = 1.164 nH, C1 = 1.11 pF, C2 = 0.22 pF and

C3 = 0.96 pF. The EM and LC simulation results of the T-shaped resonator are depicted in
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Fig. 1c. As seen, this structure has a sharp transition band and produces a transmission zero

(TZ1) at 1.4 GHz, that transition band is tuned by it. To obtain the equation of the TZ1, the

transfer function is presented in Eq. (1), that r is the matching impedance of input and

output ports (r = 50 X). Here, TZ1 is calculated by equalling numerator of transfer

function with zero in Eq. (2).

Vo

Vi

¼ 2r

L2S L1C1S2 þ bþ 1ð Þ þ rðL1C1S2 þ aL2Sþ bþ 2Þ þ r2aþ L1S
; ð1Þ

where

a ¼ C2C3L4S
3 þ C2 þ C3ð ÞS

C2C3L4L3S4 þ C2L3 þ C3L3 þ C3L4ð ÞS2 þ 1
þ C1S;
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Fig. 1 T-shaped resonator: a layout, b LC equivalent circuit, c EM and LC simulations
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b ¼ L1S C2C3L4S
3 þ C2 þ C3ð ÞSð Þ

C2C3L4L3S4 þ C2L3 þ C3L3 þ C3L4ð ÞS2 þ 1
:

TZ1 ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2C3L4L3ð Þ þ C2L3 þ C3L3 þ C3L4ð Þ
p : ð2Þ

2.2 Dual T-Shaped Resonator

The layout of the dual T-shaped resonator is illustrated in Fig. 2a. This resonator with

shunt capacitors and series inductors is modelled in Fig. 2b. The values of the LC

equivalent circuit are as follows: L5 = 10.78 nH, L6 = 6.036 nH, L7 = 0.156 nH,

C4 = 0.5 pF, C5 = 0.71 pF, C6 = 0.4 pF and C7 = 0.966 pF. The EM and LC simulation

results are depicted in Fig. 2c. This structure can improve the suppression level by pro-

ducing a transmission zero (TZ2) at 1.78 GHz. The transfer function of the dual T-shaped
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Fig. 2 Dual T-shaped resonator: a layout, b LC equivalent circuit, c EM and LC simulations
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resonator is displayed in Eq. (3). Also, the equation of the TZ2 is obtained from Eq. (3) and

shown in Eq. (4).

Vo

Vin

¼ 2Z0d

dL5Sþ dL5S C5L5S
2 þ 1ð Þ þ Z2

0cþ Z2
0 aþ bþ 1ð Þcþ dZ2

0C5S bþ 1ð Þ
þ Z0daþ Z0dC5L5S

2 þ Z0 L5Sþ L5S C5L5S
2 þ 1ð Þð Þcþ Z0dbþ 2Z0d

; ð3Þ

where

a ¼ L5S
c

d
þ C5S bþ 1ð Þ

� �

;

b ¼ cL5S

d
;

c ¼ C4C6C7L7L6S
5 þ C4C6L6 þ C4C7L6 þ C4C7L7 þ C6C7L7ð ÞS3 þ C4 þ C6 þ C7ð ÞS;

d ¼ ðC6C7L7L6S
4 þ C6L6 þ C7L6 þ C7L7ð ÞS2 þ 1Þ:

TZ2 ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C6C7L6L7ð Þ þ C6L6 þ C7L6 þ C7L7ð Þ
p : ð4Þ

2.3 Rectangular Resonator

The layout and LC equivalent circuit of rectangular resonator are displayed in Fig. 3a, b. In

this model, L8, L9 and C8 are inductances and capacitance of transmission line. Also, L10

and C9 denote inductance and capacitance of rectangular stub. The values of these

parameters are as follows: L8 = 9.6 nH, L9 = 12 nH, L10 = 2.41 nH, C8 = 3.7 pF and

C9 = 0.49 pF. Figure 3c shows EM and LC simulation results of this structure. As seen,

this circuit generates a transmission zero (TZ3) at 4.6 GHz that to compute the equation of

TZ3, the transfer function of rectangular stub is achieved from its LC equivalent circuit.

The transfer function and equation of TZ3 are presented in Eqs. (5) and (6), respectively.

Vo

Vin

¼ 2Z0ðC9L10S
2 þ 1Þ

L8SðC9L10S
2 þ 1Þ þ aL9L8S

2 þ L9SðC9L10S
2 þ 1Þ þ aZ2

0

þðaZ0L8 þ aZ0L9ÞSþ 2Z0ðC9L10S
2 þ 1Þ

; ð5Þ

where

a ¼ C8Sþ C9Sþ C9C8L10S
3:

TZ3 ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffi

C9L10
p : ð6Þ

2.4 LPF Design

To design a high performance low-pass filter, T-shaped resonators and rectangular stub (as

suppressing unit) are combined, as depicted in Fig. 4a. The primitive LPF has an

acceptable stopband with high insertion loss and sharp cut-off frequency (seen in Fig. 4b),

but the circuit dimensions are large. Ho wever, we have achieved a compact layout, as seen
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Fig. 3 Rectangular resonator: a layout, b LC equivalent circuit, c EM and LC simulations
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Fig. 4 Primitive LPF: a layout, b EM simulation
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in Fig. 5a. The proposed filter shows 44% size reduction in comparison with previous

structure.

3 Simulated and Measured Results

The proposed filter with 3 dB cut-off frequency of 1.32 GHz is fabricated on a substrate

(Rogers_RO4003) with er = 3.38, thickness = 0.508 mm and loss-tangent = 0.002 (As

illustrated in Fig. 5b) and tested using an Agilent N5230A network analyser. The simu-

lation results are taken by the ADS software. The simulation and measurement results are

depicted in Fig. 5c.

The final LPF with high return loss (RL) in the passband (17 dB) has an ultra-sharp

transition band (n = 411 dB/GHz) from 1.32 to 1.41 GHz (with - 3 and - 40 dB

attenuation levels). The stopband with excellent suppression level (- 28 dB) is extended

from 1.4 to 4.218 GHz (3.19 fc).

The circuit dimensions are 0.158kg 9 0.128kg, where kg is guided wave-length at fc.

Finally, the designed LPF presents a high FOM of 57,073. The physical dimensions of this

Fig. 5 Proposed LPF: a layout, b fabricated photo, c simulation and measurement results
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filter are as follows: A1 = 2.3, A2 = 0.6, A3 = 7, A4 = 13, A5 = 7.3, A6 = 3,

A7 = 0.31, A8 = 1, Am = 1.2, W1 = 0.6, W2 = 0.6, W3 = 0.6, W4 = 2.1, W5 = 4,

W6 = 3.2, W7 = 1.7, W8 = 10, W9 = 9.7, W10 = 0.1, W11 = 1.7, W12 = 6.43,

Wm = 3, R = 1 (all in millimeters) and h = 90�. The proposed filter and reported works

are compared in Table 1 based on parameters outlined in [23, 24].

As shown in Table 1, our filter has the sharpest cut-off frequency, the highest sup-

pression level and the highest FOM in comparison with published works in [2–6].Tran-

sition band sharpness (n) is for - 3 and - 40 dB suppression points. The table also lists

the suppression factor (SF) and RSB is the relative stopband band-width. The normalized

circuit size is given by NCS. AF is architecture facture and FOM is figure of merit

[FOM = (n 9 RSB 9 SF)/(NCS 9 AF)].

4 Conclusion

A microstrip low-pass filter using T-shaped resonators (to approach sharp cut-off and high

suppression level) and one rectangular stub (to increase the stopband width) has been

designed, fabricated and tested. This filter presents excellent features like, simple topology,

narrow transition band (0.09 GHz), high insertion loss in the stopband (28 dB), small

dimensions and very high FOM of 57,073. The final structure with 3 dB cut-off frequency

of 1.32 GHz is suitable for wireless communications.
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