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The main result of this paper is the development of a systematic paper-and-pencil design methodology for
implementing Boolean functions of up to 4 variables using threshold logic (TL) gates, which does not require
linear programming, for the first time. The methodology is similar in operation to the Karnaugh map logic
minimization technique, and is based on determining the minimum threshold cover of a Boolean function.
The paper also reviews aspects of TL and illustrates the application of the proposed design methodology to
VLSI design using the neuron-MOS technique.
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1 Introduction
One of the problems of designing logic circuits using
threshold logic is that, unlike for conventional CMOS,
there exist no general systematic techniques for the im-
plementation of arbitrary Boolean functions in TL. More
precisely, given the truth-table fully specifying a Boolean
logic function, there do not exist any convenient design
techniques for efficiently implementing that function us-
ing a TL gate network. The methods which until now
have been used to map conventional designs to, for exam-
ple, neuron-MOS, are somewhat ad-hoc and only appli-
cable to relatively trivial functions. The aim of the paper
is to develop a Karnaugh Map based mapping technique
for implementing logic functions in TL, and a version of
the design methodology for 3 and 4 variable circuits will
be discussed.

We begin in Section 2 by giving a brief overview of
threshold logic (TL). This is followed by a description of
the neuron-MOS CMOS implementation. In Section 3 a
review of Karnaugh-map function minimization is given,
followed by a discussion on how Boolean logic functions
may be computed using TL networks. Section 4 out-
lines the proposed method and an example of its use is
given in Section 5. The translation of a TL circuit to the
neuron-MOS implementation is illustrated in Section 6
and a brief conclusion follows in Section 7.

2 A Brief Overview of Threshold Logic
A threshold logic gate operates on binary variables and
generates a binary output, and is functionally very sim-
ilar to a hard limiting neuron, where a linear weighted
sum is generated followed by a thresholding operation.
The operation of a threshold gate is described by the fol-
lowing relations [1],

Y = 1 if

nX
i=1

WiXi � T (1)

Y = 0 if

nX
i=1

WiXi < T: (2)

whereXi 2 f0, 1g, i = 1,. . . , n are the binary input vari-
ables,Y 2 f0, 1g is the Boolean function realized by the
threshold gate, andWi is the weight corresponding to the
i th input variableXi. T represents the gate threshold and
is generally a real number satisfying

0 � T �
nX
i=1

Wi: (3)
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Fig. 1. A Threshold Gate model

The model of the gate is shown in Fig. 1. A Boolean
function realized by such a threshold gate is called a
threshold function, and a network composed of such
gates is called a threshold network. Threshold functions
have some useful properties. All threshold functions
are Boolean functions but not all Boolean functions are
threshold functions [1]. Also, all Boolean functions can
be generated by a threshold gate network of depth at most
two. A TL gate can be programmed to realize many dis-
tinct Boolean functions by adjusting the thresholdT . For
example, an n-input TL gate withWi=1,8i andT = 1=2
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will realize ann inputOR gate. The same gate withT
set ton� 1=2 will realize an n-input AND gate. Gener-
ally, a threshold gate realizes a majority function, where
by setting the thresholdT to an appropriate value, the
output of the gateY is 1 if k or more (weighted) input
variables are equal to 1, wherek 2 f0,. . . ,ng. The thresh-
old gate thus offers an increased computational capability
over conventional AND-OR-NOT (AON) logic, and it is
therefore possible to realize Boolean functions in TL us-
ing fewer gates with a reduced logic depth [1]. Threshold
logic can offer improved area density and higher speed
logic circuits. Threshold logic may be loosely consid-
ered as a sub-field of neural networks. Whereas in the
application of neural networks to classification the inter-
connection weights are modified adaptively for different
inputs and the desired classification is usually only ap-
proximate, in TL the network weights are (usually) fixed
and the desired function is computed exactly.

Although threshold gates are intrinsically more pow-
erful than standard logic gates, their usefulness to inte-
grated circuit design mainly depends on the availability
of good physical realizations. The bipolar implementa-
tions of the early 70’s [2] suffered from poor integra-
tion density and limited fan-in. For this reason TL has
had, until recently, very little real impact in VLSI, as is
evident from its gradual disappearance from textbooks
on logic design. One notable early exception was the
ganged-CMOSTL gate, formed by hard-wiring the out-
puts of ratioed inverters [3], but the available fan-in is
limited to approximately 10 and the power dissipation is
relatively high which severely limits its applicability.
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Fig. 2. The neuron-MOS gate structure

The recently developed neuron-MOS structure [4] is
a CMOS TL implementation based on an array of ca-
pacitors to implement the input weights, followed by one
or more inverters to implement the thresholding opera-
tion, as shown in Fig. 2. Using an odd number of in-
verters in the chain gives an inverting TL gate. The ca-
pacitors are usually implemented using poly1-poly2 lay-
ers. The structure in Fig. 2 is such that thePrimary
Inverter input is effectively floating, and its voltage
is given by

VR =

P
n

i=1CiVi

Ctot

; (4)

whereCtot is the sum of all capacitances in the gate, in-
cluding parasitic capacitances. This expression assumes
that no charge is initially present on the floating node.
The presence of this charge is, however, unavoidable as a
result of fabrication, and for this reason techniques such
as UV erasure must be used [5].

The neuron-MOS full adder cell was one of the first
reported binary arithmetic circuits based on a capacitive
TL gate [6] which demonstrated the potential for signif-
icant area reduction in circuits designed in neuron-MOS
compared to CMOS. The neuron-MOS full adder layout
reported in [6] was 55% the area of a CMOS full adder
implemented in the same process, and has been shown to
dissipate approximately the same amount of power as a
conventional CMOS full adder [7]. The reported compar-
ison of parallel multiplier layout areas (based on neuron-
MOS and CMOS full adder cells) [6] shows that for a
number of multiplicand bit lengths ranging from 16 to
64, the neuron-MOS full adder based designs have an
area approximately 65% of the CMOS full adder based
designs. The speed increase of neuron-MOS (7,3) par-
allel counter based multipliers is shown to be approxi-
mately 30% over CMOS full adder based multipliers.

Many such examples clearly illustrate the potential
advantages which threshold logic offers over conven-
tional AON logic [6], and it is with this motivation that
we proceed to develop a general design methodology for
implementing logic in TL.

3 Some Preliminary Observations
An n-variable or n-input Boolean function can be repre-
sented as a cube in n-dimensional Boolean space, where
there is one axis for each variable, and each variable can
take the values 0 or 1. To map the function onto the n-
cube, we assign the value of the function corresponding
to the coordinates of a vertex (ie. the value of the in-
put variables) to each vertex of the n-cube. Fig. 3 shows
the n-cube for 1 (a line), 2 (a square), 3 (a cube) and 4
(a 4-cube) dimensions.
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Fig. 3. N-Dimensional cubes shown for 1, 2, 3 and 4 dimen-
sions.

The conventional Karnaugh map logic minimiza-
tion method provides a means of identifyingadjacency
planeson the n-cube. Each adjacency plane corresponds
to a product (AND) term of the function (in sum-of-
products form), and an m-dimensional adjacency plane
within an n-dimensional cube will produce a term with
n � m literals. In other words, the fewer planes (Kar-
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naugh map groupings) the fewer the terms in the func-
tion’s final (reduced) expression. Furthermore, the higher
the dimension of each adjacency plane, the fewer the lit-
erals in the product term corresponding to that plane. The
minimization process corresponds to finding the mini-
mum cover of the function.

While the classical K-map minimization technique
works by identifying adjacency planes and hence prod-
uct terms, our technique uses the K-map to identify sets
of vertices which are linearly separable from the other
vertices on the n-cube and are thus “computable” by one
or more threshold functions. Just as there may be more
than one product term in the reduced sum-of-products
expression, when using a TL function realization there
may be more than one plane, and hence threshold func-
tion, required to achieve a separation of sets of vertices
to compute the given function. As was mentioned ear-
lier, a depth-2 network of threshold gates suffices to com-
pute any Boolean function. The first layer computes the
separation of each cluster of 1’s from the remainder of
the n-cube, and the second layer performs an OR opera-
tion on all the outputs from the first layer (using either a
conventional CMOS OR gate, or a TL version). A clus-
ter of vertices of 1’s which is separated using a single
hyper-plane from the rest of the vertices is called a cut-
complex[8]. The number of such cut-complexes deter-
mines how many TL gates are required in the first layer
of the network. An example of a function (�X �Y �Z + Y Z)
which requires two threshold gates in the first layer and
the corresponding planes defined by the TL network re-
quired to compute the function is shown in Fig. 4. The
black vertices correspond to logic 1’s. Two techniques

X

Y

Z

Fig. 4. An example of a function requiring two threshold gates
in the first layer

which have been developed for the design of logic us-
ing TL include the “Floating Gate Potential Diagram”
method [9] (which was first reported in a slightly differ-
ent form by Sheng [10]), and the linear-programming ap-
proach [11]. Neither of these methods, however, is well
suited to the design of TL circuits by hand, except for
relatively trivial functions.

4 The Proposed Design Methodology
The technique which we have developed consists of a
number of steps, and the process is somewhat similar
to Karnaugh map minimization. The method will first
be outlined, followed by an example which will seek to

clarify the procedure.
1. The first step is to draw the Karnaugh representation
of the function to be implemented in a threshold gate net-
work. The 1‘s are then grouped into shapes, using the
smallest number of shapes. The set of shapes is chosen
such that the intersection (or union) of the shapes on the
Karnaugh map covers the function precisely. The shapes
are chosen from a collection of valid cut-complex shapes
which are shown for up to 4-dimensions in Fig. 5. We
have termed this process “finding theminimum threshold
coverof the function”.
2. If necessary, each of the cut-complex defining shapes
from step 1 need to be converted into minimally-
weighted cut-complexes. This is done by re-assigning
the coordinates such that the shape is effectively cen-
tred about the origin (0,0,. . . ,0) in the n-cube. This is
achieved by swapping and/or inverting one or more in-
put variables. A function is defined by codewords which
represent the input values of the corresponding 1’s on
the Karnaugh map (ie. codeword 110 implies inputs
ABC=110). The codeword weight is the sum of the num-
ber of 1’s in the codeword and the weight of a shape is the
sum of the codeword weights which comprise the shape.
A minimally weighted cut-complexis one in which the
weight of the shape is minimal. A minimally weighted
cut-complex results in the plane for that cut-complex be-
ing such that the weights which define the plane are pos-
itive. This is necessary for implementing for example,
neuron-MOS based gates.
3. The next step is to determine the planes (thresh-
old function weights) for each minimally weighted cut-
complex. This is done by choosingn orthogonal edges
(wheren is the number of input variables) - the mid-
points of these edges then define the plane. The edges
must be chosen correctly so that the convex-hull defined
by the plane includes all (but no more than the number
of) points in the cut-complex.
4. The weight values can then be calculated by solving
the matrix equation
2
66664

x11 x12 � � � x1n

x21 x22 � � � x2n
: : : : : : : : : : : : : : : : : :

xn1 xn2 � � � xnn

3
77775

2
66664

w1

w2

: :

wn

3
77775

= T

2
66664

1

1

:

1

3
77775

(5)

This may be re-written as

A ~w = T ~e: (6)

Solving for ~w we obtain

~w = A
�1
T ~e (7)

whereA is the matrix which has as its rows the coordi-
nates of the edge midpoints which define the plane,~w is
the weight vector andT is the gate threshold. If the sum
of the weights is constrained to equal 1, thenT is calcu-
lated as follows

T = ( (~e)
t
A
�1
~e )
�1 (8)
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5. Finally the network may be constructed by combining
the outputs of each threshold gate in the input layer into
an OR gate or AND gate, depending on whether the func-
tion is defined using union or intersection of the shapes,
respectively. The output of this OR or AND gate is the
function output.

0 1

0

1

A

B

1

0 0

0 1

1 1

1 0

A

B C

0

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0

A B

C D

Fig. 5. All of the Karnaugh map shapes (up to isomorphism)
and selected orthogonal edges for possible cut-complexes
in 2, 3 and 4-dimensions.

The short black lines in Fig. 5 represent the edges which
are used when choosing midpoints. The edges are chosen
such that they cut the perimeter of the shape and they cor-
respond to pairs of adjacent positions on the Karnaugh
map (adjacent points on the n-cube). For those shapes
which are sub-cubes of the n-cube (eg. a square in a 3-
cube), one or more input variables is removed. For this
reason some shapes on the 4-variable Karnaugh map are
shown to have less than 4 chosen edges. The removed
inputs are those which are not partitioned by a chosen
edge.

Two shapes are said to beisomorphicif one can be
derived from another by a combination of swapping and
negation of inputs. A minimum weighted cut-complex
is always isomorphic to its original shape. The cor-
responding chosen edges are also transformed by such
operations. Isomorphic shapes on the Karnaugh map
correspond to identical shapes on the n-cube, merely
translated and/or rotated. Also, it should be noted that
the complements (white shapes) of the shaded shapes in
Fig. 5 are also valid shapes, with the same chosen edges
as the shaded counterparts.

5 A Design Example
In this section we illustrate how the proposed method
may be used to design the threshold gate network to im-
plement Boolean functions. The example is of the 2-bit
non-equivalence (A1A0 6= B1B0) function. The Kar-
naugh map forY � (A1A0 6= B1B0) is shown in Fig. 6.
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Fig. 6. (a) Karnaugh map forY � (A1A0 6= B1B0) (b) The
minimum threshold cover forA < B (c) The minimum
threshold cover forA > B (d) The minimally weighted
cut-complex and selected orthogonal edges (e) The re-
quired input re-assignment for both (b) and (c) to obtain
(d)

Following the procedure outlined in Section , the 1’s
are gouped using the minimum number of largest shapes,
which in this case is two, one shape forA < B and a sec-
ond shape forA > B. The resulting minimum threshold
cover is shown in Fig. 6(a) and (b). The shape used is
the third to last shape shown on the 4-dimensional Kar-
naugh maps in Fig. 5. The cut complexes defined by the
two shapes in their current positions on the map are not
minimally weighted, and both shapes need to be shifted
to that shown in Fig. 6(d). The resulting transformation
of the inputs for bothA < B andA > B is shown
in Fig. 6(e). The four orthogonal edges are then cho-
sen as indicated by the short thick lines in Fig. 6(d), and
the coordinates of these edges are (0.5,1,0,1), (0,0.5,1,0),
(0,1,0.5,1) and (1,0,0,0.5). The weight vector for both
A < B andA > B is the same (but different input vari-
ables appear inverted in the two threshold gates as shown
in the input transformation in Fig. 6(e)) and may be cal-
culated as follows

2
666664

w1

w2

w3

w4

3
777775

=

2
666664

0:5 1 0 1

0 0:5 1 0

0 1 0:5 1

1 0 0 0:5

3
777775

�1

T

2
666664

1

1

1

1

3
777775

(9)

As we will see later, it is sometimes desirable that the



5

sum of the weights equal 1, which in this case means we
must set the threshold valueT = 7=16. The weights be-
comew1 = 3=8, w2 = 1=8, w3 = 3=8 andw4 = 1=8.
The TL implementation of this gate is shown in Fig. 7.
The amount of conventional AON logic which this cir-
cuit replaces is clearly quite large.
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Fig. 7. The threshold logic implementation ofY � (A1A0 6=
B1B0)

6 Mapping the TL Network to neuron-
MOS
To map a TL circuit such as that shown in Fig. 7 to a
neuron-MOS implementation, values for the capacitors
used to implement the weights must be found, and the
inverter threshold voltage of the primary inverter shown
in Fig. 1(b) must be set correctly.

The ratios of the capacitances are chosen to be the
same as the weights in Fig. 7 since the weights were
chosen such that their sum was equal to 1 (to satisfy
(4)). Using inverters sized for a threshold voltage of
7VDD=16, the neuron-MOS circuit for the network of
Fig. 7 is shown in Fig. 8.
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Fig. 8. The neuron-MOS implementation ofY � (A1A0 6=
B1B0)

7 Conclusion
A methodology was developed for the systematic paper-
and-pencil design of threshold gate networks implement-
ing arbitrary Boolean functions of up to 4 variables. The
operation of the design methodology was illustrated by a
worked example. The mapping of a TL network designed
using the proposed technique to neuron-MOS based TL
gates was presented, showin the potential of the tech-
nique for developing reduced area digital systems.

Acknowledgments
The authors would like to thank Professor Mike East-
wood, from the Dept. of Pure Mathematics, Adelaide
University, for many useful discussions. This work was
supported by the Australian Research Council and the Sir
Ross and Sir Keith Smith Fund.

References:

[1] S. Muroga, Threshold Logic and Its Applications, Wiley, New
York, 1971.

[2] A. L. Larson, “A TTL compatible threshold gate,”IEEE JSSC,
vol. SC-8, pp. 470–471, 1973.

[3] K. J. Schultz, R. J. Francis, and K. C. Smith, “Ganged CMOS:
Trading standby power for speed,”IEEE JSSC, vol. 25, pp. 870–
873, June 1990.

[4] T. Shibata and T. Ohmi, “A functional MOS transistor featuring
gate-level weighted sum and threshold operations,”IEEE JSSC,
vol. 39, pp. 1444–1455, 1992.

[5] T. Shibata and T. Ohmi, “An intelligent MOS transistor fea-
turing gate-level weighted sum and threshold operations,” in
IEDM, Technical Digest, New York, NY, USA, Dec 1991, IEEE.

[6] K. Hirose and H. Yasuura, “A comparison of parallel multipliers
with neuron MOS and CMOS technologies,” inProceedings
of IEEE Asia Pacific Conference on Circuits and Systems 96.
IEEE, November 1996, pp. 488–491.

[7] P. Celinski, D. Abbott, S.F. Al-Sarawi, and J.F. L´opez, “Novel
extension of neu-MOS techniques to neu-GaAs,”Microelec-
tronics Journal, vol. 31, no. 7, pp. 577–582, 2000.

[8] W. R. Emamy-K, “Geometry of cut-complexes and threshold
logic,” Journal of Geometry, vol. 65, pp. 91–100, 1999.

[9] T. Shibata and T. Ohmi, “Neuron MOS binary-logic integrated
circuits - part 1 design fundamentals and soft-hardware logic cir-
cuit implementation,”IEEE Transactions on Electron Devices,
vol. 40, no. 3, pp. 570–575, March 1993.

[10] C. L. Sheng, “A graphical interpretation of realization of sym-
metric boolean functions with threshold elements,”IEEE Trans-
actions on Electronic Computers, pp. 8–18, February 1964.

[11] K. Ike, K. Hirose, and H. Yasuura, “A module generator of
2-level neuron MOS circuits,”Computers and Electrical Engi-
neering, vol. 24, no. 1-2, pp. 33–41, January-March 1998.


