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Abstract

This thesis presents a versatile study on the design and Very Large Scale Integration

(VLSI) implementation of various synaptic plasticity rules ranging from phenomeno-

logical rules, to biophysically realistic ones. In particular, the thesis aims at developing

novel spike timing-based learning circuits that advance the current neuromorphic sys-

tems, in terms of power consumption, compactness and synaptic modification (learn-

ing) abilities. Furthermore, the thesis investigates the usefulness of the developed de-

signs and algorithms in specific engineering tasks such as pattern classification. To fol-

low the mentioned goals, this thesis makes several original contributions to the field of

neuromorphic engineering, which are briefed in the following.

First, a programmable multi-neuron neuromorphic chip is utilised to implement a

number of desired rate- and timing-based synaptic plasticity rules. Specific software

programs are developed to set up and program the neuromorphic chip, in a way to

show the required neuronal behaviour for implementing various synaptic plasticity

rules. The classical version of Spike Timing Dependent Plasticity (STDP), as well as

the triplet-based STDP and the rate-based Bienenstock-Cooper-Munro (BCM) rules are

implemented and successfully tested on this neuromorphic device. In addition, the im-

plemented triplet STDP learning mechanism is utilised to train a feedforward spiking

neural network to classify complex rate-based patterns, with a high classification per-

formance.

In the next stage, VLSI designs and implementations of a variety of synaptic plasticity

rules are studied and weaknesses and strengths of these implementations are high-

lighted. In addition, the applications of these VLSI learning networks, which build

upon various synaptic plasticity rules are discussed. Furthermore, challenges in the

way of implementing these rules are investigated and effective ways to address those

challenges are proposed and reviewed. This review provides us with deep insight into

the design and application of synaptic plasticity rules in VLSI.

Next, the first VLSI designs for the triplet STDP learning rule are developed, which

significantly outperform all their pair-based STDP counterparts, in terms of learning

capabilities. It is shown that a rate-based learning feature is also an emergent property
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Abstract

of the new proposed designs. These primary designs are further developed to gener-

ate two different VLSI circuits with various design goals. One of these circuits that has

been fabricated in VLSI as a proof of principle chip, aimed at maximising the learning

performance—but this results in high power consumption and silicon real estate. The

second design, however, slightly sacrifices the learning performance, while remark-

ably improves the silicon area, as well as the power consumption of the design, in

comparison to all previous triplet STDP circuits, as well as many pair-based STDP cir-

cuits. Besides, it significantly outperforms other neuromorphic learning circuits with

various biophysical as well as phenomenological plasticity rules, not only in learning

but also in area and power consumption. Hence, the proposed designs in this thesis

can play significant roles in future VLSI implementations of both spike timing and rate

based neuromorphic learning systems with increased learning abilities. These systems

offer promising solutions for a wide set of tasks, ranging from autonomous robotics to

brain machine interfaces.
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Chapter 1

Introduction

T
HIS chapter provides the reader with introductory background

on Spiking Neural Network (SNN) and discusses why neuromor-

phic engineering is important. Identified research gaps and the

motivations behind the current study are also outlined in this chapter. Fur-

thermore, the objectives of the thesis and the research questions and goals

are discussed. Besides, the original contributions made in this thesis to

reach the mentioned goals are highlighted. Finally, the structure and out-

line of this thesis are described.
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1.1 Introduction

1.1 Introduction

1.1.1 Neural Networks

The human being is one of the most mysterious and complicated creatures to our

knowledge. They can understand, learn, deduce, recognise, and judge. Many re-

searchers are inspired by various aspects of human genetic and neural mechanisms.

Scientists have proposed a variety of human- and nature-inspired problem solving

techniques such as the Genetic Algorithm (GA) (Goldberg 1989, Azghadi et al. 2008,

Bonyadi et al. 2007) and Artificial Neural Network (ANN) (Haykin 1994, Azghadi et al.

2007). Artificial neural networks have attracted much attention, during the last few

decades. This has resulted in three various generations of these networks (Vreeken

2003), which are based on three different types of neurons.

The first generation of artificial neural networks is composed of threshold neurons

or binary units, that were firstly proposed by McCulloch and Pitts (1943). This neu-

ron model is quite simple and just acts as a threshold detector. Put simply, when the

summation of the weighted inputs of this type of neuron is more than a predefined

threshold, the neuron fires, i.e. it produces a pulse, which can be used to represent a

binary state. These networks are definitely suitable for performing Boolean operations,

but when the problem requires analog computations and approximations, they are not

practical (Vreeken 2003).

The second generation of artificial neural networks that is more realistic and closer

to real neurons introduces sigmoid (i.e. logistic) neurons, which present a continuous

output function rather than just a binary or quantised output (DasGupta and Schnitger

1994). In the first two generations of neural networks, the timing of input-output is not

important and just their rate can carry information, but it is known that in real neurons,

which can carry out many complicated learning and recognition tasks, there is a more

intricate input-output relation (Dayan and Abbott 2001). This relation brings timing

into action and makes a spatial-temporal information coding and transition model of

neurons, so-called spiking neurons.

Spiking neurons are basic building blocks of the third generation of artificial neural

networks, so-called SNN. Since synaptic plasticity in SNNs is the focus of this thesis,

in the following, a brief introduction on this type of neural networks is presented.
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Chapter 1 Introduction

1.1.2 Spiking Neural Networks

A SNN is composed of spiking neurons and synapses. As its name infers, a spik-

ing neuron sends information in the form of electrical pulses, so-called spike (i.e. ac-

tion potentials), to other neurons and synapses in the network. This is through the

propagation of these spikes that information is transferred in the SNN (Gerstner and

Kistler 2002). There is general agreement on the information coding in the form of

the rate, timing, and spatial/temporal correlations of the spikes communicated among

neurons. Therefore, a neuron depending on its type, its information type, its place in

the network, and other factors, is able to fire spikes in various ways. For this reason,

various neuron models were proposed by computational and theoretical neuroscien-

tists to mimic the operation of real neurons. This thesis briefly discusses neurons and

addresses their various models and behaviours, in the next chapter.

Besides spiking neurons, synapses are the other basic building blocks in a SNN. A

synapse is the connection point of one neuron to its neighbouring neurons. It is widely

believed that learning, computation and memory processes take place in synapses

(Sjöström et al. 2008). Since the learning and computation in a SNN is a dynamic pro-

cess, so the synapses that are the main blocks for learning and computation should

also be dynamic and modifiable. However, the open question is how the modifica-

tion takes place in the synapses within the brain, in a way that many complicated

and real-time tasks such as learning, computation, and cognition are performed so

smoothly and accurately. Although there is no general agreement as to the answer

to this question, there are several hypotheses stating that these modifications take

place in relation to the activity of pre- and post-synaptic neurons connected to the

synapse (Sjöström et al. 2008). These activities, which are the basis of this thesis are

elaborated in the following chapters.

After investigating the SNNs and their structure, scientists are able to propose models

and techniques to implement these spiking networks of neurons and synapses. The

implementation can be performed either in software or hardware. However, there are

fundamental differences in software and hardware implementations of SNNs.

Since neuron and synapse models and behaviours are described by algorithms and

mathematical terms, they can be easily implemented as software programs and run

on ordinary computers. These implementations are also easily modifiable and can be

altered according to the needs, in every step of the implementation process. These

programs that represent neurons and synapses can then be integrated and connected
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Table 1.1. Neuron and synapse quantity. Number of neurons and synapses in humans as com-

pared to various animals (Ananthanarayanan et al. 2009).

Mouse Rat Cat Human

Neurons ×108 0.160 0.550 7.63 200

Synapses ×1012 0.128 0.442 6.10 200

to each other, in order to from a SNN. This approach is usually noise and error-free

and does not require a special technology to realise them. Despite all these benefits

though, it requires a supercomputer to simulate a mouse or cat cortex (Frye et al. 2007, Anan-

thanarayanan et al. 2009).

This is because of the fact that the Von Neumann architecture, which is the founda-

tion of all today’s computers, runs programs sequentially. Therefore a large amount

of processing, which in turn needs a large amount of memory, must be performed,

in order to realise a portion of cortex containing billions of neurons and trillions of

synapses (Frye et al. 2007, Ananthanarayanan et al. 2009). Table 1.1 shows how very

large the neuron and synapse numbers are in the mouse, rat, cat, and human cortex.

These numbers demonstrate why simulating a neural network requires supercomput-

ers.

Researchers in IBM have utilised and set up a very large supercomputer with 147,456

CPUs and 144 TB of main memory, in order to perform a cat-scale cortical simula-

tion, which is demonstrated in Ananthanarayanan et al. (2009). To this complexity

and very large resource requirements, one may add the complexity and resources for

implementing special purpose programs for neurons, synapses, and their interconnec-

tions. In addition, in terms of power consumption and area, a supercomputer, by no

means is close to a biological cortex. Furthermore, a simulated cortex on the men-

tioned supercomputers, is an order of magnitude slower than biological neural sys-

tems (Frye et al. 2007, Ananthanarayanan et al. 2009). Therefore, this raises the question

”how can researchers implement a reasonably large scale SNN, which consumes rea-

sonable power, takes moderate area, and process in biologically plausible time scales

or even faster time scales?”

Carver Mead as one of the founding fathers of silicon chips and modern electronic

engineering, in his seminal neuromorphic engineering paper (Mead 1990) states,
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Biological information-processing systems operate on completely different principles from those

with which most engineers are familiar. For many problems, particularly those in which the

input data are ill-conditioned and the computation can be specified in a relative manner, bio-

logical solutions are many orders of magnitude more effective than those we have been able to

implement using digital methods. This advantage can be attributed principally to the use of

elementary physical phenomena as computational primitives, and to the representation of in-

formation by the relative values of analog signals, rather than by the absolute values of digital

signals. This approach requires adaptive techniques to mitigate the effect of component differ-

ences. This kind of adaptation leads naturally to systems that learn about their environment.

Large-scale adaptive analog systems are more robust to component degradation and failure than

are more conventional systems, and they use far less power. For this reason, adaptive analog

technology can be expected to utilise the full potential of the wafer-scale silicon fabrication.

This provides us a rather clear answer to the above mentioned questions and opens

horizons to a new field of engineering, as first posed by Carver Mead, Neuromorphic

Engineering.

1.1.3 Neuromorphic Engineering

Neuromorphic engineering is the art of implementing SNN-inspired hardware (Mead

1989, Mead 1990). Neuromorphic engineers have good knowledge of both electronic

engineering concepts, and biological models of neurons and synapses. They strive to

use physical characteristics of silicon transistors to mimic neural systems and archi-

tectures. The silicon-based neuromorphic systems then can be used in various tasks

ranging from robotics, to the Brain Machine Interface (BMI), to cognition. There are a

variety of neuromorphic systems that have been implemented using Analog, Digital,

and Analog/Digital Very Large Scale Integration (VLSI) technologies (Indiveri et al.

2011, Hamilton and Tapson 2011). In addition, with recent appearance of memristors

as a new nano-electronic device (Fortuna et al. 2009, Eshraghian 2010, Eshraghian et al.

2012), which is nicely compatible to the biology of synapses, memristive neuromor-

phic systems are becoming quite popular (Demming et al. 2013, Azghadi et al. 2013d,

Wang et al. 2014b, Kudithipudi et al. 2014, Sheri et al. 2014, Sheridan and Lu 2014).

In comparison to the aforementioned software implementation of neural systems, neu-

romorphic VLSI systems have significant benefits. These benefits include

• very high degree of integration
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• very low power consumption

• real-time implementation of neural systems.

Software neural systems though, have some advantages such as reconfigurability, ease

of implementation, and noise-tolerance, over the neuromorphic VLSI systems. How-

ever, when considering a large scale neural network, the advantages of VLSI neuro-

morphic systems are significant. That is the main reason why neuromorphic VLSI

engineering has been growing and attracting attention since the pioneering ideas of

Carver Mead in the late 80’s (Mead 1989). Since then, neuromorphic engineers have

been developing various analog, digital, and mixed-signal VLSI circuits of neurons

and synapse models that have been proposed by computational and theoretical neuro-

scientists (Indiveri 2003, Indiveri et al. 2006, Hamilton et al. 2008, Indiveri et al. 2009, In-

diveri et al. 2011, Hamilton and van Schaik 2011, Azghadi et al. 2013a).

Furthermore, using these silicon-based neurons and synapses, neuromorphic engi-

neers have also been implementing biologically inspired systems that are useful for

real-world applications such as pattern classification (Mitra et al. 2009, Giulioni et al.

2009), feature extraction (Vogelstein et al. 2007a) and orientation selectivity (Choi et al.

2004, Chicca et al. 2007). In order to perform any cognitive tasks, learning and memory

are the inevitable requirements of these neuromorphic systems. However, one might

ask how the required learning and memory take place in these networks to enable them

to perform such challenging tasks? The motivation of this thesis is defined around this

basic question.

1.2 Research Gaps and Objectives of the Thesis

The underlying mechanisms and processes responsible for learning and long-term

memory in the brain has remained an important yet strongly debated subject for re-

searchers in various fields ranging from neurophysiology through to neuromorphic

engineering. It is widely believed that processes responsible for synaptic plasticity pro-

vide key mechanisms underlying learning and memory in the brain (Song et al. 2000,

Pfister and Gerstner 2006, Sjöström et al. 2001, Wang et al. 2005). However, despite the

well established agreement on the fact that learning and memory are based on synaptic

efficacy (i.e. weight) plasticity (Martin et al. 2000, Shouval et al. 2002, Cooper et al. 2004),

there are various schools of thought on answers to questions such as i) what are the
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causes of these plastic behaviours? and ii) what are the connections of these behaviours

to learning?

The variety of viewpoints in answering the above mentioned questions can be due to

the intrinsic complexity of learning and memory phenomena. This fact causes var-

ious classes of synaptic plasticity rules, with different mechanisms of induction and

expression, have been being proposed (Abbott and Nelson 2000, Mayr et al. 2010,

Shouval 2011, Graupner and Brunel 2012). As these various rules are proposed, neu-

romorphic engineers implement silicon models of them. Probably the most recognised

example of synaptic plasticity rules among neuromorphic engineers is Spike Timing

Dependent Synaptic Plasticity (STDP) (Markram et al. 1997, Bi and Poo 1998). This

rule has been implemented in different studies and by various groups (Bofill-I-Petit

and Murray 2004, Cameron et al. 2005, Indiveri et al. 2006, Tanaka et al. 2009, Bam-

ford et al. 2012b).

However, the research gap here is that, although the traditional form of STDP, Pair-

based Spike Timing Dependent Plasticity (PSTDP), has shown success in solving some

computational and learning problems both in computational neuroscience (Song et al.

2000, Lisman and Spruston 2010, Masquelier and Thorpe 2007, Masquelier and Thorpe

2010, Davison and Frégnac 2006) and in neuromorphic engineering (Bofill-I-Petit and

Murray 2004, Cameron et al. 2005, Indiveri et al. 2006, Koickal et al. 2007, Tanaka et al.

2009, Arena et al. 2009, Seo et al. 2011), recent studies show that the simple form of

PSTDP that changes the synaptic weights according to a linear summation of weight

changes, is not able to account for a variety of biological experiments (Froemke and

Dan 2002, Pfister and Gerstner 2006, Gjorgjieva et al. 2011) and hence may lack learn-

ing and computational capabilities compared to more elaborate new synaptic plasticity

models. Although a variety of other synaptic plasticity models, rather than just sim-

ple PSTDP exist, the implementation of these detailed synaptic plasticity rules in VLSI

and their use in various engineering applications is a rather unexplored research area,

and gives rise to a gap in neuromorphic engineering. Therefore, there is a need to ex-

plore these new synaptic plasticity rules in VLSI and test them in terms of performance

for generating the outcome of various biological experiments (and therefore mimick-

ing real synapses), as well as their use in real-world applications such as in pattern

classification tasks.

The main objectives of this thesis are to investigate new methods for design, analy-

sis, and implementation of a number of novel and unexplored synaptic plasticity rules
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in VLSI. The main specific rule targeted in this thesis is a derivation of the classical

STDP rule that is named Triplet-based Spike Timing Dependent Plasticity (TSTDP).

This rule is shown to be able to account for a variety of biological experiments (Pfister

and Gerstner 2006). In addition, TSTDP exploited for pattern selection and classifi-

cation (Gjorgjieva et al. 2011). This thesis verifies the performance of a number of

proposed VLSI designs in terms of replication of the outcomes of a variety of bio-

logical experiments. It also investigates the power consumption, and silicon area of

the novel proposed designs and compares them to previous VLSI designs of a vari-

ety of synaptic plasticity rules, to justify if the proposed circuits are able to help reach

the long-lasting goal of having a large-scale SNN with features close to that of the

brain (Poon and Zhou 2011). Furthermore, the thesis also investigates the useful-

ness of the TSTDP rule in pattern classification tasks and reproducing the outcomes

of a number of other synaptic plasticity rules, such as rate-based Bienenstock Cooper

Munro (BCM) (Bienenstock et al. 1982, Cooper et al. 2004) or timing-based suppressive

model of STDP (Froemke and Dan 2002).

The newly introduced synaptic plasticity VLSI circuits tend to be used in various large-

scale SNNs with increased ability of learning, and improved synaptic plasticity ability.

This will lead to neuromorphic cognitive systems with higher degree of applicability

in real-time cognition tasks such as pattern recognition and classification. The next

Section represents a summary of original contributions made to reach the above men-

tioned objectives and to fill the mentioned research gaps.

1.3 Summary of Original Contributions

The original contributions presented throughout this thesis can be itemised as follows:

• A programmable hardware-software multi-neuron neuromorphic chip called In-

tegrate and Fire with Memory (IFMEM) is set up and programmed, in a way to

show the required neuronal behaviour for implementing various synaptic plas-

ticity rules on this neuromorphic system. The silicon neuron and synapse re-

sponse properties of this system are carefully controlled through specific soft-

ware programs developed for this purpose. The experimental results demon-

strate that the programmable IFMEM chip operates correctly over a wide range

of input frequencies and therefore is suitable for use in various real-world appli-

cations, where interfacing to real-world sensors and systems is required, or even
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when higher processing speed is required. The results of this study is published

in the IEEE International New Circuit and System Conference (Azghadi et al. 2013d).

• For the first time, the PSTDP, TSTDP and BCM rules are successfully imple-

mented on the IFMEM neuromorphic chip. Furthermore, a pattern classification

neural network is also implemented on this multi-neuron chip. In more detail:

(i) It is successfully shown that both PSTDP and TSTDP rules implemented us-

ing silicon neurons and programmable synapses, can demonstrate the expected

behaviours, similar to those seen in biological experiments.

(ii) It is also shown how the STDP window can be generated using the silicon

neurons and synapses available on the system.

(iii) The PSTDP rule is used and tested for generating a competitive Hebbian

learning behaviour observed in computational STDP experiments.

(iv) For the first time the TSTDP learning algorithm is implemented on the IFMEM

neuromorphic hardware.

(v) In order to test the TSTDP implementation, the rate-based BCM learning

behaviour is reproduced by this implementation. This experiment shows the

usefulness of this timing-based learning algorithm for generating the rate-based

BCM learning behaviour.

(vi) Finally, the implemented TSTDP learning mechanism is utilised to train a

simple feedforward spiking neural network to classify some complex rate-based

patterns.

Obtained results show the high performance of the TSTDP rule in the targeted

classification task. In addition, the preformed research in this part provides good

view of the TSTDP rule and its properties and features, which are essential when

designing VLSI TSTDP synapses in the next parts of this research. The results of

the above mentioned study are presented in The ACM Journal on Emerging Tech-

nologies in Computing Systems (Azghadi et al. 2014c).

• A previous VLSI implementation of the PSTDP rule is simplified to reduce area

and power consumption. The result of this study is presented in the Engineer-

ing and Physical Sciences in Medicine and the Australian Biomedical Engineering Con-

ference (Azghadi et al. 2011b). In addition, various synaptic plasticity experi-

ments have been performed using different PSTDP circuits. The results show

that all PSTDP circuits including the modified PSTDP circuit are unable to repli-

cate many complicated biological experiments.
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• The first VLSI design for the TSTDP rule is presented in this thesis. It is shown

that this voltage-based TSTDP circuit is able to mimic the outcomes of a wide

range of synaptic plasticity experiments including timing-based, hybrid rate/-

timing based, and rate-based synaptic plasticity experiments, under various pro-

tocols and conditions. The circuit and these primary results are presented in The

21st Japanese Neural Network Society Annual Conference (Azghadi et al. 2011d). In

addition, a previous voltage-based PSTDP VLSI design proposed by Indiveri et al.

(2006) is investigated, optimised and simulated to show the various synaptic

plasticity experiments. The results show that this PSTDP circuit, similar to our

previous modified PSTDP VLSI circuit (Azghadi et al. 2011b), fails to account

for many experiments. The comparison between the performance of this PSTDP

circuit and the first proposed TSTDP circuit is presented in The IEEE Interna-

tional Conference on Intelligent Sensors, Sensor Networks and Information Processing

(Azghadi et al. 2011c).

• Furthermore, the proposed voltage-based TSTDP circuit is investigated for re-

producing a similar behaviour to the outcomes of a rate-based BCM experiment.

The results presented in the 2011 Australian Computational Neuroscience Workshop

(Azghadi et al. 2011a) demonstrate that the circuit closely mimics the sliding

threshold behaviour of the BCM rule. In addition, with further investigations,

it was observed that both PSTDP and TSTDP circuits are able to account for a

BCM-like behaviour, while the proposed TSTDP circuit has better performance

and control over this behaviour. The new results are presented in The 2012 IEEE

International Joint Conference on Neural Networks (Azghadi et al. 2012a).

• The first voltage-based TSTDP design is not able to account for the exponential

behaviour of the STDP learning rule. In addition, it is not able to reproduce

the exponential learning window generated by the computational model of the

STDP rule presented in Song et al. (2000). Therefore, in order to remove this

deficiency, the voltage-based circuit was modified and a new synaptic plasticity

circuit is proposed, which uses the current-mode design strategy based on the

design proposed by Bofill-I-Petit and Murray (2004). This circuit is verified to

generate the exponential learning window as well as the outcomes of all required

complicated experiments. The results are presented in The 2012 IEEE International

Joint Conference on Neural Networks (Azghadi et al. 2012b).
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• Further investigation reveals that although the first two TSTDP designs can gen-

erate the outcomes of many experiments, none of them are able to correctly ac-

count for other set of experiments performed based on other STDP-based synap-

tic plasticity rules such as the suppressive STDP rule proposed by Froemke and

Dan (2002). In addition, these circuits are not able to correctly regenerate the

outcomes of BCM experiments under a specific condition, where the synapse

is driven pre-synaptically as in the original experiments (Kirkwood et al. 1996).

Therefore, a new high-performance VLSI design for the TSTDP rule is proposed

that outperforms the other TSTDP VLSI designs in several respects. It is shown

that the new proposed design has significantly lower synaptic plasticity predic-

tion error, in comparison with previous designs for TSTDP and PSTDP rules.

In addition, it is also shown that this new design can successfully account for a

number of new experiments, including experiments involved with various spike

triplet combinations, as well as pre-synaptic and post-synaptic driven rate-based

BCM-like experiments, where the previous TSTDP and PSTDP designs do not

show suitable performance and cannot mimic the experiments effectively. This

new design is also tested against process variation and device mismatch. It is

shown that, although the circuit is susceptible to process variation, it is possi-

ble to mitigate the effect of variations and fine-tune the circuit to its desired be-

haviour. In addition, the power consumption and area of the proposed design are

also investigated and discussed. Obtained results are presented mainly in Neural

Networks (Azghadi et al. 2013a).

• The proposed circuit has been recently fabricated as a proof of principle and the

measurement results testify to the correct functionality of the fabricated circuit in

performing triplet-based synaptic weight modification.

• Although the previous TSTDP design has a very high performance in reproduc-

ing the outcomes of all required experiments, compared to its PSTDP and TSTDP

counterparts, it consumes significantly high power to process each spike. Fur-

thermore, considering the number of transistors and the use of five capacitors,

from which one is a very large capacitor of the size of 10 pF, this high perfor-

mance TSTDP circuit occupies a large silicon area. However, in order to follow

the long-lasting goal of integrating synaptic plasticity circuits in a large-scale neu-

romorphic system, which includes millions of these circuits, they should be of a

practicable size, consume very low energy, have an acceptable performance and
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tolerate the process variation to some extent. A new compact, ultra low energy,

high performance, and variation tolerant design is proposed to satisfy the needs

for such large-scale systems. This design utilises a 50 fF capacitor instead of the

very large capacitors used in the previous TSTDP circuit, while retaining its abil-

ity to reproduce the STDP learning window, and the triplet and quadruplet ex-

perimental data. This design and its experimental results are presented in the

2013 IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-

SoC) (Azghadi et al. 2013c).

• Due to its small capacitor, the new TSTDP design presented in Azghadi et al.

(2013c), cannot account for the frequency-dependent pairing experiments and is

suitable only for experiments with high spike frequencies. Therefore, the weight

capacitor in the design was increased, so that it can account for all types of ex-

periments and is useful for processing inputs with either high or low spike rates.

The presented results in the 2013 IEEE International Conference on Electronics, Cir-

cuits, and Systems (Azghadi et al. 2013b), show that the new design with larger

capacitor can very closely mimic the frequency-dependent pairing experiments,

and is suitable for processing various input spike rates.

• Further investigations on the performance of the new design show that this de-

sign, which its synaptic plasticity performance is slightly compromised com-

pared to the previous large high-performance circuit, significantly outperforms

previous TSTDP and PSTDP designs, in all important aspects in neuromorphic

engineering including power consumption, required silicon real estate, and tol-

erance to device mismatch. The results are presented in PLoS ONE (Azghadi et al.

2014a).

All these features make the new proposed design an ideal device for use in large

scale SNNs, which aim at implementing neuromorphic systems with an inherent

capability that can adapt to a continuously changing environment, thus leading

to systems with significant learning and computational abilities. This system

then can be used in real-world tasks such as pattern classification.

• In addition to all these contributions, a general overview on the design and VLSI

implementations of various synaptic plasticity rules, ranging from phenomeno-

logical ones (i.e. timing-based, rate-based, or hybrid rules) to biophysically re-

alistic ones (e.g. based on calcium dependent models) is provided in this thesis.
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The thesis also discusses the application domains, weaknesses and strengths of

the various representative approaches proposed in the literature and provides

deeper insight into the challenges that engineers face when designing and im-

plementing synaptic plasticity rules in order to utilise them in real-world appli-

cations. Furthermore, counter approaches to tackle the challenges in designing

neuromorphic engineering circuits are discussed and proposed. Besides, with a

focus more on the system aspects of neuromorphic engineering, the use of vari-

ous synaptic plasticity rules and circuits in real neuromorphic learning systems

is discussed and these systems are analysed in terms of power consumption and

silicon real estate. Also an example of an effective neuromorphic system is men-

tioned and it is described in detail how it learns to perform an engineering task.

The results, review and discussion mentioned above are mainly presented in The

Proceedings of the IEEE (Azghadi et al. 2014b).

1.4 Thesis Outline

This thesis encompasses nine chapters as visualised in Fig. 1.1. In the current chap-

ter, some introductory remarks on the neural networks, spiking neural networks, and

neuromorphic engineering were addressed. In addition, discussions on why synap-

tic plasticity rules are crucial components of SNNs, were provided. Furthermore, we

described the motivations of this thesis for exploring and investigating VLSI imple-

mentations of new, non-linear, and more complex synaptic plasticity rules, in order to

use them in large-scale neuromorphic systems with the capability of performing real-

world tasks such as pattern classification.

Chapter 2 provides a brief background on neuron and synapse models and their VLSI

implementations. This will provide the required background material to build on in

the thesis. It then focuses on the main topic of the thesis, synaptic plasticity rules.

It reviews various plasticity rules ranging from simple phenomenological, to hybrid,

to biophysically grounded rules, and compare them in terms of biological plausibility.

The chapter also provides results of several Matlab simulations that were performed in

the beginning of the present study to gain knowledge and better understanding of the

targeted rules. These simulation were utilised as benchmark to verify the performance

of the rules, when implemented in VLSI. The chapter also reviews some important
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Figure 1.1. Thesis outline. The thesis is composed of 9 chapters including background and con-

clusion. The original contributions are distributed in chapters 3 to 8. The thesis can be

divided into two parts. The first part that includes chapters 3, 4 and parts of chapter

5 is mainly concerned with the design of a neuromoprhic system. However, the second

part, which includes some sections of chapter 5, and chapters 6 to 8, is dedicated to

the circuit designs for synaptic plasticity rules. All chapters are virtually self-contained.
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synaptic plasticity protocols that have been utilised in synaptic plasticity experiments,

as well as in many experiments performed in the present thesis. In short, this chapter

gives the reader an insight about the rest of the experiments and studies performed

within the thesis.

Chapter 3 describes the architecture and structure of a programmable hybrid analog

digital neuromorphic circuit, called IFMEM, that can be used to build compact low-

power neural processing systems. In this chapter, first the architecture of the IFMEM

neuromorphic system is described and then it is explained how this hybrid analog-

digital Complementary Metal Oxide Semiconductor (CMOS) circuit operates correctly

over a wide range of input frequencies; a feature that is essential for many applications.

The chapter shows measurement results from available silicon neurons, and neuron-

synapse combinations and demonstrates how required and specific behaviours are

generated by programming the chip and optimising neural parameters of the silicon

neurons and synapses. The provided information in this chapter helps to understand

the presented results in the following chapter, which is dedicated to implementing

STDP rules on the IFMEM setup, and utilising these rules to reproduce a rate-based

BCM-like behaviour, and to carry out a classification task.

Chapter 4 is dedicated to the implementation of STDP rules and a pattern classification

neural network on the IFMEM neuromorphic system. It is shown that both PSTDP

and TSTDP rules can be implemented on this neuromorphic setup and demonstrate

the expected behaviours seen in biological experiments. The chapter shows how the

STDP window can be generated using the silicon neurons and synapses available on

the system. Next, the STDP rule is used and tested for generating a competitive Heb-

bian learning behaviour observed in computational STDP experiments, which results

in a bimodal synaptic weight distribution after STDP learning (Song et al. 2000). Then,

the TSTDP learning algorithm is implemented. In order to test this implementation,

the rate-based BCM learning behaviour is reproduced by this implementation. This

experiment shows the usefulness of this timing-based learning algorithm for generat-

ing the rate-based BCM learning behaviour. Finally, the implemented TSTDP learning

mechanism is utilised to train a simple feedforward spiking neural network to classify

some complex rate-based patterns. Obtained results show the high performance of the

TSTDP rule in the targeted classification task. In addition, the preformed research in

this chapter provides good view of the TSTDP rule and its properties and features,

which are essential when designing VLSI TSTDP synapses in the following chapters.
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Chapter 5 reviews VLSI circuit implementations of various synaptic plasticity rules,

ranging from phenomenological rules to biophysically realistic ones. It discusses the

application domains, weaknesses and strengths of the various approaches proposed in

the literature and provides deeper insight into the challenges that engineers face when

designing and implementing synaptic plasticity rules in order to utilise them in real-

world applications. The review performed in this chapter helps in the design process

of new VLSI circuits for synaptic plasticity rules, since it highlights the challenges,

applications and effective design methods and techniques, that are already known in

VLSI implementations of specific rules.

Chapter 6 demonstrates that the VLSI implementations of the classical model of STDP

is incapable of reproducing synaptic weight changes similar to those seen in biological

experiments, which investigate the effect of either higher order spike trains (e.g. triplet

and quadruplet of spikes), or simultaneous effect of the rate and timing of spike pairs

on synaptic plasticity. This chapter shows that, a previously described spike triplet-

based STDP rule succeeds in reproducing all of these synaptic plasticity experiments.

In this chapter, synaptic weight changes using a number of widely used PSTDP circuits

are investigated and it is shown how the class of PSTDP circuits fails to reproduce the

mentioned complex biological experiments. In addition, a number of new STDP VLSI

circuits, which act based on the timing among triplets of spikes and are able to re-

produce all the mentioned experimental results, are presented. The presented circuits

in this chapter are the first VLSI implementations of TSTDP rules that are capable of

mimicking a wide range of synaptic plasticity experiments.

Chapter 7 introduces circuit design and implementation of a new high-performance

VLSI design for the TSTDP rule that outperforms the previous TSTDP VLSI designs in

several aspects. It is shown in this chapter, how different terms in the TSTDP synaptic

plasticity equation, are implemented to have a very close fit to the model. This results

in the proposed design to have significantly lower synaptic plasticity prediction error,

in comparison with previous designs for TSTDP and PSTDP rules. In addition, it is

shown that the new proposed design can successfully account for a number of experi-

ments in addition to those mentioned for the previous TSTDP circuits, including those

involved with various spike triplet combinations, as well as pre-synaptic and post-

synaptic driven rate-based BCM-like experiments, where the previous TSTDP designs

do not perform very efficiently. This chapter also discusses some of the main chal-

lenges in designing the proposed TSTDP circuit such as power consumption, silicon
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real estate and process variations. In order to test the design against variation that

leads to device mismatch, a 1000-run Monte Carlo (MC) analysis is conducted on the

proposed circuit. The presented MC simulation analysis and the simulation result from

fine-tuned circuits show that, it is possible to mitigate the effect of process variations

in the proof of concept circuit. In addition to the performed simulations, the proposed

circuit has been fabricated in VLSI as a proof of principle. The shown chip measure-

ment results testify to the correct functionality of the fabricated circuit in performing

triplet-based synaptic weight modification.

Chapter 8 introduces a new accelerated-time circuit that has several advantages over

its previous neuromorphic counterparts, which were discussed in previous chapters,

in terms of compactness, power consumption, and capability to mimic the outcomes

of biological experiments. The proposed circuit is investigated and compared to other

designs in terms of tolerance to mismatch and process variation. Monte Carlo (MC)

simulation results show that the proposed design is much more stable than its previ-

ous counterparts in terms of vulnerability to transistor mismatch, which is a significant

challenge in analog neuromorphic design. All these features make the proposed design

an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic

systems with an inherent capability that can adapt to a continuously changing environ-

ment, thus leading to systems with significant learning and computational abilities.

Chapter 9 provides concluding remarks of this thesis. It also discusses future research

directions that can be followed based on the study carried out and presented in the

current thesis. In addition, an outlook to the neuromorphic engineering for synaptic

plasticity rules is also written in this chapter.

In a nutshell, considering the background material provided in this thesis and with re-

gards to the versatile study performed on the design, implementation and application

of spike timing-based synaptic plasticity rules, the current thesis can be of great help

for readers with various backgrounds. It is useful for engineering students who want

to grasp an idea around the field of neuromorphic engineering, as well as the more

experienced neuromorphic engineers who need to review and learn about the VLSI

implementation of synaptic plasticity rules and their applications. In addition, compu-

tational and experimental neuroscientists who would like to be familiar with the field

of neuromorphic engineering and its relation with their fields of research, will find this

thesis useful.
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Chapter 2

Neurons, Synapses and
Synaptic Plasticity

T
HIS chapter starts by providing a brief background on neuron

and synapse models and their VLSI implementations, that is re-

quired to elucidate the material within this thesis. It then focuses

on reviewing various synaptic plasticity rules ranging from simple phe-

nomenological, to hybrid, to biophysically grounded rules, and compares

them in terms of biological capabilities. The chapter provides several Mat-

lab simulation results that were performed in the beginning of this study

to gain the knowledge and better understanding of the targeted rules. This

will provide the needed understanding required for implementing these

rules in VLSI in the next parts of the study. The chapter also reviews some

important synaptic plasticity protocols that have been utilised in synap-

tic plasticity experiments, as well as in many experiments performed in

the present thesis. In short, this chapter gives the reader an insight of the

neuron and synapse structures and provides the required information and

terms that will be used in the experiments performed within this thesis.
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2.1 Introduction

The basic building blocks of a SNN are neurons and synapses (Gerstner and Kistler

2002). There are various types of neurons that can be classified based on their shapes

and biophysics. However, all types of cortical neurons produce electric signals—so

called spikes or action potentials—and generally have a shape as demonstrated in

Fig. 2.1.

In addition to the neuron, the synapse is another crucial building block of a SNN. Simi-

lar to neurons, synapses also have complex structures and behaviours. They are widely

thought to be the essential components responsible for learning, memory and compu-

tational ability in the neural networks (Sjöström et al. 2008). A synapse, as shown in

Fig. 2.1, is the contact apparatus between a pre-synaptic neuron’s axon and a post-

synaptic neuron soma or dendrite (see Fig. 2.1). As the figure shows, the synapse is the

site for transmitting various neurotransmitter molecules to the post-synaptic neuron,

through different receptors on the post-synaptic side. The underlying mechanisms of

this transmission and the interactions happening in the synapse are termed synaptic

plasticity rules, which are the focus of the present chapter.

This chapter is organised as follows. Section 2.2 briefly discusses the structure and

behaviour of a typical neuron. Section 2.3 provides information on synapse and its

structure, and also discusses various VLSI implementations of a synapse circuit. Af-

ter these two background sections, Section 2.4 explains the synaptic plasticity phe-

nomenon. Section 2.5 shows various synaptic plasticity experiments that were con-

ducted in biology. These experiments were performed to gain an understanding of the

synaptic plasticity mechanisms, in order to propose plasticity models. These synaptic

plasticity models and rules are reviewed in Section 2.6. The chapter ends in Section 2.7

that includes concluding remarks on synaptic plasticity rules and sheds light on the

future topics discussed in the thesis.

2.2 Spiking Neurons

Essentially, there are three types of ions in a neuron structure. An unbalanced amount

of ions in and out of the neuron results in changing the input/output potential. The

difference in the potential of input and output of the neuron leads to production of

a spike. The spikes can be transmitted through a long tree-like structure that comes
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Chapter 2 Neurons, Synapses and Synaptic Plasticity

out of the neuron body (soma) and is called an axon. The axon is connected to other

neurons dendrites or soma. The synapse is where the axon of one neuron is connected

to the dendrite or soma of another neuron—moreover, it possesses the apparatus for

learning.

Currently, there is general agreement on the behaviour of biological neurons. Some

conductance-based neuron models such as Hodgkin-Huxley (HH) model (Hodgkin

and Huxley 1952), are able to account for almost all the behaviours, a cortical neuron

exhibits. Through these models, one can investigate many biological features of real

neurons and use them in various applications. Usually these conductance-based mod-

els are strongly related to the biology of neurons, dedicating one component and/or

variable to implement each required component available in the neuron structure. For

instance, the HH neuron model takes into account the dynamics of membrane poten-

tial, calcium (Ca), and potassium (K) currents as they occur in real neurons (Hodgkin

and Huxley 1952). The main problem with this model, however, is its complex struc-

ture. This complexity is due to the intricate nature of a cortical neuron’s operation.

The cortical neuron can be also modelled in a simpler mathematical form, but with

similar capabilities to that of the HH neuron. Examples of these models are the Izhike-

vich (2003) and Wilson (1999) models. In addition, previous studies show that simple

neuron models such as Integrate and Fire (IF), with only a limited number of neuronal

behaviours (Izhikevich 2004), are useful in simulating simplified neural systems.

In an interesting study, Izhikevich has reviewed spiking neuron models (Izhikevich

2004). He has firstly depicted 20 various behaviours that a spiking neuron can exhibit.

These behaviours are shown in Fig. 2.2. Then, he reviewed 11 spiking neuron models

and compared them in terms of complexity and biological plausibility.

Besides Izhikevich’s neuron model, there are many other neuron models that describe

the behaviour of a biological neuron by means of some equations and formulations.

The most common models that can be found in the literature are HH (Hodgkin and

Huxley 1952), Leaky Integrate and Fire (LIF) (Smith 2006), IF with Adaptation, Integrate-

and-Fire-or-Burst (IFB) (Smith et al. 2000), Resonate-and-Fire model (Izhikevich 2001),

Quadratic Integrate and Fire (QIF) or theta-neuron (Ermentrout 1996), Izhikevich (2003),

FitzHugh (1961), Morris and Lecar (1981), Rose and Hindmarsh (1989), and Wilson

(1999).
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2.2 Spiking Neurons

Figure 2.1. A spiking neuron and synapse construction. The figure shows various parts of a

neuron and also magnifies the synapse structure, which in the case of this figure, is the

connection point of pre-synaptic neuron’s axon to the soma of the post-synaptic neuron.

Source: US National Institutes of Health.

Since spiking neuron models can be modelled in terms of mathematical formulas, they

can be fairly easily implemented in software. However, because neural systems oper-

ate in parallel, and ordinary computer systems are sequential, implementing a neuron

model in software is slow. Present-day computers are very high performance, allow-

ing straightforward simulation of a neuron in real-time. However, for a real-world

application such as pattern classification, a significantly large number of these spiking

neurons is needed. In addition, the software simulation will be very time consuming

for a large-scale network of spiking neurons. Furthermore, utilising an expensive par-

allel computer to implement the required neural network system, is not economical

since it requires specialised parallel software programs that are costly. Therefore, it is

preferable to implement neurons in hardware, rather than via simulations. Generally,

a hardware neuron, is much more practical than software neurons when considering a

large-scale network of neurons for real-world applications (Smith 2006, Hamilton and

van Schaik 2011, Indiveri et al. 2011). For a review of VLSI implementations of various

neuron models, the reader is directed to Indiveri et al. (2011).
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(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

Figure 2.2. Summary of the neuro-computational properties of biological spiking neurons

produced by Izhikevich model. The results shows 20 different behaviours a neuron

can show under Izhikevich neuron model. The electronic version of the figure and

reproduction permissions are freely available at www.izhikevich.com.
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2.3 Synapses

Similar to neurons, synapses also have complex structures and behaviours. As already

mentioned, they are widely thought to be the essential components responsible for

learning, memory and computational ability in neural networks (Sjöström et al. 2008).

It is believed that through some activity-dependent rules, which control some com-

plex chemical reactions, synapses alter their efficacies (Abbott and Nelson 2000). This

efficacy determines the strength and the depressing/potentiating effect, a synapse has

on the spiking activity of its afferent neurons. Since neurons are associated to each

other through synapses, and because they transfer data and information in the form of

spikes, therefore it is absolutely essential to control the way, through which a synapse

manages spiking behaviour of its post neurons.

There are different VLSI implementations for synapse. A synapse can be implemented

as a simple multiplier circuit (Satyanarayana et al. 1992). Alternatively, a synapse can

be a current source that conducts current to the post-synaptic neuron only in the du-

ration of pre-synaptic spikes (Chicca et al. 2003). Here the amount of the current con-

veyed by the current source represents the synaptic weight. In addition to these simple

implementations that do not consider the detail dynamics and behaviours of the Ex-

citatory Post-Synaptic Current (EPSC) and Inhibitory Post-Synaptic Current (IPSC),

some other VLSI implementations of synapse, take into account more detailed synap-

tic behaviours. A well-known example of these types of synaptic circuits is the Dif-

ferential Pair Integrator (DPI) circuit proposed by Bartolozzi and Indiveri (2007). This

implementation is able to account for short-term dynamics of synapse as well as repro-

ducing the EPSC effects observed in biological synapses (Bartolozzi and Indiveri 2007).

Bartolozzi and Indiveri have reviewed various implementations of synaptic circuits

in VLSI (Bartolozzi and Indiveri 2007). They have described synaptic circuits such

as pulsed current-source synapse (Mead 1989), linear charge and discharge synapse

(Arthur and Boahen 2004), current mirror integrator synapse (Hynna and Boahen 2001),

and log-domain integrator synapse (Merolla and Boahen 2004).

In addition to these circuits, usually a silicon synapse can be implemented as a simple

integrator that only injects synaptic charge to the post-synaptic neurons membrane

potential—for example see Bofill-I-Petit and Murray (2004). More directly, the main

duty of synaptic circuits is to control the post-synaptic current that is conveyed to the

post-synaptic neuron. The magnitude of this current is determined by the synaptic

plasticity circuit of the synapse that needs to be implemented separately. This synaptic
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plasticity circuit functions according to a specific synaptic plasticity rule, and therefore

can vary in different synaptic circuit implementations and applications. The focus of

this thesis is on the design and implementation of these synaptic plasticity circuits.

However, before discussing the circuit implementations, the synaptic plasticity rules

are discussed and reviewed to help understanding the design and implementation of

the targeted synaptic plasticity circuits.

2.4 Spiking Neurons Synaptic Plasticity

As already mentioned, there exists a significant number of hypotheses that try to ap-

proximate synaptic efficacy alterations (Mayr and Partzsch 2010). These hypothe-

ses that govern the synaptic weight changes, are so-called synaptic plasticity models

(rules). Identical to neuron models, there are a variety of synaptic plasticity models,

some of which are closer to biology and have meaningful relationships to biological

synapses, therefore, they are complex. On the other hand, some other models only ap-

proximate a number of biological experiments via mathematical modelling, and hence

they are simpler than the former group. Generally, the main purpose of the second

group of synaptic plasticity rules is to propose effective and simple rules, which are

able to produce the outcomes of as many synaptic plasticity experiments as possible.

In this chapter, a number of important synaptic plasticity rules are reviewed and high-

lighted and their abilities in reproducing the result of various biological experiments

are compared while discussing their complexities and structures. In order to have a

fair comparison among various synaptic plasticity rules, these rules are compared from

two aspects. The first aspect is their strength in reproducing various synaptic plasticity

experiments, while the second aspect is their simplicity and suitability to be employed

in large-scale neural simulations, and/or large-scale hardware realisations. Therefore,

prior to investigating and reviewing various synaptic plasticity rules, a variety of bi-

ological experimental protocols that were used in the experiments performed in the

neocortex have been reviewed, in order to provide the reader with an understanding

of under which protocols and conditions various synaptic plasticity rules are simu-

lated and compared. In the following sections, first some important synaptic plasticity

protocols are reviewed and their structures are described. And second, some signifi-

cant synaptic plasticity models are reviewed and their structures and various synaptic

plasticity abilities are highlighted.
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2.5 Synaptic Plasticity Experiments

In order to learn about synaptic plasticity mechanisms, experimentalists utilise specific

experimental protocols, to stimulate pre- and/or post-synaptic neurons and induce

and then measure alterations in the efficacy of synapses, and their ion dynamics. Un-

derstanding these alterations, with respect to the activity of the pre- and post-synaptic

neurons and their dynamics, sheds light on how neurons activity affects synaptic plas-

ticity and bring about Long Term Potentiation (LTP) and Long Term Depression (LTD).

This understanding then, helps neuroscientists to approximate the behaviour of the

synapse with some mathematical equations and it helps them implement a detailed

model of synaptic plasticity with relation to neuronal activities.

These mathematical equations or detailed models are usually an approximation of the

biological experiments. In order to have a measure, to test the efficiency of a model or

a circuit in replicating the experiments, one can define an error function that represents

the amount of difference among the weight changes predicted by a candidate model or

circuit, and those happened in biological experiments. An instance of an error function

for verifying a plasticity model, is the Normalised Mean Square Error (NMSE) function

proposed and utilised in Pfister and Gerstner (2006). The NMSE is calculated using the

following equation:

NMSE =
1

p

p

∑
i=1

(

∆wi
exp − ∆wi

model

σi

)2

, (2.1)

where ∆wi
exp, ∆wi

model and σi are the mean weight change obtained from biological ex-

periments, the weight change obtained from the model or circuit under consideration,

and the standard error mean of ∆wi
exp for a given data point i, respectively. Here, p

represents the number of data points in a the data set under consideration. In order to

minimise the resulting NMSEs for the model/circuit and fit their output to the experi-

mental data, there is a need to adjust the model parameters or circuit bias parameters

and time constants. This is an optimisation process of the model parameters or circuit

biases to reach a minimum NMSE value and so the closest possible fit to the experi-

mental data. A powerful synaptic plasticity model/circuit, therefore, closely mimics

the outcomes of a variety of biological experiments, and reaches a minimal NMSE.

Hence, the number of various synaptic plasticity experiments a single model can ac-

count for is a good measure and an indication of the model/circuit’s ability to mimic

biology. In the following, some of these synaptic plasticity experiments are reviewed.

Page 26



Chapter 2 Neurons, Synapses and Synaptic Plasticity

These experiments have been utilised throughout this thesis, to first investigate a num-

ber of recognised biological models, and then verify the functionality and strength of

the VLSI implementations of various synaptic plasticity rules.

2.5.1 Pairing Protocol

The pair-based STDP protocol has been extensively used in electrophysiological exper-

iments and simulation studies (Bi and Poo 1998, Iannella et al. 2010). In this protocol,

60 pairs of pre- and post-synaptic spikes with a delay of ∆t = tpost − tpre, as shown

in Fig. 2.3, are conducted with a repetition frequency of ρ Hz (in many experiments

ρ = 1 Hz). This protocol has been utilised in experiments reported in Bi and Poo

(1998), Froemke and Dan (2002), and Wang et al. (2005) and also have been employed

in simulations and circuit designs for synaptic plasticity such as Bofill-I-Petit and Mur-

ray (2004), Indiveri et al. (2006), and Azghadi et al. (2011c).

Figure 2.3. Spike pairing protocol. The figure shows how pairs of pre- and post-synaptic spikes

in a pairing protocol are timed for reproducing an STDP window.

2.5.2 Frequency-dependent Pairing Protocol

In the simple pairing protocol, the repetition frequency of spike pairs kept constant and

it is usually 1 Hz. However, it has been illustrated in Sjöström et al. (2001) that altering

the pairing repetition frequency, ρ, affects the total change in weight of the synapse.

The spike pairing under this protocol is shown in Fig. 2.4. It shows that in higher

pairing frequencies, the order of pre-post or post-pre spike pairs does not matter and

both cases will lead to LTP. However, in lower pairing frequencies, pre-post results in

LTP and post-pre combination results in LTD (Sjöström et al. 2001, Sjöström et al. 2008).

2.5.3 Triplet Protocol

There are two types of triplet patterns that are used in the hippocampal experiments

performed in Wang et al. (2005). These triplet patterns are adopted in this thesis to
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Figure 2.4. Frequency-dependent pairing protocol. The figure shows how pairs of pre- and

post-synaptic spikes in a frequency-dependent pairing protocol are conducted. Here, ρ

determines the repetition frequency, at which the pre-post (∆t > 0) or post-pre (∆t < 0)

spike pair arrives.

compute the synaptic weight prediction error as described in Pfister and Gerstner

(2006). Both of these patterns consist of 60 triplets of spikes that are repeated at a

given frequency of ρ = 1 Hz. These triplet patterns are shown in Fig. 2.5. The first

pattern is composed of two pre-synaptic spikes and one post-synaptic spike in a pre-

post-pre configuration. As a result, there are two delays between the first pre and

the middle post, ∆t1 = tpost − tpre1, and between the second pre and the middle post

∆t2 = tpost − tpre2. The second triplet pattern is analogous to the first but with two

post-synaptic spikes, one before and the other one after a pre-synaptic spike (post-pre-

post). Here, timing differences are defined as ∆t1 = tpost1 − tpre and ∆t2 = tpost2 − tpre.

Figure 2.5. Triplet protocol. The figure shows how triplets of pre- and post-synaptic spikes in a

triplet protocol are conducted.

2.5.4 Extra Triplet Protocol

In addition to the aforementioned triplet protocol employed in Pfister and Gerstner

(2006), which considers only two combinations of spike triplets, there are other combi-

nations (rather than pre-post-pre or post-pre-post) of spike triplets that have not been

explored in Pfister and Gerstner (2006), but have been used in another set of multi-

spike interaction experiments performed by Froemke and Dan (2002). The experimen-

tal triplet protocol as described in Froemke and Dan (2002) is as follows; a third spike
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is added either pre- or post-synaptically to the pre-post spike pairs, to form a triplet.

Then this triplet is repeated 60 times at 0.2 Hz to induce synaptic weight changes. In

this protocol, there are two timing differences shown as ∆t1 = tpost − tpre, which is

the timing difference between the two most left pre-post or post-pre spike pairs, and

∆t2 = tpost − tpre, which is the timing difference between the two most right pre-post

or post-pre spike pairs. Fig. 2.6 demonstrates different combinations of these spike

triplets.

Figure 2.6. Triplet protocol for extra triplet patterns. The figure shows how extra triplets of

pre- and post-synaptic spikes in the triplet protocol are timed.

2.5.5 Quadruplet Protocol

This protocol is composed of 60 quadruplets of spikes repeated at frequency of ρ =

1 Hz. The quadruplet is composed of either a post-pre pair with a delay of ∆t1 =

tpost1 − tpre1 < 0 precedes a pre-post pair with a delay of ∆t2 = tpost2 − tpre2 > 0 with

a time T > 0, or a pre-post pair with a delay of ∆t2 = tpost2 − tpre2 > 0 precedes a

post-pre pair with a delay of ∆t1 = tpost1 − tpre1 < 0 with a time T < 0, where T =

(tpre2 + tpost2)/2 − (tpre1 + tpost1)/2. The quadruplet patterns are shown in Fig. 2.7.

Identical to Pfister and Gerstner (2006), in all quadruplet experiments in this thesis,

∆t = −∆t1 = ∆t2 = 5 µs.

2.5.6 Poissonian Protocol

In order to test the ability of the targeted timing-based plasticity rules and timing-based

synaptic plasticity circuits in generating a rate-based learning rule, which mimics the
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Figure 2.7. Qudruplet protocol. The figure shows how quadruplet of pre- and post-synaptic spikes

in the qudruplet protocol are timed.

effects of BCM rule, a Poissonian rate-based experimental protocol is also employed.

Under this protocol, the pre-synaptic and post-synaptic spike trains are generated as

Poissonian spike trains with firing rate of ρpre and ρpost, respectively. In these spike

trains the Inter Spike Interval (ISI), are random Poissonian values. This is the same

protocol that has been used in Pfister and Gerstner (2006) to show how their proposed

TSTDP model can show a close mapping to the BCM model. In this thesis we utilise

a similar protocol to stimulate any VLSI circuit of interest, and examine if they are

capable of reproducing a BCM-like behaviour.

2.6 Synaptic Plasticity Rules

There exist a variety of synaptic plasticity models (Mayr and Partzsch 2010). Generally,

these models can be classified into two fundamental groups. The first group presents

abstract models, while the second consists of rules that are closer to the biophysics of

the synapse. Abstract (phenomenological) models of synaptic plasticity are aimed at

demonstrating how the concept of synaptic plasticity can contribute to different forms

of learning and memory. On the other hand, biophysical models of synaptic plasticity

are based on actual cellular and molecular mechanisms observed in synapses and are

intended to demonstrate how synaptic plasticity can arise from real biological mecha-

nisms. More specifically, the abstract rules are usually phenomenological models that

aim at mimicking the outcome of plasticity but do not aim at implementing the de-

tails of the molecular mechanisms underlying synaptic plasticity in the synapse. On

the other hand, biophysically grounded rules are based on implementing crucial ele-

ments underlying plastic change in a one-to-one analogy to the detailed kinetics of the

synapse.

Abstract models, themselves can be classified into three various groups including: i)

spike timing-based models such as STDP (Song et al. 2000), ii) spike rate-based models
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such as Bienenstock-Cooper-Munro (BCM) rule (Bienenstock et al. 1982, Cooper et al.

2004), and iii) hybrid spike time- and rate-based models that usually consider other

variables including membrane voltage in the weight update process. Examples of

these hybrid models are spike driven plasticity (Brader et al. 2007), voltage-based STDP

(Clopath and Gerstner 2010), and voltage-based BCM (Mayr and Partzsch 2010). A

summary of various synaptic plasticity models can be found in Mayr and Partzsch

(2010).

Although there are a variety of synaptic plasticity rules and experiments, this chapter

will only investigate some of the important biophysical and phenomenological rules,

which either have been already designed in VLSI, or are more suited for implementa-

tion in VLSI.

2.6.1 Phenomenological Rules

Pair-based STDP

The pair-based rule is the classical description of STDP, which has been widely used

in various computational studies (Song et al. 2000, Iannella and Tanaka 2006, Ian-

nella et al. 2010) as well as several VLSI implementations (Bofill-I-Petit and Murray

2004, Cameron et al. 2005, Indiveri et al. 2006, Tanaka et al. 2009, Mayr et al. 2010,

Meng et al. 2011, Bamford et al. 2012b). The original rule expressed by Eq. 2.2 is a

mathematical representation of the pair-based STDP (PSTDP) rule (Song et al. 2000)

∆w =







∆w+ = A+e
(−∆t

τ+
)

if ∆t > 0

∆w− = −A−e
( ∆t

τ−
)

if ∆t ≤ 0,
(2.2)

where ∆t = tpost − tpre is the timing difference between a single pair of pre- and post-

synaptic spikes. According to this model, the synaptic weight will be potentiated if

a pre-synaptic spike arrives in a specified time window (τ+) before the occurrence of

a post-synaptic spike. Analogously, depression will occur if a pre-synaptic spike oc-

curs within a time window (τ−) after the post-synaptic spike. The amount of poten-

tiation/depression will be determined as a function of the timing difference between

pre- and post-synaptic spikes, their temporal order, and their relevant amplitude pa-

rameters (A+ and A−). The conventional form of STDP learning window, which is

generated using Eq. 2.2 is shown in Fig. 2.8.
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Figure 2.8. STDP learning window. Simulation results are produced under pairing protocol, and

using pair-based STDP model. The synaptic parameters for generating the three shown

curves (windows) using numerical simulations are as follows: τ− = 16.8 ms, and τ+ =

33.7 ms kept fixed for all three simulations, while the amplitude parameters, A−, A+

were altered for each simulation as A− = 0.5, and A+ = 1 for the first graph with

the maximum ∆w = 1 and the minimum ∆w = −0.5; A− = 0.36, and A+ = 0.54

for the middle graph; and A− = 0.18, and A+ = 0.276 for the third graph with the

maximum ∆w = 0.276 and the minimum ∆w = −0.18. The first experimental data

shown in black are two data points with their standard deviations that are extracted

from Pfister and Gerstner (2006), and the second experimental data are the normalised

data extracted from Bi and Poo (1998).

Triplet-based STDP

In this model of synaptic plasticity, changes to synaptic weight are based on the timing

differences among a triplet combination of spikes (Pfister and Gerstner 2006). There-

fore, compared to the pair-based rule, this rule uses higher order temporal patterns of

spikes to modify the weights of synapses. Triplet STDP (TSTDP) is described by

∆w =







∆w+ = A+
2 e

(
−∆t1

τ+
)
+ A+

3 e
(
−∆t2

τy
)
e
(
−∆t1

τ+
)

∆w− = −A−
2 e

(
∆t1
τ−

)
− A−

3 e(
−∆t3

τx
)e

(
∆t1
τ−

)
,

(2.3)

where the synaptic weight is potentiated at times when a post-synaptic spike occurs

and is depressed at the time when a pre-synaptic spike occurs. The potentiation and

depression amplitude parameters are A+
2 , A−

2 , A+
3 and A−

3 , while, ∆t1 = tpost(n) −
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tpre(n), ∆t2 = tpost(n) − tpost(n−1) − ǫ and ∆t3 = tpre(n) − tpre(n−1) − ǫ, are the time dif-

ferences between combinations of pre- and post-synaptic spikes. Here, ǫ is a small

positive constant, which ensures that the weight update uses the correct values occur-

ring just before the pre- or post-synaptic spike of interest, and finally τ−, τ+, τx and τy

are time constants (Pfister and Gerstner 2006).

Theoretically, TSTDP rules were proposed to overcome deficiencies in the traditional

pair-based STDP in being unable to reproduce the experimental outcomes of various

physiological experiments such as the data generated by pairing frequency experi-

ments performed in the visual cortex (Sjöström et al. 2001), or triplet, and quadruplet

spike experiments performed in Wang et al. (2005). The main advantage of synaptic

plasticity rules based upon higher order spike patterns over pair-based rules is the fact

that contributions to the overall change in efficacy of traditional additive pair-based

rules is essentially linear, while for higher order rules the underlying potentiation and

depression contributions do not sum linearly. This fact was reported by Froemke and

Dan (2002), where they show that there are non-linear interactions occurring between

consecutive spikes during the presentation of higher order spike patterns. It is this un-

derlying non-linearity that is captured in such higher order spike-based STDP rules—

but is clearly lacking in pair-based STDP—and is believed to accurately model such

non-linear interaction among spikes. Later, we review the suppressive STDP rule pro-

posed by Froemke and Dan (2002), in order to discuss the mentioned non-linearity.

Below some simulation results are shown that demonstrate how a minimised version

of the full TSTDP rule, which is shown in Eq. 2.3, can approximate a number of bio-

logical experiments including quadruplet, triplet and STDP window experiments out-

comes (Pfister and Gerstner 2006).

According to the numerical simulation results presented in Pfister and Gerstner (2006),

beside the full TSTDP rule shown in Eq. 2.3, a minimised version of TSTDP rule that

excludes the depression contribution of triplet of spikes, is also capable of reproducing

the outcomes of several synaptic plasticity experiments. This rule that is called the first

minimal TSTDP rule, is presented as

∆w =







∆w+ = A+
2 e

(
−∆t1

τ+
)
+ A+

3 e
(
−∆t2

τy
)
e
(
−∆t1

τ+
)

∆w− = −A−
2 e

(
∆t1
τ−

)
.

(2.4)
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Figure 2.9 demonstrates the results for quadruplet experimental protocol and shows

how the first minimal TSTDP learning rule shown in Eq. 2.4 can generate an approx-

imation of the quadruplet experimental results. In order to reach a good approxi-

mation of the quadruplet experiments, there is a need to optimise the six synaptic

parameters shown in Eq. 2.4. These six parameters are optimised in a way that the

minimal NMSE is reached for a number of experiments including pairing (window),

triplet and quadruplet experiments, when compared to biological experiments. The

optimised synaptic parameters that are utilised to approximate these experiments are

those shown for minimal TSTDP rule in Table 2.1. These parameters are optimised

in a way that approximate 13 specific synaptic weight change values shown in black

data points and standard error mean bars, with minimum possible NMSE. The 13 data

points include (i) three points on Fig. 2.9, (ii) eight data points in Fig. 2.10 (a) and (b),

and (iii) two data points in Fig. 2.11.

−100 −50 0 50 100

−0.2

0

0.2

0.4

0.6

T [ms]

∆
w

TSTDP minimal model

experimental data

Figure 2.9. Quadruplet experiment in the hippocampus can be approximated using the first

minimal TSTDP model. Simulation results are produced under quadruplet proto-

col. The minimal TSTDP model parameters for generating the shown synaptic weight

changes are listed in Table 2.1. The experimental data shown in black are extracted

from Pfister and Gerstner (2006).

Figure 2.10 shows how the first minimal TSTDP rule using the optimised synaptic

parameters can approximate triplet STDP experiments. Besides, using the same opti-

mised parameters, as those utilised for quadruplet and triplet experiments, the STDP
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Table 2.1. Optimised minimal TSTDP model parameters. These parameters have been ex-

tracted from Pfister and Gerstner (2006) and used in our numerical simulations to gen-

erate the results shown in Fig. 2.9 to Fig. 2.13. Note that these parameters have been

used for a minimal nearest-neighbour TSTDP model. In this table, those values that are

shown as ’x’, do not have any affect in the results.

Parameter name A+
2 A−

2 A+
3 A−

3 τ+ (ms) τ− (ms) τy (ms) τx (ms) NMSE

First Minimal TSTDP 4.6 × 10−3 3 × 10−3 9.1 × 10−3 0 16.8 33.7 48 x 2.9

2nd Minimal TSTDP 0 8 × 10−3 5 × 10−2 0 16.8 33.7 40 x 0.34

learning window, which is shown in Fig. 2.11 can be approximated using the first min-

imal TSTDP rule. The minimum NMSE that was achieved using the optimised param-

eters for these three experiments was equal to 2.9 as shown in Table 2.1.

In addition to the capability of simultaneously approximation of triplet, quadruplet

and STDP window experiments with the same set of synaptic parameters, another

minimal version of TSTDP rule (second minimal rule), is also capable of reproducing

the results of the frequency-dependent pairing experiments performed in the visual

cortex (Sjöström et al. 2001). The second minimal TSTDP model can be shown as

∆w =







∆w+ = A+
3 e

(
−∆t2

τy
)
e
(
−∆t1

τ+
)

∆w− = −A−
2 e

(
∆t1
τ−

)
,

(2.5)

which is simpler and takes lower number of synaptic parameters, and therefore needs a

new set of parameters, in comparison with the previous minimal model for hippocam-

pal experiments. The optimised parameters for generating a close approximation of

the frequency-dependent pairing experiments are shown in the third row of Table 2.1.

The experimental data and the approximated weight changes, which are computed by

the second TSTDP minimal model, are shown in Fig. 2.12.

Besides the ability of reproducing timing-based experiments, which were discussed so

far, the TSTDP rule has the capability to demonstrate a BCM-like behaviour. The BCM

learning rule is an experimentally verified (Dudek and Bear 1992, Wang and Wagner

1999) spike rate-based synaptic plasticity rule, proposed in 1982 (Bienenstock et al.

1982). Unlike STDP, which is spike-timing based learning rule, synaptic modifica-

tions resulting from the BCM rule depends on the rate of the pre- and post-synaptic

spikes (Bienenstock et al. 1982). In fact, it depends linearly on the pre-synaptic, but

non-linearly on the post-synaptic neurons spiking activity. The mathematical model
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Figure 2.10. Triplet experiments in the hippocampus can be approximated using the first

minimal TSTDP model. Simulation results are produced under triplet protocol

presented in Pfister and Gerstner (2006). The minimal TSTDP model parameters for

generating the shown synaptic weight changes are listed in Table 2.1. The experimental

data, shown in black and their standard deviations are extracted from Pfister and

Gerstner (2006).

of the BCM learning rule has been demonstrated in different ways, but a general, yet

simple form of this model is given as,

∆w

∆t
= φ(ρpost, θ) · ρpre, (2.6)
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Figure 2.11. STDP learning window experiment in the hippocampus can be approximated

using the first minimal TSTDP model. Simulation results are produced under

pairing protocol. The minimal TSTDP model parameters for generating the shown

synaptic weight changes are listed in Table 2.1. The first experimental data shown in

black are two data points with their standard deviations that are extracted from Pfister

and Gerstner (2006), and the second experimental data are the normalised experimental

data that are extracted from Bi and Poo (1998).

where ρpre and ρpost represent the pre-synaptic and post-synaptic neurons spiking ac-

tivities and θ is a constant that represents some threshold (Pfister and Gerstner 2006).

In addition, when φ(ρpost < θ, θ) < 0 synaptic weight will be decreased (depression),

and when φ(ρpost > θ, θ) > 0, it will be increased (potentiation) and if φ(0, θ) = 0,

there will be no change in synaptic weight (Pfister and Gerstner 2006).

According to the literature, the BCM rule can emerge from pair-based and triplet-based

STDP rules. In 2003, Izhikevich and Desai (2003) demonstrated that, the nearest-spike

interaction1 version of PSTDP can replicate BCM-like behaviour. Furthermore, Pfister

and Gerstner (2006) have reported, a triplet-based model of STDP that can also produce

BCM behaviour, when long-time spike statistics are taken into account. According to

1Nearest-spike model considers the interaction of a spike only with its two immediate succeeding

and immediate preceding nearest neighbours.
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Figure 2.12. Pairing frequency experiments in the visual cortex can be approximated us-

ing the second minimal TSTDP model. Simulation results are produced under

frequency-dependent pairing protocol and using the second TSTDP minimal model.

The synaptic parameters for generating the shown weight changes are listed in the last

row of Table 2.1. The experimental data, shown in black and their standard deviations

are extracted from Pfister and Gerstner (2006).

Izhikevich and Desai (2003), under the assumption of Poissonian distribution of spike

times for pre-synaptic and post-synaptic spike trains, nearest-spike pair-based STDP

can give rise to the BCM rule; i.e. BCM emerges from nearest neighbour pair-based

STDP; while all-to-all2 spike interaction cannot. Furthermore, based on Pfister and

Gerstner (2006), if the pre-synaptic and post-synaptic spike trains in a triplet-based

STDP model are Poissonian spike trains, then BCM learning is an emergent property

of the model. A mapping between BCM learning rule and the TSTDP learning rule is

shown in Pfister and Gerstner (2006).

To analyse how BCM-like behaviour emerges from TSTDP, we need to go through the

same analysis used by Pfister and Gerstner (2006). In this circumstance, the triplet

2All-to-all model considers the interaction of every single spike with all other spikes, not only with

its nearest neighbours.
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learning rule can be recast into a simpler form by considering the statistical properties

of TSTDP weight changes which leads to the following time averaged equation,

〈

dw

dt

〉

= −A−
2 τ−ρpreρpost + A+

2 τ+ρpreρpost

−A−
3 τ−τxρ2

preρpost + A+
3 τ+τyρ2

postρpre,

(2.7)

where ρpre and ρpost are the pre- and post-synaptic mean firing rates, respectively. The

other parameters in the above equation τ−, and τ+, are time constants for the pair-

based contribution and τx, and τy are the corresponding time constants for the triplet-

based contribution of the original triplet learning rule shown in Eq. 2.3.

Based on the rate-based BCM rule, synaptic weight change is linearly dependent on

ρpre and non-linearly depends on ρpost (see Eq. 2.6). In order to satisfy this condition

in Eq. 2.7, A−
3 must be equal to zero and also ρpre ≪ τ−1

+ . This is a minimal case of

the triplet-based STDP model—please refer to Pfister and Gerstner (2006). Also, based

on the BCM learning rule definition, the synaptic weight modification threshold is a

function of post-synaptic activity, i.e. θ = α
〈

ρ
p
post

〉

where p > 1. For triplet-based

STDP, consider the case where all-to-all interactions between triplets of pre- and post-

synaptic spikes; it is possible to redefine A−
2 , A+

2 and A+
3 in a way that the threshold be

dependent on the post-synaptic firing rate, ρ
p
post. However, in the nearest-spike model

it is not possible to change these parameters in a way to satisfy θ = α
〈

ρ
p
post

〉

. Although

the triplet-based nearest-spike STDP model cannot fully satisfy the second condition of

a BCM learning rule (the dependency of threshold on ρpost), it can elicit the properties

of BCM for a limited range of frequencies. Numerical simulation results (Fig. 2.13)

show how the threshold is modulated by controllable amplitude parameters (A−
2 , A+

2

and A+
3 ) for nearest spike interaction. For further details on the relation between the

TSTDP and the BCM rules, refer to the text and also supplementary materials of Pfister

and Gerstner (2006). Fig. 2.13 demonstrates how the second minimal TSTDP rule, with

the parameters shown in Table 2.1 for visual cortex experiments, produces a BCM-

fashion behaviour.
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Figure 2.13. The BCM learning rule can be mapped to the TSTDP learning model. The

results shown in this figure are produced under Poissonian protocol and using the

second minimal TSTDP model, as the one used for generating the results in Fig. 2.12.

The synaptic parameters for generating the weight changes shown in this figure are

those for visual cortex and are shown in the third row (second minimal TSTDP) of

Table 2.1. The three curves showcase the sliding threshold feature of the BCM rule,

that in TSTDP model can be controlled by changing λ = ρ
p
post/ρ

p
0 (see text for

details).

Suppression Model of STDP

Prior to the experiments performed by Froemke and Dan in 2002, STDP experiments

were mainly directed at varying the time intervals between a pair of pre-post or post-

pre of spikes. In these conventional STDP experiments, synaptic weight modification

was only based on the timing difference between pairs of spikes. However, based on a

new model and experiments reported in Froemke and Dan (2002), synaptic plasticity

not only depends on the timing differences between pre- and post-synaptic spikes, but

also depends on the spiking pattern and the inter-spike intervals of each neuron.

In light of their experimental data from slices of cat visual cortex, Froemke and Dan,

proposed a synaptic plasticity rule, the so-called suppression model. According to this
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rule, spike pairs are not independent and there is a suppressive interaction among con-

secutive spikes, i.e. a pre-synaptic spike before a pre-synaptic spike, or a post-synaptic

before a post-synaptic spike causes suppression of the synaptic efficacy of the second

spike in interaction with its neighbour spikes from the other type. This suppression

subsides in time and therefore, the longer time passed from arrival of a pre/post spike,

the more synaptic efficacy the incoming pre/post spike will cause. The suppression

model is described by the following equation:

∆wij = ǫ
pre
i ǫ

post
j F(∆tij), (2.8)

where ∆wij is the synaptic weight change due to the ith pre-synaptic spike and the

jth post-synaptic spike, ǫi = 1 − e−(ti−t(i−1))/τs is the efficacy of ith spike and τs is the

suppression constant. In addition F(∆tij) is defined in a similar way as defined by

Eq. 2.2.

Demonstrated results in Froemke and Dan (2002) show that the suppression model is

able to account for the experiments using higher order spike trains such as triplet and

quadruplet of spikes, and the LTP and LTD observed in the STDP learning window.

However, this rule cannot account for frequency-dependent pairing experiments re-

ported in Sjöström et al. (2001). In order to remove the deficiency of the suppression

model in replicating this frequency-based experiment, Froemke et al. proposed a re-

vised version of their suppression model in 2006 (Froemke et al. 2006). Using this new

model, the frequency dependent experiments also can be generated. However, this

feature makes the new suppression model to require more components, which in turn

makes the new model to become more complex compared to the first proposed rule.

Spike Driven Synaptic Plasticity

In addition to the timing-based synaptic plasticity rules, mentioned above, there is an-

other synaptic plasticity rule, which acts based on the recent activities and the cur-

rent state of the post-synaptic neuron, and not only according to its spike timing.

This rule has been developed to resolve a shortcoming of PSTDP rule, in being un-

able to learn patterns of mean firing rates (Abbott and Nelson 2000). This weakness is

due to the high sensitivity of the PSTDP rule to the spike timings and temporal pat-

terns (Mitra et al. 2009).
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In the spike-driven model of synaptic plasticity, changes in synapse efficacy occur

whenever a pre-synaptic spike arrives (Brader et al. 2007). At this time if the post-

synaptic membrane potential, Vmem, is higher than a threshold voltage, Vmth, potentia-

tion, or if it is lower than the threshold, depression will occur requiring the fact that the

amount of calcium concentration in the post-synaptic site, C(t), is within a predefined

boundary at the arrival of the pre-synaptic spike. In short, the synaptic efficacy, W,

will change according to the following equation

W = W + a; if Vmem(t) > Vmth and θl
up < C(t) < θh

up

W = W − b; if Vmem(t) ≤ Vmth and θl
dn < C(t) < θh

dn

(2.9)

where a and b are the amount of potentiation and depression respectively. In addi-

tion, [θl
up, θh

up] and [θl
dn, θh

dn] are the boundaries for the calcium concentration, C(t), for

potentiation and depression states, respectively.

If the required conditions are not satisfied, there will be no potentiation or depression.

When there is no spike coming and therefore there is no synaptic weight change, the

synaptic weight, W, will drift toward either high or low synaptic weight asymptotes.

The direction of the drift will depend on the values of the weights at that specific time,

which can be above/below a certain threshold, θW (Brader et al. 2007, Mitra et al. 2009)

dW(t)
dt = α; if W(t) > θW

dW(t)
dt = −β; if W(t) ≤ θW .

(2.10)

The internal state, C(t), which represents the calcium concentration, depends on the

neuron’s spiking activity and changes by the following equation

dC(t)

dt
= −

C(t)

τC
+ JC ∑

i

δ(t − ti), (2.11)

where JC determines the amount of calcium contributed by a single spike (Brader et al.

2007, Fusi et al. 2000, Sheik et al. 2012b).

The main difference between the SDSP rule and the STDP-type rules is that, in the

SDSP rule, the timing of the spikes is replaced by the membrane potential of the post-

synaptic neuron, which has a close relation with the timing of the post-synaptic neuron.

One could simply assume that a neuron with the membrane potential above a certain

level, a threshold, is most likely to fire a spike, and therefore a post-synaptic spike

will be fired at that time. Therefore, there is a close analogy between SDSP and STDP
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rules. In addition to SDSP, some other rules have also utilised this specific feature of the

membrane potential available in the post-synaptic neuron site, and combined it with

either pre-synaptic spike timings or with its rate, and proposed new and more pow-

erful rules, compared to the conventional timing-based-only rule, i.e. STDP. A brief

review of two membrane potential (voltage)-based rules is presented in the following

sections.

Voltage-based STDP

The voltage-based STDP model proposed in Clopath et al. (2010) and Clopath and Ger-

stner (2010), is a modification of TSTDP rule proposed by Pfister and Gerstner (2006).

In this rule, the combination of the post-synaptic membrane potential and the pre-

synaptic spike arrival time, govern the plasticity mechanism. At the arrival of a pre-

synaptic spike, the synaptic weight will be depressed, if the post-synaptic neuron has

been depolarised for some time, since it shows that a post-synaptic spike happened

recently. The post-synaptic spike history window, depends on the time constant, by

which the post-synaptic membrane is filtered. The following equation shows the mem-

brane potential, u, which is low-pass-filtered with the time constant τ−,

τ−
d

dt
u−(t) = −u−(t) + u(t). (2.12)

Depression will occur when a pre-synaptic spike arrives, if at that moment, the low-

pass filtered membrane potential, u−(t), is above a certain threshold, θ−. Therefore,

depression can be mathematically modelled as

d

dt
w− = −ALTDX(t)[u−(t)− θ−]+ if w > 0, (2.13)

where w shows the synaptic weight, ALTD is depression amplitude, and X(t) = ∑i δ(t−

ti), with ti as the spike times, represents a pre-synaptic spike train. In Eq. 2.13, [x]+ is

equal to x, if x is positive and is 0 otherwise.

In addition, potentiation occurs if three required conditions are satisfied simultane-

ously. These conditions are: (i) The momentary post-synaptic voltage, u, is above a

certain threshold, θ+. (ii) The low-pass-filtered version of u with its respective time

constant, τ+, is above θ−. (iii) A pre-synaptic spike has occurred recently and left a

trace, x. Therefore, depression can be mathematically modelled as

d

dt
w+ = ALTPx(t)[u(t) − θ+]+[u+(t)− θ−]+ if w < wmax, (2.14)
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where x is a low-pass-filter of the pre-synaptic spike train with time constant τx, and

can be modelled as

τx
d

dt
x(t) = −x(t) + X(t). (2.15)

According to the mentioned equations for depression (Eq. 2.13) and potentiation (Eq.

2.14), the overall synaptic weight change can be calculated by

d

dt
w = −ALTDX(t)[u−(t)− θ−]+ + ALTPx(t)[u(t) − θ+]+[u+(t)− θ−]+. (2.16)

Clopath et al. have shown that their voltage-based STDP rule is capable of repro-

ducing the outcomes of a variety of STDP experiments (Clopath and Gerstner 2010,

Clopath et al. 2010). Their rule that is a modification of the TSTDP rule, possesses

higher synaptic modification capabilities compared to the TSTDP rule. However, one

should keep in mind that the complexity of this rule is higher than the TSTDP rule as

well. This higher complexity along with the dependence of the rule on the membrane

potential of the post-synaptic neuron, increases the complexity of VLSI implementa-

tion of this rule. This is the case for other rules with higher capabilities, and therefore

higher complexity.

Voltage-based BCM

Another rule that has been recently implemented in VLSI and has a phenomenological

and computational background is the Local Correlation Plasticity (LCP) rule reported

in Mayr and Partzsch (2010). This rule modifies the synaptic plasticity in a BCM-like

fashion. In this rule, the weight changes take place, in a relation with the current state

of the post-synaptic membrane voltage, and the recent dynamic of the pre-synaptic

spikes. The synaptic alteration rule that has been implemented in VLSI for this BCM-

based learning circuit employs the following rule to modify the synaptic weight ac-

cording to Eq. 2.17

dw(t)/dt = B · (u(t) − φu) · g(t), (2.17)

where w(t) is the synaptic weight, u(t) is the neuron’s membrane potential, φu is a

threshold between potentiation and depression, g(t) is a conductance variable that
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represents the post-synaptic current, Ipsc, and therefore has its maximum value at the

time of a pre-synaptic arrival and decays afterwards. The main difference between this

rule and the BCM learning model, is replacing the non-linear function, φ in BCM model

(Eq. 2.6), with a constant multiplier, B, as shown in Eq. 2.17. This results in a linear

dependence of the plasticity to the membrane potential, however as shown in Mayr

and Partzsch (2010), in this model, this linear dependence is translated to a non-linear

dependence between plasticity and the post-synaptic rate, identical to BCM.

This rule has been shown to reproduce the outcomes of many experimental protocols

including triplet, quadruplet (Wang et al. 2005), and pairing frequency experiments

performed in the visual cortex (Sjöström et al. 2001). Although this rule is able to

replicate many plasticity outcomes, it is prone to large errors when parameters are

fitted to closely replicate experimental results. These errors are rather high compared

to the TSTDP rule which is simpler and possesses fewer state variables (Mayr and

Partzsch 2010, Pfister and Gerstner 2006). In addition, as already mentioned, the com-

plexity of a synaptic plasticity rule is an essential issue when designing a rule in VLSI,

and the LCP rule has higher complexity than the TSTDP rule. Besides, the LCP rule’s

dynamic is dependent to the neuron model, as well as synaptic conductance, compar-

ing to the TSTDP rule that only depends on the timing of the spikes, that are easily

available at the synapse pre-synaptic and post-synaptic sites. Generally, when design-

ing a synaptic plasticity rule, there is a need to consider the complexity versus strength

of the rule and set a trade-off between them. This issue will be discussed later in this

thesis.

Other Phenomenological Synaptic Plasticity Rules

In addition to the aforementioned abstract synaptic plasticity models, there are sev-

eral other rules, using which a variety of the biological experiments performed in the

neocortex can be regenerated. These rules range from simple timing-based models to

other calcium-based models. The dynamical two-component long-term synaptic plas-

ticity rule that was proposed in Abarbanel et al. (2002), has the ability to produce some

LTP and LTD experiments, and also can be mapped to the BCM rule. In addition, the

STDP rule that has been combined with the BCM sliding threshold feature is another

synaptic plasticity mechanism that is able to account for a range of experiments in the

hippocampal (Benuskova and Abraham 2007).
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For a review of phenomenological synaptic plasticity models, see Morrison et al. (2008).

Further, for a review and discussion of biophysical and phenomenological rules refer

to Mayr and Partzsch (2010).

2.6.2 Biophysical Rules

None of the rules mentioned so far truly map to the biophysics of the synapse and bio-

chemical reactions that take place in the synapse to induce synaptic weight changes.

Instead, they are all models that curve fit the outcomes of as many biological experi-

ments as possible under a unified mathematical expression. Advances in experimen-

tal techniques, including optogenetic and molecular methods, will permit researchers

to investigate intricate aspects of the biochemical network, including protein-protein

interactions, which result in plastic changes at the level of synapses. This now per-

mits the development of complicated biophysical models that take into account the

observed molecular processes underlying changes in synaptic strength. Such models

are expected to naturally reproduce the correct synaptic alteration for all experimental

protocols. Due to the close analogy of these models with the dynamics of the synapse,

these rules are usually called biophysical rules. In the following, we describe a few of

these rules, in particular those, for which a VLSI implementation is also available.

Modified Ion Channel-based Plasticity

This rule not only considers calcium and its level for inducing synaptic weight changes,

but also introduces the effect of other ion channels and receptors as the pathways for

calcium to change in the post-synaptic neuron and therefore causes either potentiation

or depression. The synaptic weight change mechanism is as follows: pre-synaptic ac-

tion potentials release glutamate neurotransmitters that binds to N-methyl-D-aspartate

(NMDA) receptors, and when post-synaptic activities that provide large membrane

depolarisations are simultaneously present, it leads to an increase in the level of cal-

cium (Meng et al. 2011). This rule is capable of reproducing both BCM (rate-based)

and PSTDP (timing-based) mechanisms using a unified model. However, this model

is complex and requires a large number of state variables (Meng et al. 2011).

Iono-Neuromorphic Intracellular Calcium-Mediated Plasticity Model

This is a synaptic plasticity rule that is focused on intracellular calcium dynamics of

the synapse. It is another biophysically inspired plasticity rule that acts entirely based
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on the dynamics of the ions and channels within the synapse. The rule was originally

proposed by Shouval et al. (2002) and Shouval et al. (2010) and modified to be imple-

mented in VLSI. The weight changes for the VLSI circuit are given by

dw = η([Ca])(Ω([Ca])− λw), (2.18)

where w is the current synaptic weight, η([Ca]) is a superlinear function of [Ca2+]i,

Ω([Ca]) is the calcium dependent update rule, and λ plays the role of a learning rate

(Rachmuth et al. 2011, Shouval et al. 2010).

Similar to the previous ion channel-based plasticity, this rule is shown to be capable

of reproducing BCM and spike pairing synaptic plasticity experiments. However, the

model is very complicated and needs several state variables to induce synaptic weight

changes in a biophysical form. Another limitation is that its ability to reproduce the

behaviour observed in triplet, quadruplet, and frequency-dependent pairing experi-

ments, has not been reported.

Other Biophysical Synaptic Plasticity Rules

Since the calcium ion and its dynamics in the synaptic cleft appear to play an essen-

tial role in the synaptic plasticity, in addition to the aforementioned calcium-mediated

plasticity rules, several other rules, which build upon the calcium dynamics, have been

also proposed and investigated. In 2006, Shah et al. (2006) proposed a modified version

of the Shouval’s calcium-medicated rule (Shouval et al. 2002). This rule has been mod-

ified in order to account for the non-linear contributions of spike pairs to the synaptic

plasticity when considering a natural spike trains as reported in Froemke and Dan

(2002).

Besides these calcium-based models, there are some other new rules, which also utilise

calcium dynamics to induce synaptic weight changes. One of these rules, that can

be also counted as a phenomenological rule, is a simplified version of the Shouval’s

calcium-based rule. This rule utilised calcium dynamics to account for various bio-

logical experiments, and try to investigate the effects of a biophysical parameter, i.e.

calcium, on the synaptic plasticity (Graupner and Brunel 2012). The dynamic of the

synaptic plasticity rule is as follows:

τ
dρ

dt
= −ρ(1− ρ)(ρ∗ − ρ)+γp(1− ρ)Θ[c(t)− θp ]−γdρΘ[c(t)− θd ] +Noise(t), (2.19)
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where τ is the time constant of synaptic efficacy changes happening on the order of

seconds to minutes. Synaptic efficacy is shown with ρ and ρ∗, which are the boundary

of the basins of attraction of two stable states, one at ρ = 0, a DOWN state correspond-

ing to low efficacy, and one at ρ = 1, an UP state corresponding to high efficacy. Here,

c(t) determines the momentous calcium concentration. There will be a potentiation if

c(t) is above a potentiation threshold, θd. Similarly, there will be a depression if c(t)

is above a depression threshold, θd. γp and γd are potentiation and depression rates,

respectively, that will be in effect when the potentiation or depression threshold are

exceeded. In addition, Θ is a Heaviside function, in which Θ[c − θ] = 0 for c < θ,

otherwise Θ[c − θ] = 1 and Noise(t) is an activity-dependent noise term. For further

details refer to Graupner and Brunel (2012).

In addition, Badoual et al. (2006) proposed two synaptic plasticity mechanisms, one

with a biophysical background, and the other as a phenomenological model. Both

rules are based on multiple spike interactions and utilise the feature of conventional

STDP rule to reproduce the outcomes of some biological experiments including the

triplet experiments using the suppression STDP model presented in Froemke and Dan

(2002) and the STDP learning window (Song et al. 2000). Although these rules are able

to account for these experiments, reproducing other important experiments including

the pairing frequency experiments, quadruplet and BCM, are not reported using these

models.

Furthermore, another calcium-based STDP rule was recently proposed (Uramoto and

Torikai 2013), which utilises three state variables in an Ordinary Differential Equa-

tion (ODE) form. This model is simpler than previous calcium-based and voltage-

based STDP models as it uses lower number of state variables and does not use extra

parameters such as delay in the model as used by Graupner and Brunel (2012). Al-

though this model is simpler than some voltage- and calcium-based models and also

has higher synaptic plasticity abilities than the TSTDP rule, it still is more complicated

than TSTDP rule, which is a merely timing-based rule.

All the phenomenological rules mentioned above have stronger links to the biophysics

of synapses than the simpler phenomenological ones. However, these rules are also

more complex in structure, and therefore need more resources to be implemented in

VLSI. In fact, there exist only a few implementations of biophysical rules in the liter-

ature and those implementations are against the main needs of neuromorphic engi-

neers, i.e. low power consumption and compactness (Rachmuth et al. 2011, Meng et al.
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2011). Therefore, implementing a simpler, low power, and smaller circuit with ade-

quate synaptic capabilities, which accounts for a number of essential synaptic experi-

ments is absolutely promising for the realisation of a large-scale biophysically plausible

neuromorphic system.

2.7 Chapter Summary

In this chapter, a number of synaptic plasticity rules that are of interests to the neuro-

morphic community were discussed and reviewed. The rules were divided into two

groups of phenomenological and biophysical plasticity rules. It was shown that these

rules have different abilities and performance in reproducing the outcomes of a variety

of synaptic plasticity biological experiments. As shown, some rules such as pair-based

STDP are not able to account for a number of experiments, while some other rules such

as TSTDP, LCP and voltage-based STDP can generate a variety of these experiments. In

addition, biophysical rules were also discussed and their capabilities were reviewed.

The investigations performed in this chapter provide us with a good understanding of

the timing and rate-based rules and their structures. This knowledge, is useful for im-

plementing these rules and mechanisms in VLSI and then utilising them for different

applications.

In the next two chapters, three of the reviewed plasticity rules, i.e. PSTDP, TSTDP

and BCM that are the rules of main interest in this thesis are implemented and tested

in a programmable multi-neuron hardware neuromorphic system. Using this system

the hardware implementation of these synaptic plasticity rules are verified. Then the

implemented rules are utilised for classification of complex rate-based patterns.
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Chapter 3

Programmable
Neuromorphic Circuits for

Spike-based Neural
Dynamics

T
HIS chapter describes the architecture and structure of a pro-

grammable hybrid analog/digital neuromorphic circuit, called

IFMEM, that can be used to build compact low-power neural

processing systems. Here, first the architecture of the IFMEM neuromor-

phic system is described and then it is explained how this hybrid analog-

digital CMOS circuit operates correctly over a wide range of input frequen-

cies; a feature that is essential for many engineering applications. The chap-

ter shows measurement results from available silicon neurons, and neuron-

synapse combinations and demonstrates how specific neural behaviours

can be generated by programming the chip and calibrating the silicon neu-

rons and synapses parameters. The provided information in this chapter

elucidates the presented results in the following chapter.
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3.1 Introduction

As discussed in previous chapters, artificial spiking neural networks offer a promis-

ing paradigm for a new generation of brain-inspired computational models. A wide

range of theoretical and computational models have already been proposed for both

basic neuroscience research (Kempter et al. 1999, Gerstner and Kistler 2002) and practi-

cal applications (Belatreche et al. 2006, Rowcliffe and Feng 2008). Neuromorphic VLSI

circuits represent a suitable technology for implementing these types of networks us-

ing hybrid analog/digital design techniques, and for building devices that have a very

high potential in a wide range of applications such as pattern classification and recog-

nition (Indiveri and Horiuchi 2011, Wang et al. 2014a, Kasabov 2014, Kasabov et al.

2014). In particular, the main advantage of implementing these spiking neural net-

works in neuromorphic VLSI technology is their compactness and low power con-

sumption, which are critical features when implementing large scale neural architec-

tures (Mead 1990, Poon and Zhou 2011). Note that, despite its advantages, the VLSI

technology as we know it today and in the near future, cannot simply address the com-

plexity boundary required for implementing a brain-scale neuromorphic system with

billions of neurons and trillions of synapses. Therefore, there is a need to exploit new

promising technologies such as memristors (Eshraghian et al. 2012), along with the

VLSI technology to reach the required complexity boundaries (Azghadi et al. 2014b).

As already mentioned, the two main components when implementing a neural sys-

tem are neurons and synapses. Synapses are essential components of spiking neu-

ral networks that represent the site of memory (as they store the network’s synap-

tic weight values), and play a fundamental role in computation (as they implement

crucial temporal and non-linear dynamics). In spiking neural networks, the synap-

tic weight is directly associated with the activity of pre-synaptic and post-synaptic

neurons (Kempter et al. 1999). Different types of learning algorithms have been pro-

posed, to update the synaptic weight as functions of both pre- and post-synaptic ac-

tivity (Brader et al. 2007, Morrison et al. 2008). The different learning strategies have

a profound effect on the post-synaptic neuron functionality and on the spiking neu-

ral network behaviour (Laughlin and Sejnowski 2003). Implementing such types of

synapses and learning mechanisms in compact electronic systems is crucial, for devel-

oping efficient large-scale spiking neural networks, which learn, and for brain-inspired

computing technologies that can adapt. However, as the implementation of the learn-

ing algorithm often depends on the specific application domain and on the nature of
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the data to be processed, it is useful to develop compact electronic implementation

of spiking neural networks, in which the weights can be adjusted by off-chip learn-

ing algorithms, e.g., implemented on a workstation, micro-controller, or Field Pro-

grammable Gate Array (FPGA).

In this chapter a programmable neuromorphic circuit that has been fabricated using

standard CMOS VLSI process (Moradi and Indiveri 2011) and that can support any

weight-update mechanism of interest and learning strategies, is presented. Specifi-

cally, a set of experimental results measured from the fabricated neuron and synapse

circuits demonstrating how they can be calibrated to a specific targeted behaviour, is

shown. Using this circuit in the following chapter, it is shown how STDP and TSTDP

learning algorithms can be implemented and reproduce a number of synaptic plasticity

experimental outcomes.

The results in this chapter have been mainly presented in The 2013 New Circuits and

Systems conference, in Paris, France (Azghadi et al. 2013d), as well as in The ACM Journal

on Emerging Technologies in Computing Systems (Azghadi et al. 2014c). Note that the

IFMEM neuromorphic architecture is designed and fabricated in the Neuromorphic

Cognitive Systems (NCS) group, Institute of Neuroinformatics (INI), University and

ETH Zurich, Switzerland. The architecture and main characteristics of the IFMEM

neuromorphic device are presented mainly in Moradi and Indiveri (2011) and Moradi

and Indiveri (2014).

3.2 The IFMEM Chip

The multi-neuron chip used in this chapter is characterised by the fact that it comprises

circuits that implement models of IF neurons, and a programmable memory for storing

the synaptic weights. Therefore, it is referred to this device as the “IFMEM” (Integrate

and Fire neurons with synaptic Memory) chip.

The photo micro-graph of the IFMEM chip comprising the programmable synapse cir-

cuits is shown in Fig. 3.1. This chip was fabricated using a standard 0.35 µm CMOS

technology and is fully characterised in Moradi and Indiveri (2014). The micro-graph

depicts various parts of the chip, including an on-chip 32-bit programmable bias gener-

ator (Delbrück et al. 2010), SRAM cells, an arbitration part, an asynchronous controller,

and the “Neural Core”.
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Figure 3.1. The IFMEM neuromorphic device chip micro-graph. The multi-neuron IFMEM

chip was fabricated using a standard 0.35 µm CMOS technology and occupies an area

of 2.1×2.5mm2. The programmable synapses are integrated inside the neural core

block (Moradi and Indiveri 2014, Azghadi et al. 2013d).

All circuits on the chip that implement the neural and synapse dynamics are in the

neural core block. The neuron circuits are implemented using an “adaptive exponential

integrate and fire” model (Brette and Gerstner 2005, Indiveri et al. 2010), while the part

of the synapse circuits responsible for integrating input spikes and producing temporal

response properties that have biologically plausible time constants are implemented

using a DPI circuit (Bartolozzi and Indiveri 2007).

The block diagram of the chip architecture is shown in Fig. 3.2(a), which demonstrates

the working scheme of this programmable neural system. Depending on the input

address-event, different types of synapse dynamics can be triggered: excitatory with

slow time constants (e.g., to emulate NMDA-type synapses), excitatory synapses with

faster time constants (e.g., to emulate AMPA-synapses), or inhibitory synapses (e.g., to

emulate GABA-type synapses). Since the DPI can be used as a linear low-pass filter, it

is possible to make use of a single integrator circuit for any of the synapse dynamics
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Figure 3.2. The IFMEM chip block diagram. (a) The device comprises a neural-core module

with an array of synapses and integrate-and-fire neurons, an asynchronous SRAM mod-

ule to store the synaptic weight values, a bias generator to set the parameters in the

analog circuits, and asynchronous control and interfacing circuits to manage the AER

communication. (b) Layout picture comprising the SRAM, neural core and AER out-

put blocks. In particular, the layout of the SRAM block measures 524×930 µm2; the

synapse array measures 309 µm in length, the synapse de-multiplexer measures 132 µm,

the neuron array 60 µm, and the output AER arbiter 105 µm in length, while the width

of all of them is equal to 930µm (Moradi and Indiveri 2014, Azghadi et al. 2014c).

considered (e.g., NMDA, AMPA, or GABA), and multiplex it in time to integrate the

contributions from multiple spiking inputs (e.g., via multiple SRAM cells).

The analog neural components available on the chip have programmable bias param-

eters that can be set with an on-chip 32-bit temperature compensated programmable

bias generator (Delbrück et al. 2010). The synaptic weights of the synapses are stored in
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a 32×32 5-bit digital SRAM block, designed with asynchronous circuits for interfacing

to the AER components. The digital weight values are converted into currents with

an on-chip Digital to Analog Converter (DAC), so that the addressed synapse circuits

produce EPSCs with amplitudes proportional to their weights.

The on-chip synapse circuits integrate incoming spikes and produce EPSCs with am-

plitudes proportional to their corresponding stored weights. The temporal response

properties of the circuit exhibit dynamics that are biophysically realistic and have

biologically plausible time constants (Bartolozzi and Indiveri 2007). The part of the

synapse circuit that produces the slow temporal dynamics is the log-domain DPI fil-

ter (Bartolozzi et al. 2006, Mitra et al. 2010), shown in Fig. 3.3. By using the DPI in its

linear regime, it is possible to time-multiplex the contributions from multiple spiking

inputs (e.g., via multiple SRAM cells), thus requiring one single integrating element

and saving precious silicon real-estate. This time multiplexing scheme, and circuits

implemented on the chip of Fig. 3.1 have been fully characterised in Moradi and In-

diveri (2011), while the description of the DPI synapse dynamics has been presented

in Bartolozzi et al. (2006).

Using the synapse time-multiplexing scheme, the total number of synapses that a neu-

ron sees is equivalent to the total number of SRAM cells present in each row. The

SRAM cells can work in “feed-through” mode or in storage mode. In feed-through

mode, input events contain both the address of the destination SRAM cell and the

synaptic weight bits, and the synapses generate EPSCs on-line, as the data is received.

In storage mode, the input events contain only the address of the destination SRAM

cell, and the weight bits used by the synapses are the ones stored in the addressed

SRAM cell (Moradi and Indiveri 2011). Therefore it is possible to interface the device

to a workstation and use it in “feed-through” mode to train the spiking neural net-

work on-line, with all of the hardware components in the loop, eventually storing the

final synaptic weight matrix in the SRAM block at the end of the training phase. Once

the training has completed, it is possible to use the device in stand-alone mode, with-

out requiring a PC in the loop, and use the stored weights to carry out the learned

task (Azghadi et al. 2013d, Azghadi et al. 2014c).

Figure 3.2(b) shows a section of the layout of the IFMEM chip comprising the main

blocks mentioned above. As shown, each block is extremely compact, so it is possible

in principle to scale up the network to very large sizes (e.g., a chip fabricated using an
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inexpensive 0.35 µm technology, using an area of 55 mm2 would implement a network

of 512 neurons and 256k synapses each having 5 bits of precision).

Figure 3.3. Schematic diagram of the programmable synapse circuit. The top part of the

diagram represents a DPI circuit that implements the temporal dynamics. The bottom

part of the diagram represents the DAC that converts the SRAM 5-bit weight into a

corresponding synaptic current (Moradi and Indiveri 2014, Azghadi et al. 2013d).

3.3 Experimental Setup

The experimental setup, shown in Figures 3.4, consists of the three main components:

a Linux PC, a generic AER interface board and, directly attached to it, a daughter-

board containing the IFMEM chip. The PC is used to control and interact with the

neuromorphic system. It generates spike trains that are sent to the IFMEM chip via an

AER interface. The PC also monitors, records and analyses the AER output of the chip.

Via a separate channel, the PC also sends bias values to IFMEM chip, which control its

various circuit parameters (Azghadi et al. 2014c).

The AEX board, shown in Fig. 3.5, is a generic AER communication platform derived

from the board first presented in Fasnacht et al. (2008). It consists of a high-speed
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Figure 3.4. Experimental setup of the hardware-software neuromorphic system. Dashed lines

represent the control path for setting analog parameters and configuring the IFMEM

chip, solid lines represent the path for the address-events data flow; from and to the

IFMEM chip (Azghadi et al. 2014c).

(480 MHz) USB2.0 interface and an FPGA device. The USB interface enables the FPGA

to communicate bi-directionally with the PC attached. The FPGA receives spike trains

from the PC via USB and then generates them accordingly on its Parallel AER output

interface to stimulate the IFMEM chip. Vice versa, the FPGA monitors the AER out-

put of the IFMEM chip: each address-event received by the FPGA is sent to the PC,

together with a 128 ns resolution time stamp of when exactly the spike was received at

the Parallel AER input of the FPGA. The AEX board also contains a high-speed Serial

AER interface to communicate with other AEX boards. Since only one such board is

required in the single-chip experimental setup described, the Serial AER interface was

not used (Azghadi et al. 2014c).

Directly attached to the AEX communication board is a daughter-board. Figure 3.5

shows the two boards together. The daughterboard contains both the IFMEM chip and

the circuitry needed to support the chip, such as voltage regulators and connectors

to measure analog output voltages generated by the chip. It also contains a simple

microcontroller that includes a full-speed (12 MHz) USB interface. Via this second USB

interface the PC sends the bias values to the microcontroller. The microcontroller then

programs the on-chip bias generator circuits to set the circuit bias voltages to the values

specified by the user.

The IFMEM system utilises the AER protocol to transfer the required events to the chip

and at the same time, record the spikes being generated by the neurons on the chip.
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Figure 3.5. Printed circuit board of the experimental setup of the system. The AEX printed

circuit board with the attached daughterboard carrying the IFMEM chip (Azghadi et al.

2014c):

A: High-speed USB interface for AER communication,

B: USB interface chip,

C: FPGA for AER monitoring and sequencing,

D: Parallel AER interface chip to FPGA,

E: Parallel AER interface FPGA to chip,

F: Serial AER section (unused),

G: Full-speed USB interface for IFMEM bias control,

H: Microcontroller for bias control,

I: The IFMEM chip,

K: An analog voltage output connection.

Each pre-synaptic AER address contains four slots of information including 18 bits as

shown in Fig. 3.2(a). These bits describe different specifications including:
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• the address of the post-synaptic neuron (5 bits),

• the address of the SRAM block containing the required synaptic weight (5 bits),

• the type (either inhibitory or excitatory) and the address of the desired synapse

(3 bits), and

• the desired digital value for the synaptic weight that will be written to the ad-

dressed SRAM block (5 bits).

The weight across these virtual synapses can be modified using AER protocol and

according to various learning and synaptic plasticity rules including timing-based ones

e.g. STDP and triplet STDP (Azghadi et al. 2012a), as well as rate-based rules e.g.

Bienenstock-Cooper-Munro (BCM) rule (Azghadi et al. 2012b). Implementing these

rules will be discussed in the following chapter. Prior to implementing any synaptic

plasticity algorithm on the IFMEM neuromorphic system, the response properties of

the neuron and synapse circuits should be characterised.

In the following Section, first the silicon neuron response properties are shown, and

then the response properties of the synapse circuits as a function of input spike fre-

quency and of programmable weight values are characterised to evaluate their linear

characteristics and dynamic range properties.

3.4 Silicon Neuron and Programmable Synapse Response

Properties

The IF silicon neuron response properties can be controlled by various neural parame-

ters that are available as bias voltages in the silicon neurons implemented on the chip.

The response properties include various features of the neuron such as its refractory

period, and its adaptation frequency. All of these properties can be controlled by bias

voltages available for these specific purposes. As an example, Fig. 3.6 shows a spik-

ing behaviour observed from a silicon neuron, by calibrating its bias parameters. In

order to produce this behaviour, constant current was injected into the neuron circuit

and the silicon neuron parameters were adjusted to obtain this biophysically realistic

response properties, with biologically realistic time constants, in the order of tens of

ms, as shown in the figure.
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Figure 3.6. Silicon neuron response properties. Silicon neuron membrane potential (Vmem) in

response to constant current injection is shown. Note that silicon neuorn biases are

set specifically to show this biologically plausible regular spiking neural behaviour with

biologically realistic time constants (Azghadi et al. 2014c).

Apart from the spiking behaviour of the neuron, setting a meaningful relationship

between the input current injected to the neuron and its mean spiking frequency is

another important characteristic of the neuron that was tested. Figure 3.7 shows an al-

most linear relationship between the amount of the injected current to the neuron and

its output mean firing rate. Note that the spiking dynamic of the neuron in this case,

that is shown in the inset of Fig. 3.7, is different from that shown in Fig. 3.6 (Azghadi et al.

2013d, Azghadi et al. 2014c).

In addition to the characteristics of the neurons, the properties of the available synapses

on the chip should also be correctly characterised. Therefore, another set of measure-

ments are carried out to calibrate the response properties of the combined synapse-

neuron. For this experiment, one post-synaptic neuron and one single input synapse

are employed. The response properties of the combined synapse-neuron circuit is char-

acterised by sending input spikes to the synapse, and measuring output spikes from

the neuron.

Note that the synapse circuit integrates input spikes to produce an output current (the

synapse EPSC) that has a mean steady-state amplitude, which depends on both the

input spike train frequency and its synaptic weight. The synapse, and if required the

neuron parameters can be calibrated to achieve the desired spiking activity in relation
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Figure 3.7. Input current versus frequency charachtristics of silicon neurons. Mean firing

rates of all neurons on the chip, as a function of input current. The figure inset shows

the membrane potential of a single neuron (Azghadi et al. 2013d).

to the synaptic weight and the input spike frequency. This spiking activity depends

directly on the application, for which the Spiking Neural Network is going to be used.

In order to optimise the use of the neuron and synapse circuits in various applications

like computation, brain machine interface, pattern recognition etc., it is necessary to

tune their analog bias parameters to specific values to result in the required features

and expected behaviour of the neuromorphic chip for those applications (Azghadi et al.

2013a, Azghadi et al. 2014c).

Figure 3.8 shows how it is possible to optimise the circuit biases for a specific range of

low pre-synaptic frequencies, so that the combined synapse-neuron circuits respond

almost linearly to their afferent synaptic inputs, for all possible weight values that can

be programmed. Under this condition, the neuron is able to show identical (gain = 1)

or linearly higher (gain > 1) or lower (gain < 1) post-synaptic output frequency,

compared to afferent pre-synaptic input frequency. Here, gain is defined as the frac-

tion of post-synaptic to pre-synaptic firing rates in the highest synaptic weight setting

(w[4...0] = (11111)2 = 31). When there are synaptic inputs with various firing rates,
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Figure 3.8. Synapse-neuron output response properties for low input frequencies. (a) The

synapse-neuron bias parameters are optimised only for 31 Hz. (b) Regular spike trains

with pre-synaptic input frequencies of 31, 62, and 93 Hz are applied to the synapse-

neuron circuit, for different synaptic weight settings. The synapse-neuron biases are

optimised to have an almost linear relationship for these three different input frequen-

cies (Azghadi et al. 2013d).

the neuron and synapses should be tuned to act linearly for the whole possible in-

put firing range of frequencies. In the calibration of the bias values in our circuit, the

main sets of parameters that were tuned are those related to the five synaptic currents

Iw0 − Iw4 depicted in Fig. 3.3. Those parameters were tuned in a way to establish an
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almost linear relationship between the 32-state digital synaptic weight values and the

neuron post-synaptic firing rates.

Note that, figure 3.8 demonstrates the neuron-synapse response properties using a set

of bias parameters optimised, in both neuron and synapse, for biologically plausible

firing rates. Figure 3.8(a) shows the neuron-synapse response properties that are opti-

mised only for 31 Hz. However, Fig. 3.8(b) demonstrates the response properties when

the biases are optimised for three various pre-synaptic input frequencies, simultane-

ously. While Fig. 3.8(a) demonstrates a close match to the expected linear behaviour,

the second figure loses some linearity.

Figure 3.9 shows similar results to Fig. 3.8, but with parameters optimised for high

firing rates (e.g., for applications that need to process incoming data quickly, and for

neuromorphic systems that do not need to interact with the environment). This fig-

ure shows that the biases can be optimised to achieve a very good linear relationship

between synaptic weight and the neuron output mean firing rate. Fig. 3.9(a) shows

the results when neuron and synapse biases are optimised for only 1 kHz input spike

frequency. While this figure shows a very close match between the neuron output fre-

quency, and an expected linear behaviour, Fig. 3.9(b) shows the results when the biases

are optimised for three different input frequencies.

In addition to these response properties of the synapse-neuron combination, some-

time a specific relationship between the mean firing rate of the input spike train to the

synapse and that of the output of the neuron is required, with a determined synaptic

weight. Therefore, the synapse should be calibrated in order to reach this behaviour.

To calibrate the synapse parameters for this purpose, first the parameters of the on-

chip DACs that convert the SRAM bits into programmed analog currents are adjusted.

Then the synapse is stimulated with regular spike trains at different frequencies, and

the neuron response is measured. Since the synapse is configured to behave as a linear

filter, only a single synapse with input frequencies as high as 2 kHz is considered, in

order to represent inputs from many neurons at lower frequencies—by means of the

superposition principle. Figure 3.10 shows the response of a silicon neuron to these

input spike trains for different synaptic weight values. As shown, we calibrated the

on-chip DACs to set synaptic weights that have a low gain, even for the highest weight

value (w[4...0] = (11111)2 = 31).

All presented measurements in this chapter show the high degree of programmabil-

ity the IFMEM chip possesses. It was shown that both neuron and synapse properties
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Figure 3.9. Synapse-neuron output response properties for high input frequencies. (a) The

synapse-neuron bias parameters are optimised only for 1 kHz. (b) Regular spike trains

with pre-synaptic input frequencies of 1, 3, and 5 kHz are applied to the synapse-

neuron circuit, for different synaptic weight settings. The synapse-neuron biases are

optimised to have an almost linear relationship for these three different input frequen-

cies (Azghadi et al. 2013d).

can be controlled, by optimising and calibrating their bias parameters, to achieve any

required behaviour from the neuron. Note that for optimising various biases that con-

trol different behaviours shown above and to reach any specific properties, the on-chip
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Figure 3.10. Neuron input-output response properties for various synaptic weights. Neuron

output frequency versus frequency of incoming spikes, representing either a very high

firing rate of a single source, or multiple sources at lower firing rates (Azghadi et al.

2014c).

bias generator circuit (Delbrück et al. 2010) was programmed using a microcontroller,

which is integrated on the host PCB (see Fig. 3.5).

3.5 Chapter Summary

This chapter presented a programmable neuromorphic device, IFMEM, that can be

used for implementing various spiking neural network architectures. The use of the

AER representation for receiving inputs, computing with spikes, and transmitting sig-

nals in output, makes this device an ideal computational platform for building embed-

ded neuromorphic event-based computational systems that process events generated

by neuromorphic sensory systems (Liu and Delbrück 2010).

It was shown that the neurons and synapses implemented on the IFMEM chip are bio-

physically realistic and can provide biologically plausible time-constants if required. It

was also demonstrated how the neuron-synapse circuits on the chip can be tuned to re-

spond appropriately for different ranges of input firing rates. These features along with

its programmability, make the IFMEM chip a very useful platform for implementing

various synaptic plasticity rules and for different applications, such as pattern classifi-

cation, and general purpose programmable neural learning systems.

Page 66



Chapter 3 Programmable Neuromorphic Circuits for Spike-based Neural Dynamics

Next chapter presents how the IFMEM device is used to realise various types of spike-

based learning algorithms, based on either spike-timing relationships (e.g., STDP mech-

anisms), or spike rate-based ones (e.g. Bienenstock-Cooper-Munro (BCM) type rules).

It also shows that how the IFMEM chip can be employed to classify complex rate-based

patterns, using the TSTDP learning algorithm.

The implementations of various synaptic plasticity rules and also using them for a clas-

sification task, build the knowledge required for the main focus of this thesis, which

is VLSI implementation of STDP rules, and using them in similar engineering applica-

tions.
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Chapter 4

Implementing STDP and
Pattern Classification on

the IFMEM Chip

T
HIS chapter describes the implementation of STDP rules and a

pattern classification neural network on the IFMEM neuromor-

phic system. It is shown that both PSTDP and TSTDP rules can be

implemented on this neuromorphic setup, demonstrating the expected be-

haviours seen in biological experiments. This chapter shows how the STDP

window can be generated using the silicon neurons and synapses available

on the system. It also shows how the STDP rule is used for generating a

competitive Hebbian learning behaviour observed in computational STDP

experiments. Furthermore, the TSTDP learning algorithm is implemented

on the chip. In order to test this implementation, it is utilised to reproduce

a rate-based BCM learning behaviour. Obtained results show the useful-

ness of the TSTDP learning algorithm for generating the rate-based BCM

learning behaviour. Finally, the implemented TSTDP learning mechanism

is utilised to train a simple feedforward spiking neural network to classify

some complex rate-based patterns. Obtained results show the high perfor-

mance of the TSTDP rule in the targeted classification task. The experiments

carried out in this chapter provide a comprehensive view of the STDP rules

and their properties and features, which are essential when designing VLSI

STDP synapses in the following chapters.
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4.1 Introduction

As discussed in previous chapters, hardware implementations of spiking neural net-

works offer promising solutions for computational tasks that require compact and

low power computing technologies. As these solutions depend on both the specific

network architecture and the type of learning algorithm used, it is important to de-

velop spiking neural network devices that offer the possibility to reconfigure their net-

work topology and to implement different types of learning mechanisms. The previ-

ous chapter presented a neuromorphic multi-neuron VLSI device, IFMEM chip, with

on-chip programmable event-based hybrid analog/digital circuits. The event-based

nature of the input/output signals allows the use of Address-Event Representation in-

frastructures for configuring arbitrary network architectures, while the programmable

synaptic efficacy circuits allow the implementation of different types of spike-based

learning mechanisms (Moradi and Indiveri 2014, Azghadi et al. 2014c). This chap-

ter focuses on the learning aspects of the IFMEM system, and shows how different

Spike-Timing Dependent Plasticity learning rules can be implemented on-line, when

the VLSI device is interfaced to a workstation. It will also be demonstrated how, after

training, the VLSI device can act as a compact stand-alone solution for binary classifi-

cation of correlated complex rate-based patterns.

Probably the most recognised synaptic plasticity rule in neuromorphic engineering is

the Spike Timing Dependent Plasticity (STDP) (Bi and Poo 1998, Azghadi et al. 2013a).

In this chapter, the focus is on implementing this important plasticity rules and re-

producing its relevant behaviours observed in computational as well as biological ex-

periments. Here, first the STDP learning algorithm is implemented to alter synaptic

weights in the IFMEM system. The well-known exponential learning window asso-

ciated with STDP rule (Bi and Poo 1998, Song et al. 2000) is also produced to verify

the correct implementation of this rule using a silicon neuron biased to act linearly

(as shown in Chapter 3). In addition to demonstrating the STDP learning window, it

is shown how the synapses on the IFMEM chip, which their efficacies are altered by

STDP, compete to control the spiking dynamic of their post-synaptic neuron, a feature

that is characterised for STDP in Song et al. (2000).

After implementing the pair-based STDP rule and showing its associated window and

replicating the bimodal behaviour in the weight distribution due to the competitive

nature of STDP synapses, the chapter continues to explore the triplet-based STDP rule,

which is the focus of this thesis. It is shown that this rule could reproduce rate-based
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BCM-like behaviours, with a sliding threshold feature, as it is shown in the computa-

tional BCM model (Bienenstock et al. 1982, Cooper et al. 2004). It is then shown that

the TSTDP learning mechanism with its parameters set to demonstrate the rate-based

learning behaviour, is able to classify complex rate-based patterns with a high degree

of correlation.

Reported results in this chapter are mainly presented in The ACM Journal on Emerging

Technologies in Computing Systems (Azghadi et al. 2014c).

4.2 Spike Timing Dependent Plasticity (STDP)

The classical description of STDP has been widely used in various computational stud-

ies (Song et al. 2000, Iannella et al. 2010) as well as several VLSI implementations (Bofill-

I-Petit and Murray 2004, Indiveri et al. 2006, Bamford et al. 2012b). The STDP rule that

was discussed in Section 2.6.1, can be expressed as

∆w =







∆w+ = A+e
(−∆t

τ+
)

if ∆t > 0

∆w− = −A−e
( ∆t

τ−
)

if ∆t ≤ 0,
(4.1)

where ∆t = tpost − tpre is the timing difference between a single pair of pre- and post-

synaptic spikes. According to this model, the synaptic weight will be potentiated if

a pre-synaptic spike arrives in a specified time window (τ+) before the occurrence

of a post-synaptic spike. Analogously, depression will occur if a pre-synaptic spike

occurs within a time window (τ−) after the post-synaptic spike. These time windows

are not usually longer than 50 ms. The magnitude of potentiation/depression will

be determined as a function of the timing difference between pre- and post-synaptic

spikes, their temporal order, and their relevant amplitude parameters (A+ and A−).

Fig. 4.1 demonstrates the conventional antisymmetric learning window associated with

the pair-based STDP rule. For generating this window, first the neuron was set to fire

spikes in response to a regular pre-synaptic spike train with the rate of 50 Hz. In this

case the neuron shows a behaviour similar to the one shown in Fig. 3.8(a). Then out-

going spikes from the post-synaptic neuron were recorded. Next, the weight of the

associated synapse was altered off-chip according to the PSTDP rule shown in Eq. 4.1.

Figure 4.1 shows the resulting STDP weight changes that occurred due to the random

time difference among pre- and post-synaptic spikes.

The figure suggests that the post-synaptic neuron spikes in a regular way similar to the

pre-synaptic spikes applied to the synapse with PSTDP. It should be noted that during
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Figure 4.1. PSTDP learning window generated on the IFMEM neuromorphic device. A

regular pre-synaptic spike train was applied to the neuron and the weights were modified

according to the timing differences between nearest neighbour spikes in the pre- and

post-synaptic spike trains. Note that, ∆w in this figure determines the amount of weight

change computed off-chip and according to the time differences between the spikes

applied to the synapse (pre-synaptic spike) and those generated by the silicon neuron

(post-synaptic spike). The STDP learning rule parameters are shown in Table 4.1.

all experiments performed in this thesis, the nearest neighbour (in contrast to all-to-

all) spike interaction, in which only the immediate preceding and succeeding adjacent

spikes are considered for weight modifications, is adopted. The synaptic parameters

used for the STDP window experiment are shown in Table 4.1. One can change the

amplitude as well as the time constants of the learning window using the parameters

shown in this Table.

4.2.1 Competitive Hebbian Learning Through STDP

It is already verified that Hebbian learning has two substantial requirements to be de-

veloped. The first requirement is to control synaptic efficacy through some activity-

dependent synaptic plasticity rules such as STDP, while the second requirement is a

competition mechanism among synapses (Song et al. 2000). It is shown that, under

specific circumstances, synapses, which their weights are governed by STDP, compete

to control the spiking activity of their post-synaptic neuron. This competition leads to
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Table 4.1. STDP parameters for producing STDP learning window on the IFMEM chip. The

four required parameters of Eq. 4.1, for producing the STDP window (Song et al. 2000)

are shown here.

Parameter name A+
2 A−

2 τ+ (ms) τ− (ms)

Value 1 1 25 25

divergence of synaptic weights into two distinguished groups. The first group is com-

posed of strong synapses, which their input spikes have been more correlated so they

became strong due to STDP. By contrast, the second group includes weak synapses,

whose input spikes have been less correlated and therefore, they became weaker in

result of STDP (Song et al. 2000). The competition and the resulting stable synaptic

weight distribution, do not arise unless the following conditions are satisfied: (i) Im-

posing a hard boundary on the strength of individual synapses, and (ii) Setting synap-

tic parameters in a way that, synaptic weakening through STDP slightly outweighs

synaptic strengthening, i.e. A+τ+<A−τ−.

In the following, we emulate the mentioned competitive Hebbian learning experiment

on our developed neuromorphic system, through a simple network composed of a

single IF neuron and its 32 affiliated 5-bit digital synapses. We demonstrate how the

digital synaptic weights, which act as virtual synapses governed by STDP, diverge into

two distinguished groups over time. The experiments are conducted in the following

manner.

First, we calibrate the silicon neuron on the chip, in a way that it is reasonably excited

so that it can respond to its input spikes by firing action potentials. This is possible

through increasing the injection current applied to the neuron. There are excessive

control parameters for setting the dynamics of the silicon neuron including a parameter

for controlling its spiking threshold, a parameter for adapting its spiking frequency, as

well as a parameter for setting its refractory periods that also play fundamental roles

in the spiking activity of the neuron—please refer to Moradi and Indiveri (2014) for

further information.

Second, we set all 32 digital synaptic weights, which are 5-bit asynchronous SRAM

cells, and therefore have 32 efficacy states, to their mid values of 16.
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Table 4.2. STDP parameters for producing competitive Hebbian learning behaviour on the

IFMEM chip. The four required parameters of Eq. 4.1, for producing the competitive

Hebbian learning behaviour (Song et al. 2000) are shown here.

Parameter name A+
2 A−

2 τ+ (ms) τ− (ms)

Value 0.5 0.527 20 20

Next, we apply 32 independent Poissonian spike trains with firing rates of 50 Hz to all

32 synapses. These spike trains will be time-multiplexed on a single DPI synapse, and

it produces an integration of 32 synaptic currents that are proportional to each of the

32 synaptic weights. The integrated current then generates the EPSC current, which in

turn is applied to the tuned post-synaptic silicon neuron. The neuron then generates

action potentials in response to the synaptic currents it receives.

The timing of the post-synaptic spikes generated by the silicon neuron and the timing

of pre-synaptic spikes applied to each of the 32 synapses then govern the magnitude

of changes to the digital weights stored in the SRAM cells affiliated with each synapse,

according to the STDP rule presented in Eq. 4.1.

Fig. 4.2 demonstrates how synaptic weights in the mentioned setup evolve over time

to reach a homeostatic state, in which synaptic weights are approximately either weak-

ened or strengthened. At time = 0 s, all digital synaptic weights are set to their middle

value (i.e. w[4...0] = (10000)2 = 16), so that a high firing rate of the silicon neuron is

achieved. Then, the 32 synaptic weights are modified by STDP rule, which is imple-

mented off-chip and updates synaptic weights stored in the SRAM cells, based on the

timing difference between the current post-synaptic spike, and pre-synaptic spikes ar-

rived immediately before or after this post-synaptic spike, in each of the 32 synapses.

The synaptic parameters for this experiment are shown in Table 4.2.

After updating the weights off-chip, the modified weights are written back to their re-

lated SRAM cells through AER communication system. In response to these changes

weights start to modify and distribute across the whole range of 32-state weight spec-

trum (see time = 100 s). Eventually the weight of the 32 synapses diverge into two

groups, one includes stronger synapses and the other one contains weaker synapses.

This divergence is mainly because those synapses whose spike trains are more corre-

lated get stronger due to STDP, while their stronger weights acts as a positive feedback
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Figure 4.2. Synaptic weights evolve to reach an equilibrium state, when modified by STDP

learning rule. Here, 32 synaptic weights (weight bins) each one with 32 digital states,

are altered by STDP over time. The top figure shows that all 32 synaptic weights are

set to 16 in the beginning at time = 0 s, i.e. the fraction of weights in weight bin

16 is 32. The other figures show the evolution of weights over time to reach a steady

state at time = 1000 s. The synaptic weights stay almost fixed thereafter, and the

post-synaptic neuron firing rate held in an almost direct relation to the mean firing rate

of pre-synaptic spike trains (Azghadi et al. 2014c).

and help their weights gets even stranger. On the other hand, those synapses that re-

ceive less correlated spike trains get weaker, in this STDP competition. This feature can

be used in an unsupervised form of Hebbian learning based on the correlation among

input spikes.
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At time = 1000 s, the weights reach an equilibrium state, in which synaptic weights

do not alter anymore and the spiking activity of the post-synaptic neurons is propor-

tionate to the mean firing rate of pre-synaptic spikes. This is an interesting feature of

STDP, which let the neuron reach a steady state.

It should be noted that, in the presented experiment, the synaptic weights are bounded

between 1 and 31, and each weight is rounded either upward or downward to its clos-

est digital weight value after each synaptic weight update. In addition, further emu-

lations suggest that the initial distribution of the 32 synaptic weights does not have a

significant impact on the distribution of final weights.

4.2.2 Implementing BCM through STDP

Although BCM is an inherently rate-based rule and depends on the activities of pre-

and post-synaptic neurons, recent studies have shown that timing-based triplet STDP

learning rule can reproduce BCM-like functionality (Gjorgjieva et al. 2011, Pfister and

Gerstner 2006). Here, it is demonstrated how this rate-based functionality can be

realised by our software-hardware system, by using the triplet STDP learning rule

(Pfister and Gerstner 2006, Gjorgjieva et al. 2011) to update the 5-bit synaptic weight

values of the IFMEM chip.

As already mentioned, the triplet-based STDP can be formulated as

∆w =







∆w+ = A+
2 e

(
−∆t1

τ+
)
+ A+

3 e
(
−∆t2

τy
)
e
(
−∆t1

τ+
)

∆w− = −A−
2 e

(
∆t1
τ−

)
− A−

3 e(
−∆t3

τx
)e

(
∆t1
τ−

)
,

(4.2)

where ∆w = ∆w+ for t = tpost and if t = tpre then the weight change is ∆w = ∆w−.

Here, A+
2 , A−

2 , A+
3 and A−

3 are potentiation and depression amplitude parameters,

∆t1 = tpost(n)− tpre(n), ∆t2 = tpost(n)− tpost(n−1)− ǫ and ∆t3 = tpre(n)− tpre(n−1)− ǫ, are

the time differences between combinations of pre- and post-synaptic spikes. Here, ǫ is

a small positive constant which ensures that the weight update uses the correct values

occurring just before the pre- or post-synaptic spike of interest, and finally τ−, τ+, τx

and τy represent time constants (Pfister and Gerstner 2006).

It has been shown (Pfister and Gerstner 2006) that for Poisson distributed spike trains

Eq. 4.2 can be approximated as:

〈dw/dt〉 = −A−
2 τ−ρpreρpost − A−

3 τ−τxρ2
preρpost + A+

2 τ+ρpreρpost + A+
3 τ+τyρ2

postρpost

(4.3)
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where ρpre and ρpost represent the mean firing rates of the pre- and post-synaptic spike

trains, respectively.

Generally, the BCM theory suggests that the synaptic weight changes have a linear

relationship with the pre-synaptic, and a non-linear relationship with the post-synaptic

mean firing rates (Bienenstock et al. 1982). Therefore, a general description of the BCM

rule can be written as:

〈dw/dt〉 = ρpre · φ(ρpost, θ) (4.4)

where φ is a function that satisfies the conditions φ(ρpost > θ, θ) > 0, φ(ρpost < θ, θ) <

0 and φ(0, θ) = 0. Essentially, if the post-synaptic firing rate, ρpost, is below the thresh-

old θ, then dw/dt is negative and the synaptic weight is depressed. Conversely, the

synaptic weight is potentiated if the post-synaptic firing rate is larger than the thresh-

old θ, and it is left unchanged if φ = 0, i.e., if ρpost = θ (Pfister and Gerstner 2006).

The Eqs. 4.3 and 4.4 can be mapped together, if two conditions are satisfied. The first

condition requires having a linear relationship between the pre-synaptic firing activity,

ρpre, and the synaptic weight change, 〈dw/dt〉, as shown in Eq. 4.4. This condition is

satisfied if A−
3 = 0, in the triplet STDP equation (Eq. 4.3). This will lead to a minimal

version of the TSTDP rule presented in Pfister and Gerstner (2006), which has been

shown to account for various synaptic plasticity neuroscience experiments, including

those dealing with higher order spike trains (Wang et al. 2005). The second condition

requires that the sliding threshold θ, that determines the frequency, in which depres-

sion turns to potentiation, is proportional to the expectation of the pth power of the

post-synaptic firing rate (ρpost) (Pfister and Gerstner 2006, Bienenstock et al. 1982). This

second condition can be satisfied if the threshold of the BCM rule is defined as

θ = 〈ρ
p
post〉(A−

2 τ− + A+
2 τ+)/ρ

p
0 A+

3 τ+τy. (4.5)

Given this equation, the sliding threshold effect of the BCM rule is proportional to the

post-synaptic firing rate, with the proportionality factor set by the STDP rule param-

eters. Previous studies have shown the possibility of mimicking the effects of BCM

rule through TSTDP (Azghadi et al. 2013a). However, similar to the experiments per-

formed in Gjorgjieva et al. (2011), they have used independent pre- and post-synaptic

spike trains with mean firing rate of ρpre and ρpost, respectively.
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To implement BCM via the triplet STDP rule in the IFMEM chip setup, we used a

single synapse, connected to a post-synaptic silicon neuron and changed its efficacy

using the STDP rule of Eq. (2.3). At the beginning of the experiment, the initial weight

of the synapse is set to its maximum value of 31 (i.e. w[4...0] = (11111)2). This high

synaptic weight makes the post-synaptic neuron fire at a high rate, proportional to

the pre-synaptic firing rate (Azghadi et al. 2013a). The pre-synaptic spike train here is a

Poisson spike train, similar to the spike trains used in previous studies (Gjorgjieva et al.

2011, Azghadi et al. 2013a). Using the AER protocol, we transmitted the software gener-

ated Poisson pre-synaptic spike train to the targeted post-synaptic silicon neuron, via a

synapse with an efficacy proportional to its weight stored in the corresponding SRAM

cell. The software pre-synaptic spike train, and the spike train produced by the silicon

neuron, are then used to calculate the amount of weight changes in the corresponding

synaptic efficacy, according to a minimal model of triplet STDP (Gjorgjieva et al. 2011).

[Hz]

Figure 4.3. The BCM rule is implemented through TSTDP rule on the IFMEM neuro-

morphic chip. The sliding threshold feature of the rate-based BCM rule is replicated

through Triplet STDP rule, implemented on the IFMEM chip (Azghadi et al. 2014c).

Figure 4.3 shows the total amount of weight change in response to Poisson spike trains

of 20 s length, for a range of pre-synaptic spike rates from 0 Hz up to 100 Hz. In this

figure, the sliding threshold feature of the BCM learning rule is regenerated through

changing the amount of one of the parameters of the TSTDP learning rule, i.e. A+
3 . Ac-

cording to Eq. 4.5, with increase in A+
3 parameter, the threshold decreases and slides
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Table 4.3. Optimised TSTDP model parameters for generating BCM-like behaviour on the

IFMEM chip. The eight required parameters of Eq. 4.2, for producing a BCM-like

behaviour (Pfister and Gerstner 2006) are shown here. Note that x indicates ’don’t

care’.

Parameter name A+
2 A−

2 A+
3 A−

3 τ+ (ms) τ− (ms) τy (ms) τx (ms)

Value 0 0.0068 see Fig. 4.3 0 16.8 33.7 114 x

toward lower post- synaptic firing rates. Please note that, in the presented experiment,

the silicon neuron parameters, as well as the synaptic weight parameters in its corre-

sponding physical synapse, i.e. the differential pair integrator, are calibrated in a way

that pre- and post-synaptic neuron are in a relatively linear relationship (Moradi and

Indiveri 2014, Azghadi et al. 2013d). In this figure, each data point corresponds to the

mean of the weight changes over 10 trials, and the error bar represents the standard

deviation of the weight change over these trials. This amount of weight change can

then be discretised and written back into the SRAM. The STDP parameters that have

been used in this experiment are shown in Table 4.3.

4.3 Classification of Complex Correlated Patterns

In this Section, classification of complex rate-based patterns is targeted using the TSTDP

learning rule. For implementing the targeted classification task, the TSTDP learning

rule, with its parameters tuned for exhibiting BCM behaviour (see Fig. 4.3) are used.

This section demonstrates how the TSTDP rule implemented on the IFMEM device can

perform classification of binary patterns with high levels of correlations.

The neural classifier implemented on the chip is composed of one neuron and 30

synapses, which are arranged in a single layer perceptron-like architecture. The goal is

to train the perceptron synaptic weights, via the TSTDP algorithm, to learn to distin-

guish two input patterns, UP and DOWN, in an unsupervised fashion. After training,

the hardware perceptron should be able to respond with a high firing rate to pattern

UP, and a low one to pattern DOWN. This is a similar experimental scenario, to the

semi-supervised learning scenario utilised in an identical classification task performed

using spiking neural networks (Giulioni et al. 2009).
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The two UP and DOWN patterns can have various degrees of correlations. The correla-

tion determines the amount of overlap in the input synapses used, and the similarity in

the output response of the neuron. When there is no correlation, one pattern is applied

to 15 random synapses and the other pattern is applied to the remaining 15 synapses

(no overlap).

The two patterns are defined as follows. The pattern UP stimulates 15 synapses with

Poisson spike trains that have a high mean firing rate of 300 Hz, while pattern DOWN

comprises 15 Poisson spike trains with a low mean firing rate of 20 Hz. Therefore, in

the case of zero correlation, the two patterns are likely to produce different outputs (de-

pending on the values of the synaptic weights) even before learning. However, for the

case of non-zero correlations, a random subset of N input synapses are always stimu-

lated by high mean firing rate spike trains of 300 Hz, while the rest of the synapses are

assigned to the two UP and DOWN patterns. For instance, if the number of correlated

synapses is 10, 10 randomly synapses are stimulated by Poisson spike trains of 300 Hz,

and the remaining 20 synapses will be reserved for the UP and DOWN patterns. In

this case, pattern UP (DOWN) is presented as 10 high (low) rate spike trains that are

applied to 10 random synapses from the 20 synapses, and pattern DOWN (UP) is pre-

sented to the remaining 10 synapses. In this case, because of the N common high input

synapses, the two patterns will have closer mean firing rates, and therefore their classi-

fication becomes more challenging. Therefore, in the beginning of learning phase, the

output frequency range of the perceptron cannot be distinguished between the two

patterns and as a result, learning is required to classify the two patterns.

The training phase is composed of several trials. In each trial, one of the two patterns,

UP or DOWN is randomly applied to the 30 input synapses, with a set degree of cor-

relation, and with a new distribution of Poisson spikes. The two patterns have equal

probability to be selected. For each trial, the synaptic weights are modified according

to the TSTDP. In our experiment the synaptic weights reach a steady state and do not

change significantly after about 20 trials, in which the input spike trains lasted 10 s

each.

Figure 4.4 shows how the distribution of the neuron output firing rates, in response

to the two different patterns, changes with learning, after 1, 5, 10, and 20 trials. The

output neuron rates were collected over 20 classification runs, with each run compris-

ing 20 learning trials, while 20% correlation is set among the two patterns. In each

run the synaptic weights are initialised to random 5-bit values, the definition of UP
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Figure 4.4. Distribution of the neuron output frequencies during different stages of learning.

In the beginning of the learning phase, when initial weights are random, the neuron

cannot distinguish between the two patterns. During the learning trials, the synapses

are being modified and the neuron begins to effectively discriminate between the two

patterns, UP and DOWN, from trial 20. In this experiment the correlation is equal to

20 %, i.e., there are 6 inputs that are common to the two patterns that always receive

high firing rates (Azghadi et al. 2014c).

and DOWN patterns is changed, and a new random order of UP and DOWN patterns

applied across trials, is defined.

As Fig. 4.4 shows after one stage of learning, trial 1, the neuron is still unable to distin-

guish between the two patterns, even though the weights have changed once, in result

of applying either pattern UP or DOWN to the network and updating the synaptic

weights according to the TSTDP learning rule. As the learning phase proceeds, the
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neuron starts to fire with higher rates for pattern UP, compared to the rates for pat-

tern DOWN. Figure 4.4 shows that after 20 trials, the neuron becomes significantly

specialised to the two patterns and fire with a higher rates for pattern UP, and with a

lower rate for pattern DOWN.

As expected, the utilised TSTDP learning rule tends to decrease the weights of the

synapses targeted by the DOWN pattern, while it tends to increase the weights of

both the UP and correlated (overlapping) synapses. After learning, the neuron will

therefore fire with high firing rates when stimulated with UP patterns, and low firing

rates when stimulated by DOWN patterns. While after a few trials (e.g. see second

and third panels of Fig. 4.4) the neuron already performs above chance levels, many

trials (20 in our experiments) are required to unambiguously classify the two patterns.

Regarding the classification performance, our results show that the implemented clas-

sification network performs robustly and holds for also large amount of correlation,

i.e. more than 50 % correlation, in the input patterns. In terms of classification accu-

racy, we consider a DOWN pattern correctly classified if the neuron output frequency

is less than a set threshold in response to that pattern; and similarly, an UP pattern

is correctly classified, if the neuron response to such pattern has a firing rate higher

than the threshold. In our experiments, the classifier has 100 % correct performance,

even with correlation levels of 87 % (i.e., 26 overlapping synapses), if the classification

threshold is adaptive (e.g., if it is set just below to the minimum frequency in response

to the UP patterns). What changes however is the difference in the responses to the

two patterns. Figure 4.5 shows how this difference decreases as the correlation among

the input patterns increases.

Figure 4.5 depicts that with increase in the correlation level between the two patterns,

the number of common active synapses between the two patterns increases and there-

fore, the neuron firing rate for the two patterns becomes closer. As a result, the differ-

ence in the output frequency for pattern UP and DOWN will decrease.

In contrary to an adaptive threshold, one might consider selecting a fixed threshold for

the whole range of correlations. In this case, the classification accuracy of the imple-

mented classifier will still be 100%, for patterns with up to 47% of correlations (corre-

lation level = 14). However, the accuracy drops to 50% afterwards, because in the case

of a fixed threshold, only UP patterns are correctly classified for correlation level great

than 14.
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Figure 4.5. The performance of the classifier implemented on the IFMEM chip. Here ∆F =

(Fmin
UP − Fmax

DOWN)/Fmin
UP , where Fmin

UP and Fmax
DOWN are the minimum and the maximum

frequencies for pattern UP and DOWN, respectively, for all 20 runs at the end of learning

in trial 20. (Azghadi et al. 2014c).

It is worth mentioning that, in the presented implementation, contrary to previous

works (Mitra et al. 2009, Giulioni et al. 2009), no teacher signal is used to make the neu-

ron fire with a specific rate for pattern UP/DOWN, rather it is relied on the input pat-

terns and random initial weights to make the neuron fire. Therefore, the implemented

classification system utilises an unsupervised learning mechanism for classifying two

correlated patterns.

4.4 Chapter Summary

This chapter presented how the programmable neuromorphic chip that was presented

in previous chapter can be used in a hybrid software-hardware system to implement

different types of spike-timing dependent plasticity learning rules. It was also demon-

strated how these rules can reproduce competitive Hebbian learning and rate-based

behaviours, even with the limitations of the hardware implementation (5-bit resolu-

tion for the weights, mismatch of the analog subthreshold circuits, etc.). Finally it was

described how the hybrid software-hardware learning setup proposed can be used to
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train a perceptron to perform binary classification in an unsupervised way, and to be

robust to extremely high correlations in the input patterns.

The device and setup proposed in this chapter, therefore represents a useful real-time

low-power computing platform for exploring the effectiveness of different types of

spike-based learning algorithms, validating their performance at run-time on real-time

custom analog/digital hardware, and implementing robust perceptron-like neural net-

works to carry out real-time classifications tasks. If the task can be solved after training

the weights of the neural network, without requiring continuous or on-line training,

then the platform proposed represents a stand-alone compact and low-power alterna-

tive to standard full-digital computing solutions (no PC is required in the loop).

This chapter along with the previous one, provided us with a good knowledge on

the modelling, implementation and behaviour of both PSTDP and TSTDP rules. This

knowledge and experience is quite helpful while designing these rules in VLSI, spe-

cially when these synaptic plasticity rules are employed in a synapse and integrated

with a silicon neuron. The experiments performed in these two chapters are also es-

sential if using the VLSI versions of the STDP circuits in a neuromorphic system for

specific tasks such as pattern classification is targeted.

After gaining knowledge on the structure of the STDP rules and the behaviours these

rules show, we can now start designing these rules in VLSI and use them to show var-

ious behaviours already observed using the IFMEM chip. However, before designing

new circuits, a review of previous VLSI designs for various synaptic plasticity rules

is required to build our knowledge on the state-of-the-art synaptic plasticity rules in

silicon. The next chapter, is dedicated to discussion and review of various synaptic

plasticity models in VLSI.
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Chapter 5

Spike-based Synaptic
Plasticity Rules in Silicon

T
HIS chapter reviews Very Large Scale Integration (VLSI) circuit

implementations of various synaptic plasticity rules, ranging from

phenomenological ones (i.e. timing-based, rate-based, or hybrid

rules) to biophysically realistic ones (e.g. based on calcium dependent mod-

els). It discusses the application domains, weaknesses and strengths of the

various representative approaches proposed in the literature and provides

deeper insight into the challenges that engineers face when designing and

implementing synaptic plasticity rules in order to utilise them in real-world

applications. The chapter also proposes and discusses various counter ap-

proaches to tackle the challenges in neuromorphic engineering. The review

performed in this chapter helps build knowledge useful for the design of

new VLSI circuits for synaptic plasticity rules while considering the chal-

lenges, applications and effective design methods and techniques.
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5.1 Introduction

For over a century, there has been considerable effort in attempting to find answers

to the question: “how does learning and memory take place in the brain?” Although

there is still no general agreement, neuroscientists agree on some general rules and hy-

potheses to answer this question (Hebb 2002, Cooper et al. 2004, Sjöström et al. 2008).

It is agreed that learning and memory in the brain are governed mainly by complex

molecular processes, which give rise to a phenomenon called synaptic plasticity. The

actions of synaptic plasticity can manifest themselves through alterations in the effi-

cacy of synapses that allow networks of cells to alter their communication. Hebbian

learning, postulated by Donald Hebb in 1949 (Hebb 2002), is the foremost recognised

class of synaptic plasticity rules. It has formed the foundation of a number of other

plasticity rules (Gerstner and Kistler 2002). Synaptic plasticity rules can be categorised

into two general groups i.e. Short Term Synaptic Plasticity (STSP) and Long-Term

Synaptic Plasticity (LTSP). While STSP plays a fundamental role in decoding and pro-

cessing neural signals on short time scales (Zucker and Regehr 2002, Buonomano 2000),

it is LTSP that is responsible for learning and memory in the brain (Sjöström et al. 2008).

This type of plasticity produces long lasting depression or potentiation in the synaptic

weights. Specifically long-term plasticity can produce an increase in synaptic efficacy,

which results in Long Term Potentiation (LTP) of the synapse, or it can produce a de-

crease in the synaptic weight, resulting in Long Term Depression (LTD). It is widely

believed that these long term processes are the basis for learning and memory in the

brain. From an engineering perspective, it is important to understand how these LTSP

mechanisms can be translated into physical models that can implement adaptive learn-

ing capabilities in artificial SNNs.

There are multiple approaches that address this problem, which depend on the target

application domain for the artificial SNN (e.g., for basic research, for providing tools to

computational neuroscientists, or for practical real-time engineering applications). For

example, some of these approaches mimic the mechanisms occurring in real synapses

and model them at a phenomenological level, while other approaches take into account

many details of the real plasticity mechanism to model biological synapses as faithfully

as possible.

In order to decipher the mystery of learning through synaptic plasticity, neuroscientists

typically postulate their hypotheses on how the brain learns and propose specific mod-

els of plasticity rules that can explain their theoretical and experimental observations.
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Then these hypotheses can be implemented in software or hardware and tested with

real-world stimuli to verify their values in addressing real-world challenges. While

software implementations are ideal for exploring different hypotheses and testing dif-

ferent models, dedicated hardware implementations are commonly used to implement

efficient neural processing systems that can be exposed to real-world stimuli from the

environment and process them in real-time, using massively parallel elements that

operate with time constants that are similar to those measured in biological neural

systems. This approach is followed for both attempting to get a deeper understand-

ing of how learning occurs in physical systems (including the brain), and for realising

efficient hardware systems that can be used to carry out complex practical tasks, rang-

ing from sensory processing to surveillance, robotics, or brain-machine interfaces. The

synaptic plasticity models developed by neuroscientists are typically translated into

electronic circuits and implemented using conventional VLSI technologies. Currently,

many of these models form the foundations for developing VLSI “neuromorphic sys-

tems” (Mead 1990, Indiveri and Horiuchi 2011). This chapter reviews and discusses

the most representative implementations of synaptic plasticity models presented in

the literature and compare them in terms of complexity and usefulness for various

applications.

The remainder of this chapter is organised as follows. Section 5.2 describes a num-

ber of fundamental building blocks useful for implementing those synaptic plasticity

rules that were discussed in Chapter 2. In Section 5.3, we review a range of representa-

tive implementations of synaptic plasticity rules, designed using the aforementioned

building blocks. Section 5.4 addresses the challenges that neuromorphic engineers

encounter when designing these systems. Section 5.5 discusses the previously men-

tioned synaptic plasticity designs and approaches and points out their benefits and

limitations. Section 5.6 demonstrates examples of how synaptic plasticity rules can

be employed in practical applications. Finally, Section 5.7 summarises our concluding

remarks for this chapter.

Presented results, review and discussion in this chapter are mainly presented in The

Proceedings of the IEEE (Azghadi et al. 2014b).
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5.2 Building Blocks for Implementing Synaptic Plasticity

Rules in VLSI

This Section reviews the most common and useful electronic building blocks required

for implementing various types of synaptic plasticity rules in VLSI.

5.2.1 Fundamental Circuit Elements

The storage of synaptic weight values, and of other state variables that need to be

memorised in models of synaptic plasticity requires memory elements in VLSI. Typi-

cally, analog values are stored using capacitors. In VLSI technology, capacitors can be

implemented using Metal-Oxide-Semiconductor Capacitors (MOSCAPs), or multiple

layers of poly-silicon separated by an insulator (typically silicon-dioxide). These solu-

tions usually offer the most compact and convenient way of storing variables, but they

have the limitation of being leaky: as the charge stored in these devices tend to slowly

leak away due to imperfect insulator used in building these devices. Alternative ways

of storing analog variables involve the use of floating-gate devices (Ramakrishnan et al.

2011), or of dedicated analog-to-digital converters (ADCs) and digital memory circuits,

such as Static Random Access Memory (SRAM) elements (Moradi and Indiveri 2011,

Azghadi et al. 2013d). Considering the required time constants, the targeted network

and its desired application, these approaches are more/less bulky and/or convenient,

compared to the storage on VLSI capacitors, which is not applicable for long-time stor-

age. Another issue that should be taken into account when selecting the storage tech-

nique for synaptic weights is the required precision needed for a given application

(Pfeil et al. 2012). This issue is discussed in Section 5.4.8.

While capacitors are passive devices, Metal-Oxide-Semiconductor Field Effect Transis-

tors (MOSFETs) are active and represent the main basic building block in VLSI tech-

nology (Weste and Eshraghian 1994). Depending on the voltage difference between the

transistor gate and source terminals, Vgs, their current-voltage characteristic can dra-

matically change. In particular, if Vgs > Vth, the transistor acts in its above-threshold

(i.e. strong inversion) regime. On the other hand, if Vgs < Vth, the transistor operates

in its subthreshold (i.e. weak inversion) regime (Liu et al. 2002).

Neuromorphic engineers are interested in the subthreshold domain for two essential

reasons. The first reason is the exponential relationship between the drain current, ID
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Figure 5.1. NMOS transistor in subthreshold. (a) Symbol for a NMOS transistor. (b) The

drain-source current, Ids, of a NMOS device in its subthreshold region of operation is a

summation of two currents with opposite directions. (c) Current-voltage characteristic

of the NMOS transistor, which shows significantly different behaviour for above and

below threshold (Liu et al. 2002).

of a transistor and its gate voltage, Vg, as shown in Eq. 5.1,

Ids = I0eκnVg/UT(e−Vs/UT − e−Vd/UT), (5.1)

where I0 is a current-scaling parameter, κn denotes the n-type MOSFET subthreshold

slope factor, UT represents the thermal voltage, and Vd, Vg, and Vs are the drain, gate,

and source voltages of the transistor, as it is shown in Fig. 5.1(a), relative to the bulk
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potential, respectively (Liu et al. 2002). Fig. 5.1(b) shows that, the drain-source current

shown in Eq. 5.1 is a summation of two currents in opposite directions, one is called

forward current, I f , which is a function of the gate-source voltage, and flows from the

drain to the source, and the other current, Ir, the reverse current, flows from the source

to the drain

Ids = I0eκnVg/UT−Vs/UT − I0eκnVg/UT−Vd/UT = I f − Ir. (5.2)

If Vds > 4UT ≈ 100 mV, as the energy band diagram in Fig. 5.1(b) shows, because of

the larger barrier height (in contrast to the Vds < 4UT state, where barrier heights are

almost equal), the concentration of electrons at the drain end of the channel will be

much lower than that at the source end, and therefore the reverse current, from source

to drain, Ir becomes negligible, and the transistor will operate in the subthreshold sat-

uration regime. Therefore, there will be a pure exponential relationship between Vgs

and Ids as

Ids = I0eκnVg/UT−Vs/UT . (5.3)

This exponential behaviour is analogous to the exponential relationship between the

ionic conductance of a neuron and its membrane potential. Therefore, a transistor is

able to directly emulate the required behaviour of an ionic conductance (Andreou et al.

1991). Figure 5.1(c), which is a log-linear plot, shows the drain-source current charac-

teristic of a NMOS device, as a function of its gate-source voltage. The figure shows

the exponential dependence of the current to the gate-source voltage, below the device

threshold. It also shows the quadratic dependence of the current to the gate-source

voltage, when the device operates in its above threshold region.

The second reason is the low-power consumption of transistors in their subthreshold

regime, due to very low subthreshold currents in the order of nano to pico Ampères—

see Fig. 5.1(c). Minimising power consumption is a main feature of neuromorphic

circuits and it is crucial for fulfilling the ultimate goal of realising an artificial brain

scale intelligent system with billions of electronic neurons and synapses. Due to these

reasons many of the VLSI designs mentioned in Section 5.3, e.g. (Rachmuth et al. 2011,

Azghadi et al. 2011c, Azghadi et al. 2012b, Azghadi et al. 2013a, Bofill-I-Petit and Murray

2004), exploit transistors in their subthreshold region of operation, in order to imple-

ment their desired neural dynamics and consume as little power as possible.
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5.2.2 Differential Pair (DP) and Operational Transconductance Am-

plifier (OTA)

Differential pairs (DPs) are electronic components widely utilised in neural analog cir-

cuit design (Liu et al. 2002, Douglas et al. 1995). A DP in its basic form consists of

three transistors, two of which are used for receiving the input voltages at their gates

and the other one for biasing the pair by a constant current source—see Fig. 5.2(a).

As shown in Fig. 5.2(c), a DP sets a sigmoidal relationship between differential input

voltages and the currents flowing across each of the two differential transistors. The

sigmoidal function is crucial to artificial neural networks and has been useful in de-

scribing the activities of populations of neurons (Wilson and Cowan 1972). This makes

the differential pair an interesting and useful building block for neuromorphic engi-

neers. Differential pairs can be used for various applications including spike integra-

tion for a synapse circuit (Bartolozzi and Indiveri 2007), and a rough voltage difference

calculator (Mayr et al. 2010). They are also the heart of Operational Transconductance

Amplifier (OTA)—see Fig. 5.2(b).

The OTA is another essential building block not only in neuromorphic engineering,

but also in general analog integrated circuit design (Liu et al. 2002, Douglas et al. 1995,

Razavi 2002). It is usually used to perform voltage mode computation and produces

an output as a current. This analog component is commonly employed as a voltage-

controlled linear conductor. However, in its simplest form the OTA is not really lin-

ear and usually sets a sigmoidal function between differential voltage inputs and the

output current—see Fig. 5.2(c). In various VLSI implementations of neuromorphic

synapses and synaptic plasticity rules, the OTA has been used in different roles (Cruz-

Albrecht et al. 2012). In some cases, it has been used to act as an active resistor when

forming a leaky integrator (Koickal et al. 2007, Mayr et al. 2010), and sometimes to act

as a low-cost comparator (Mayr et al. 2010). In addition, a number of neuromorphic

designers have carried out some changes to the basic structure of the OTA (Rachmuth

and Poon 2008, Mayr et al. 2010, Cruz-Albrecht et al. 2012) to increase its symmetry,

dynamic range and linearity and at the same time decrease the offset. As a result, the

OTA has greater stability against noise and process variation, and gains better ability

to mimic the desired neural function (Liu et al. 2002, Rachmuth and Poon 2008, Rach-

muth et al. 2011, Mayr et al. 2010).
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Figure 5.2. Differential Pair (DP) and Operational Transconductance Amplifier (OTA). (a)

A basic Differential Pair (DP) circuit consists of three transistors. (b) The Operational

Transconductance Amplifier (OTA) circuit converts the difference between its two input

voltages to a corresponding current at its output. This circuit has been extensively used

in the implementation of various neuromorphic devices (Liu et al. 2002, Rachmuth and

Poon 2008, Rachmuth et al. 2011, Mayr et al. 2010). (c) The DP sets a sigmoidal

relationship between differential input voltages and the currents flowing across each

of the two differential transistors. This is a useful behaviour for implementing similar

sigmoidal behaviour, observed in neural systems (Liu et al. 2002).

5.2.3 Synaptic Potential and Leaky Integrator (Decay) Circuits

When implementing a synaptic plasticity rule, there is always a need to implement

some dynamics to represent potentials for potentiation and depression. These poten-

tials start with the arrival of a spike, and can lead to potentiation/depression in the

synaptic weight, if another spike arrives in the synapse before the potential vanishes.

Fig. 5.3 shows a circuit that has been utilised to implement the required potentials in
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Figure 5.3. Synaptic potential (decay) circuit. (a) Synaptic potential (decay) circuit diagram.

(b) Synaptic potential module. The output of this module is a decaying signal, which

its time constant and amplitude are controlled by Itau and Iamp, respectively. The decay

starts once a pre/post spike arrives.

a number of PSTDP circuits including Bofill-I-Petit and Murray (2004), Azghadi et al.

(2012b), and Azghadi et al. (2013a). It can also be utilised in implementing many synap-

tic plasticity circuit, where there is a need for controllable decay dynamics. This circuit,

which acts as a leaky integrator controls both the amplitude of the generated potential

signal as well as its time constant.

There is another instance of the leaky integrator, in which only the time constant is con-

trollable and the required amplitude of the potentiation/depression may be realised

with another circuit/transistor. Two different arrangements of this leaky integrator are

shown in Fig. 5.4. In these circuits, the dawn of the signal determined by the arrival of

a spike, and the time constant is controlled by the voltage applied (Vtau) to the gate of

a PMOS/NMOS transistor.

In addition to the above mentioned important building blocks for analog neural de-

signs, there are other essential circuits such as current mirrors, source-followers and

current-mode Winner Take All (WTA) circuits (Liu et al. 2002, Razavi 2002), which are

extensively used in neuromorphic analog designs including those reviewed in the next

Section.
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Figure 5.4. Leaky integrator circuit for producing required decay dynamics with adjustable

time constants. (a) Leaky integrator for driving a PMOS transistor. (b) Leaky inte-

grator for driving a NMOS transistor. (c) Leaky integrator module symbol.

5.3 Neuromorphic Implementation of Synaptic Plasticity

Rules

The area of neuromorphic implementation of various synaptic plasticity rules has been

active for over a decade and many neuromorphic research engineers have been in-

volved in hardware realisation of various synaptic plasticity rules. Below is a review

of a variety of approaches for implementing different synaptic plasticity rules.

5.3.1 Spike-based Learning Circuits

One of the first VLSI designs utilising spike-based learning mechanisms, which is

closely related to many current designs for STDP, was proposed by Hafliger et al.

(1997), even before a large body of biological evidence for STDP was published. The
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learning part of the synapse circuit proposed in Hafliger et al. (1997) adjusts the synap-

tic weight stored on a capacitor, when a post-synaptic spike is received. The direction

and magnitude of the adjustment i.e. charging or discharging the capacitor, which re-

spectively corresponds to potentiation or depression of the synapse, is determined by

the post-synaptic pulse width as well as pre-synaptic spiking dynamics compared to

an adjustable threshold.

In 2000, another instance of a learning rule that functions based on both the occurrence

of the pre-synaptic spike, and the membrane potential of the post-synaptic neuron was

proposed by Fusi et al. (2000). This new learning rule is called Spike Driven Synaptic

Plasticity (SDSP). In the SDSP rule as described in Section 2.6.1, the dynamics of the

voltages produced in the neuron depends on the membrane potential, Vmem, of the

neuron. So the SDSP rule changes the synaptic weight according to the time of pre-

synaptic and membrane potential of the post-synaptic neuron. This membrane poten-

tial itself depends on the frequency of post-synaptic spikes generated by the neuron.

Figure 5.5 shows a brief view of the neuron and synapse structure implemented in

VLSI to realise the SDSP rule. Figure 5.5(a) shows schematic diagram of a VLSI learn-

ing neuron with an array of SDSP synapses. Multiple instances of synaptic circuits

output currents into the I&F neuron’s membrane capacitance (Indiveri et al. 2011). The

I&F neuron integrates the weighted sum of the currents and produces sequences of

spikes at the output.

Figure 5.5(b) shows that for implementing the SDSP synapse, a Differential Pair In-

tegrator (DPI) (Bartolozzi and Indiveri 2007) along with a bistability circuit, are the

main components, and the rest of the required components are only needed once per

neuron. This figure shows the synapse with pre-synaptic weight update module. An

AER asynchronous logic block receives input spikes and generates the pre and ∼ pre

(the inverse of pre) pulses. An amplifier in a positive-feedback configuration, forms a

bistability circuit that slowly drives the weight voltage VWi toward one of the two sta-

ble states Vwlow or Vwhi. The transistors driven by the pre and ∼ pre pulses, together

with those controlled by the V ′
UP and V ′

DN signals, implement the weight update. The

DPI block represents a current-mode low-pass filter circuit that generates an output

synaptic current Isyn with biologically plausible temporal dynamics. This current is

then sourced into the Vmem node of the I&F circuit.

In addition, Fig. 5.5(c) demonstrates the neuron with post-synaptic weight control

module. An I&F neuron circuit, integrates the input synaptic currents and produces a
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spike train at the output. A DPI filter generates the VCa signal, encoding the neuron’s

mean firing rate. Voltage and current comparator circuits determine whether to update

the synaptic weights of the afferent synapses, by increasing/decreasing their values.

Figure 5.5. Implementation of the SDSP learning rule. (a) Schematic diagram of a VLSI

learning neuron with an array of SDSP synapses. (b) Synapse with pre-synaptic weight

update module. (c) Neuron with post-synaptic weight control module.

Spike-based learning circuits (Fusi et al. 2000, Mitra et al. 2009, Giulioni et al. 2009) alter

the synaptic efficacy on pre-synaptic or post-synaptic spike arrival. They do not take

into account the exact timing difference between pre-synaptic and post-synaptic spikes

to induce synaptic weight changes. Therefore, spike-timing based learning circuits can

be categorised as another type of synaptic plasticity learning circuits.

Page 96



Chapter 5 Spike-based Synaptic Plasticity Rules in Silicon

5.3.2 Spike Timing-Dependent Learning Circuits

Many spike-timing based circuits have been implemented by different groups and un-

der various design strategies in VLSI (Bofill-I-Petit and Murray 2004, Cameron et al.

2005, Indiveri et al. 2006, Koickal et al. 2007, Tanaka et al. 2009, Azghadi et al. 2011c, Bam-

ford et al. 2012b, Azghadi et al. 2012b, Azghadi et al. 2012a, Azghadi et al. 2013a). These

circuits are classified into several design categories, and are reviewed in different sub-

sections as follows.

Analog Subthreshold Circuits

One of the first designs for PSTDP, which is the conventional form of timing-dependent

plasticity, was first proposed by Bofill et al. (2001). In this design a transistor that oper-

ates in its subthreshold (weak inversion) region is utilised to control the amount of cur-

rent flowing into/out of the synaptic weight capacitor. The direction of the changes in

the voltage of the weight capacitor is determined by another circuit that generates the

required signals according to the timing differences of pre- and post-synaptic spikes.

This circuit utilises the same peak voltage, time constants and decays for both potentia-

tion and depression dynamics required in the PSTDP rule (shown in Eq. 2.2), however,

these values might be required to be different in various contexts. As a result, Bofill-

I-Petit and Murray (2004) presented a modified version of their original design and

proposed a new circuit, where potentiation and depression dynamics have their own

decay constants as well as peak values. In their design, they have employed additional

circuitry to form the required pre- and post-synaptic pulses for their PSTDP circuit. By

adding a few transistors to the main circuit required for potentiation and depression,

they also made their circuit capable of weight dependent synaptic weight modification.

Fig. 5.6(a) shows a version of the STDP circuit presented in Bofill-I-Petit and Murray

(2004). In this design, two transistors (Mp and Md) that operate in their subthresh-

old (weak inversion) region are utilised to control the amount of current flowing in-

to/out of the synaptic weight capacitor, CW. The voltages that control these transistors

are Vpot (potential for potentiation) and Vdep (potential for depression). These poten-

tials produced by two instances of the synaptic potential circuit presented in Fig. 5.3.

This design uses currents for controlling circuit bias parameters that correspond to the

PSTDP learning rule parameters presented in Eq. 2.2. Simulation results for generating

STDP learning window using this circuit are also presented in Fig. 5.6(b). This figure

demonstrates the exponential decay behaviour in the learning window, which is in
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Figure 5.6. Pair-based STDP circuit with synaptic potential blocks. (a) This PSTDP rule

circuit that is a modified version of the design proposed in Bofill-I-Petit and Murray

(2004) is presented in Azghadi et al. (2012b). (b) This is the exponential learning

window generated by Matlab and the PSTDP circuit under various process corners.

Similar protocols and time constants to Bi and Poo (1998) are employed.

accordance with the PSTDP rule formula presented in Eq. 2.2. This exponential be-

haviour is reached by biasing Mp and Md, in their subthreshold regions of operation.

Another well-known PSTDP circuit is the symmetric design proposed by Indiveri et al.

(2006). This circuit has two branches of transistors, as shown in Fig. 5.7(a). The upper

branch is responsible for charging the weight capacitor, if a pre-synaptic spike precedes

a post-synaptic one in a determined time, and the bottom branch is for discharging the

capacitor if the reverse spike order occurs, also within a predetermined time. The po-

tentiation and depression timings in this design are set by two leaky integrators, in

which their decays are set by two bias voltages, Vtp and Vtd, for potentiation and de-

pression time constants, respectively. In addition, the amplitude of the potentiation
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Figure 5.7. Pair-based STDP circuit with leaky integrator blocks. (a) This is a different

representation of the PSTDP circuit presented in Indiveri et al. (2006). (b) The STDP

learning window generated by the PSTDP circuit shown in (a) for various potentiation

and depression time constants. A similar protocol to Bi and Poo (1998), which uses

60 pairs of pre- and post-synaptic spikes at a rate of 1 Hz, is employed. Note that

simulations are carried out in accelerated time, by a factor of 1000, compared to real

biological time. (c) A similar learning window was measured from the multi-neuron chip

presented in Indiveri et al. (2006) in biologically plausible time and under the PSTDP

experimental protocol utilised in Markram et al. (1997).

and depression are set by VA+ and VA− , respectively, and the pulse width that is an-

other important factor for the amplitude values, is kept fixed and equal to 1 µs in the

shown simulation in Fig. 5.7(b), which shows the STDP learning window in an acceler-

ated time scale. In addition, Fig. 5.7(c) shows chip measurement results for STDP learn-

ing window, in biologically plausible time (Indiveri et al. 2006, Azghadi et al. 2014c).

It is shown in a previous study that the circuit demonstrated in Fig. 5.7(a) can be min-

imised to decrease the number of transistors, and shrink the layout size for this cir-

cuit (Azghadi et al. 2011b). When considering the need for replicating this circuit in

every synapse in a large-scale neural network, this little area saving can be significant.
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The minimised circuit is shown in Fig. 5.8. Our simulation results show that this circuit

is able to reproduce a window similar to that of figure 5.7(b), that is generated by the

original PSTDP circuit shown in Fig. 5.7(a).

Figure 5.8. Minimised pair-based STDP circuit. This is the PSTDP circuit presented in

Azghadi et al. (2011b).

One of the other STDP designs that has been utilised in a VLSI spiking neural network

chip as part of the FACETS project is the design proposed by Schemmel et al. (2006).

In this design the STDP circuit that is local to each synapse has a symmetric structure.

The voltage potentials for potentiation or depression correspond to the quantity of

charge stored on synaptic capacitors, which are discharged by a fixed rate, determined

by a set of three diode connected transistors working in their subthreshold region of

operation to cause an exponential decay. These capacitors later determine the amount

of change in the synaptic weight corresponding to the time difference between the pre-

and post-synaptic spikes.

Another PSTDP circuit that was reported in 2006, is the design proposed by Arthur

and Boahen (2006). This symmetric analog design utilises a Static Random Access

Memory (SRAM) cell for storing a binary state of the synapse weight, which is either

high (potentiated) or low (depressed). This circuit uses leaky integrators in order to

implement the required dynamic for the plasticity, similar to the designs proposed in

Indiveri et al. (2006) and Azghadi et al. (2013a) and different from the design proposed
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in Schemmel et al. (2006). Upon the arrival of a spike, the plasticity potentials are gen-

erated. They start decaying linearly thereafter, and if a complementary spike arrives in

their decay intervals, its time difference with its complementary spike, determines the

required level of potentiation or depression.

All aforementioned subthreshold STDP circuits, except the circuit reported in Bofill-I-

Petit and Murray (2004), implement the simple conventional form of the STDP rule,

known as additive STDP, in which the current synaptic weight has no effect on the

synaptic plasticity mechanism (Song et al. 2000). Recently, a new analog VLSI de-

sign (Bamford et al. 2012b) for weight-dependent PSTDP (Kistler and Hemmen 2000,

Guetig et al. 2003) was proposed. This design exploits the MOS transistor physical

constraints and not any extra circuitry—as used in Bofill-I-Petit and Murray (2004)—

to implement a weight-dependent PSTDP model (Bamford et al. 2012b). The design

employs switched capacitors to implement the required leaky integrators needed for

potentiation and depression.

OTA-based Circuits

In addition to the aforementioned analog STDP designs, there are other analog im-

plementations of PSTDP in the literature that use the Operational Transconductance

Amplifier (OTA) as their main building block, and have been employed in specific ap-

plications. The circuit proposed by Koickal et al. (2007), implements PSTDP in a sym-

metric fashion and by employing four instances of OTAs. Similar to the previously

mentioned STDP designs, for generating the potentials for plasticity, there is a need

for leaky integrators. In all STDP designs mentioned so far, these integrators are built

using an RC network, where the resistor is implemented using the transistor’s chan-

nel resistance, which is function of the gate to source voltage of the transistor. Here

however, OTAs have been used as active resistors to generate the required long time

constants for STDP, which are essential in their olfaction chip. The resistors are formed

by having a feedback from the output of the OTA to its inverting input and a high

resistance is reached by reducing the transconductance of the OTAs.

Another STDP circuit that utilises OTAs for implementing PSTDP, is the design pro-

posed by Tanaka et al. (2009). They proposed two OTA-based circuits for implementing

symmetric and asymmetric STDP. Tanaka’s design uses the resistance of the transistor

channels instead of OTAs for generating the required time constants needed by the

STDP rule, however in a similar manner to Koickal et al. (2007) it still employs two
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OTAs for charging and discharging the weight capacitor in case of LTP and LTD, re-

spectively. Recently a low power design for synapses with STDP was proposed in

Cruz-Albrecht et al. (2012). This design utilises OTAs and have transistors all biased

in the deep subthreshold, while transistors have high threshold voltages, above the

circuit power supply, to build low power neuron and synapses. The synapse with

PSTDP weight update ability, is implemented using five OTAs from which three have

enable/disable capability for disabling the synapse when no weight change is required

(Cruz-Albrecht et al. 2012) and therefore having only leakage currents in the order of

100 fA, hence lower power consumption. The three OTAs also utilise a source degener-

ation technique to increase the linearity and dynamic range. The other two OTAs used

in the synapse circuit are simple OTA circuits that consist of a differential pair and a

set of current mirrors to generate the respective output current. The output current in

both types of OTAs employed in this design are governed by the tail current of the dif-

ferential pair, which itself is generated by a set of diode connected transistors stacked

on top of each other to form the bias circuitry (Cruz-Albrecht et al. 2012).

Analog Circuits with Non-volatile Weight Storage Techniques

The Floating Gate (FG) technology is one of the popular approaches for implementing

STDP-based learning mechanism that updates the charge on floating gates according

to the STDP rule. By utilising FG, one can implement a spike-based learning rule such

as STDP using only one transistor and some extra circuitry which can be shared for

several Single Transistor Learning System (STLS) as it is named in this context (Gordon

and Hasler 2002, Ramakrishnan et al. 2011). The other design approach with long-term

weight storage capability, is the device-based design proposed by Zhang et al. (2010).

They have proposed an ionic/Si hybrid device along with some peripheral circuitry to

implement a Neural Phase Shifter (NPS), which represents the synaptic weight change

as changes in the phase shift of their proposed NPS versus the time differences between

pre- and post-synaptic spikes.

Digital Circuits

In addition to the above mentioned analog implementations of the STDP rule, this rule

has been implemented several times using digital circuitries (Cassidy et al. 2007, Bel-

hadj et al. 2009, Cassidy et al. 2011, Soleimani et al. 2012). Cassidy et al. first proposed
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a FPGA implementation of a SNN that was successfully used in a few neural experi-

ments including the demonstration of bimodal weight distribution behaviour (see Sec-

tion 4.2.1 for a similar example on the IFMEM device) as a feature of synapses with

STDP learning (Song et al. 2000, Cassidy et al. 2007). In 2009, neuromorphic researchers

proposed three various approaches to implement STDP on FPGA and tested them in

a SNN composed of analog neurons and STDP synapses that transfers their weight to

the neurons through a pulse width modulation (PWM) technique (Belhadj et al. 2009).

Cassidy and his colleagues again in 2011 proposed some other digital architectures for

implementing STDP on FPGA that outperform the previous FPGA designs proposed

in Belhadj et al. (2009), in terms of FPGA power and area consumption (Cassidy et al.

2011). Apart from these FPGA-based digital implementations of STDP, there are some

general digital neuromorphic architectures, where a SNN can be easily configured with

required learning strategy e.g. STDP. Researchers at IBM have reported implementa-

tion of a neurosynaptic core that is composed of digital Integrate and Fire (IF) neurons,

addressable axons, and a crossbar arrays of SRAMs that are programmable and act as

binary synapses. This design has been implemented in a 45 nm Silicon-On-Insulator

(SOI) process and consumes little power (Merolla et al. 2011, Arthur et al. 2012).

In recent years, along side the IBM digital neuromorphic architectures another neu-

romorphic architecture inspired by the parallelism of the human brain has also been

developed and tested (Furber et al. 2013, Painkras et al. 2013). This neuromorphic ar-

chitecture, called Spinnaker, is a hardware platform that utilises off-the-shelf ARM

processors to form a biomimetic massively parallel simulator for spiking neural net-

works.

Analog/Digital Circuits

Another popular approach to implement SNNs including required neural and synap-

tic dynamics, is the mixed signal VLSI design strategy that involves analog circuits

along with digital ones that are integrated to implement the required network com-

bination (Pfeil et al. 2012). For example, the neuromorphic architecture presented in

Moradi and Indiveri (2014) follows mixed signal design strategies in which synapses

are analog circuits (see Fig. 3.3), but with digital weights, stored on an asynchronous

SRAM block (Moradi and Indiveri 2011, Moradi and Indiveri 2014), that can be up-

dated off-chip and according to any expected plasticity rule, including timing- and
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rate-based rules e.g. STDP and BCM (Azghadi et al. 2014b). Experimental results pre-

sented in Azghadi et al. (2013d) show how this programmable neuromorphic design

can be tuned to exhibit biologically plausible response properties.

5.3.3 Hybrid Spike- Time and Rate Based Analog Circuit

In addition to the spike-based and spike-timing based synaptic plasticity circuits men-

tioned so far, there is another circuitry proposed by Mayr et al. (2010) that uses a hy-

brid learning rule composed of both timing and rate of spikes to alter the synaptic

weight. This phenomenological rule was already introduced in Section 2.6.1. For gen-

erating the required exponential decay dynamics for both u(t) and g(t) (see Eq. 2.17),

an OTA-based design approach has been utilised. Similar to the PSTDP design re-

ported in Koickal et al. (2007), this design exploits a balanced OTA with negative feed-

back, which acts as a large resistor in the required leaky integrators. However, this

design uses an active source degeneration topology to further improve the dynamic

range and linearity of the integrator. These integrators are needed for both membrane

potential, u(t), which decays linearly back to the resting potential after a post-synaptic

pulse duration is finished (hyperpolarization dynamic), as well as the post-synaptic

current, g(t), which decays exponentially toward zero after a pre-synaptic spike ar-

rival. The time constants in these integrators can be tuned by changing the resistance

of the OTA-based resistor that in turn can be altered by calibrating the leak bias current

in the design. Beside these exponential decay dynamics, the rule needs subtraction and

multiplication for changing the synaptic weight. These functions are approximated us-

ing a differential pair and its tail current (Mayr et al. 2010).

5.3.4 Neuromorphic Implementations of Biophysical Rules

Unlike all aforementioned neuromorphic VLSI designs of synaptic plasticity rules that

are based on a rough approximation of the mechanisms that occur in the neuron and

synapses, there are a few designs in the literature that go further and implement a

detailed account of synaptic plasticity mechanism including the whole chemical and

ionic interactions in the synaptic cleft. These designs are much more complex than the

previous timing-, spike- or BCM-based designs, since they take into account detailed

biophysical interactions when inducing synaptic weight changes.
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The two major biophysical designs available in the literature, that are able to demon-

strate both PSTDP and BCM-like behaviour are the designs proposed in Meng et al.

(2011) and Rachmuth et al. (2011). These designs are based on two similar biophys-

ical rules that were already discussed briefly in Section 2.6.2. The first design im-

plements an elaborate biophysical synaptic plasticity model, which is based on the

general biophysical processes taking place in the synapse (see Section 2.6.2). This im-

plementation utilises current-mode design technique in order to implement the tar-

geted biophysical rule that describes the detailed dynamic of the synaptic ion chan-

nels (Meng et al. 2011, Rachmuth and Poon 2008).

Recently the same group has published another iono-neuromorphic VLSI design which

explores a similar approach for implementing both Spike Rate Dependent Plasticity

(SRDP) and STDP using a unique biophysical synaptic plasticity model as briefly ex-

plained in Section 2.6.2. Identical to their first design, they used current-mode design

technique to implement the required ion channel dynamics (Rachmuth et al. 2011).

5.4 Challenges in Neuromorphic Engineering

To realise artificial neural networks that can faithfully reproduce the properties of bi-

ological neural networks, and at the same time, be useful for implementing neural

computation, there are different approaches and strategies, with their own advantages

and limitations. Here, we focus on the challenges neuromorphic engineers face in the

development of hardware artificial spiking neural networks whose foundation, archi-

tecture and structure are based on biological neural networks (Indiveri et al. 2009). Be-

fore investigating the obstacles and challenges in the way of implementing hardware

neuromorphic systems, one might wonder why hardware is preferred over software

for implementing Spiking Neural Networks? We discuss the response to this question

first and then categorise the neuromorphic challenges.

In the spiking neural network software approach, the required neural architecture

and its basic building blocks are implemented on conventional Von Neumann com-

puting architectures. The main advantages of this method are, shorter design time

compared to the physical implementation of neuromorphic systems, as well as the re-

configurability they offer compared to the non-reconfigurable design in most of phys-

ical design approaches. Furthermore, the input/outputs to software-based designs

are technically noise-free and easy to deal with, compared to analog/digital hardware
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outputs that are not so easy to use. On the other hand though, as Poon and Zhou

(2011) state, the software-based approaches have significant shortcomings such as very

high power consumption and very large real estate, which are major obstacles in the

way of implementing a brain-scale neuromorphic system. An example of a software-

based neuromorphic system implemented on digital machines, is the realisation of

cat cortex on an IBM’s super computer that took 147,456 CPUs and 144 TB of mem-

ory (Ananthanarayanan et al. 2009). Although this supercomputer is much faster than

the brain in performing computation, since the computation takes place in a sequen-

tial order, compared to the massively parallel but slow computations that take place

in the brain, it is still far behind the brain parallel processing capability. That is the

situation, where a hardware-based approach becomes superior because of its parallel

nature, similar to that of the brain.

In addition, as mentioned earlier in Section 5.3.2, another approach IBM is currently

following is a software/hardware structure, in which the neural architecture is im-

plemented in silicon as customised digital architectures and then it uses software-

based off-chip synaptic plasticity rules to change the state of binary-valued synapses

(Arthur et al. 2012). Besides, there are other neuro-computing architectures that use the

software/hardware design approach and implement neurons and the neural architec-

ture in mixed analog/digital VLSI, instead of pure digital VLSI. In these designs synap-

tic plasticity is performed off-chip and in software (Moradi and Indiveri 2011, Moradi

and Indiveri 2014), while fast parallel silicon neurons process spikes. Furthermore,

some other software/hardware designs, such as Spinnaker, simulate the entire large-

scale neural system, on a special-purpose neural computer architecture (Painkras et al.

2013).

In contrast to software, or hybrid software/hardware systems, the neuromorphic sys-

tem can be implemented mainly in hardware. The main advantage of a full-custom

dedicated hardware neuromorphic system is to utilise a high degree of parallelism

that allows the implemented neuromorphic system to work on biological time scales or

even in accelerated time scales (Indiveri et al. 2011, Schemmel et al. 2010, Azghadi et al.

2013a). However, this design approach has its own limitations such as high-power

consumption and large silicon area when considering a large scale neuromorphic sys-

tem close to the scale of a brain. Another limitation that is inherent to analog VLSI

circuits is fabrication imperfections that lead to device mismatch, which has minimal
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affects on digital systems. Interestingly, the challenges and constraints faced by neuro-

morphic engineers for implementing synaptic learning, are similar to the ones encoun-

tered in biological learning, such as lack of long-time weight storage (Lisman 1985,

O’Connor et al. 2005) and limited wiring. Generally, the main challenges and obsta-

cles for implementing a large scale neuromorphic system can be summarised by the

following:

5.4.1 Power Consumption

We know that the brain consists of billions of neurons and trillions of synapses, each

of which consumes much less power compared to their silicon counterparts (Poon

and Zhou 2011). Recently new integrated neural circuitry with a low power struc-

ture was proposed that consumes even less power per spike compared to a biological

neuron (Cruz-Albrecht et al. 2012). Although it is a large step toward having a low

power spiking neural system, it is very naive to think we are close to a neural system

with a power consumption close to the brain, since this work does not consider the

interconnection and communication among spikes and its required power. It also does

not take into account the required complexity in the neural and synaptic structures,

which is sometimes necessary for specific applications. In addition, the power con-

sumption of a synapse or neuron heavily depends on its model parameters and their

values that can change the weight modification pattern and at the same time lead to

high or low power consumption. The other fact that should be considered is the spike

pulse width utilised in the neuromorphic design, that can have significant affect on

both functionality and power consumption of the system (Azghadi et al. 2014a). There-

fore, an effective approach for decreasing the power consumption of a neuromorphic

system is to optimise the neuron and synapse circuit bias parameters, as well as the

structure of the spike pulses, in a way that while having the required functionality

minimises the power consumption (Azghadi et al. 2014a).

One of the other effective ways for implementing low-power neuromorphic circuits is

to design them using transistors operating deep in the subthreshold domain, which

results in extremely low currents (e.g., in the order of pA). In addition, this approach

allows the design of circuits that operate with low supply voltages, which is another

strategy for reducing power consumption (Cruz-Albrecht et al. 2012). However, oper-

ating in the subthreshold region of operation and using lower supply voltages result

in greater susceptibility to process variation and noise.
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5.4.2 Process Variation and Device Mismatch

Due to inevitable variations in device parameters when fabricated in an integrated cir-

cuit technology, the resulting devices and circuits most likely will deviate in function

and output when compared to simulation. Process variation shows itself more, when

designing circuits using transistors biased in their subthreshold regime because of the

possible variation in the transistor’s threshold voltage and other parameters. Tran-

sistor mismatch is a challenge in designs including current mirrors, DPs, and those

circuits that require an exact matching between several components. As stated earlier,

due to the exponential behaviour and also low power consumption of transistors in

their subthreshold regime, many of the spiking neural circuits including neural and

synaptic weight change components, are implemented in this region. In addition,

many neuromorphic VLSI designs employ current mirrors and DPs in their current-

or voltage-mode structures. Therefore, these neural systems are highly susceptible to

process variations and device mismatch (Azghadi et al. 2012b, Azghadi et al. 2013a,

Mayr et al. 2010, Poon and Zhou 2011, Yu et al. 2013). There are various approaches

to tackle the process variation and mismatch problems including the approaches men-

tioned in the following.

Post-Fabrication Calibration

Calibration of neural components that adjusts the circuit bias parameters, from those

used in the design procedure, compensates for the variations due to the fabrication

process. Although this approach can be used in small-scale neuromorphic circuits

(Grassia et al. 2011, Azghadi et al. 2013a, Carlson et al. 2013, Carlson et al. 2014), and

even shared biases might be useful for larger scale neuromorphic systems, for very

large-scale neuromorphic systems with millions of neural circuits, this approach is im-

practicable (Poon and Zhou 2011). Furthermore, the calibration technique cannot ac-

count for detrimental effects of temperature and supply voltage variations, which are

other sources of variations discussed later in this Section.

Utilisation of Circuit Design Techniques

The use of analog circuit design techniques that minimise the effect of process varia-

tions and device mismatch is another approach used for tackling fabrication imperfec-

tions (Poon and Zhou 2011, Rachmuth et al. 2011). This design approach has been suc-

cessfully utilised in an iono-neuromorphic design presented in Rachmuth et al. (2011).
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Considering large-scale neural circuity, the approach of mismatch minimisation using

customised devices, seems more applicable compared to the post-fabrication calibra-

tion. This technique is also helpful for alleviating the temperature variation effects

on the performance of the design. However, it results in circuits with higher com-

plexity. This is the cost these circuits pay for robustness. Nonetheless, in the imple-

mentation of truly large-scale neural systems, the area overhead imposed by the mis-

match minimisation techniques such as wide-dynamic range devices, is not significant

compared to the silicon real estate occupied by the synaptic dynamic large capacitors

and dense interconnects. In addition to these classical solutions for ameliorating the

variations, some neuromorphic researchers have used different methods applicable to

SNNs to alleviate the degradation in circuit performance due to process variation. One

of these approaches that is suitable for SNNs is living with the variations (Neftci and

Indiveri 2010), as discussed in the following.

System Level Approach for Mismatch Minimisation

Living with the variation and considering a mechanistic way to reduce its effect on

the expected behaviour of the network is another instance of the approaches taken

against variation. For example, Neftci and Indiveri have proposed an approach for

compensating device mismatch by exploiting Address Event Representation (AER) in

multi-neuron chips (Neftci and Indiveri 2010), which is freely available in the network

and does not require adding extra circuitry or processing as mentioned for the first and

second classical approaches. Another approach that exploits learning and adaptation

in SNNs, is to utilise short term (Bill et al. 2010) or long term plasticity to alleviate pro-

cess variation effects. For example, Cameron et al. exploit a PSTDP circuit to reduce

the effect of process variation (Cameron et al. 2005). A similar approach that employs

PSTDP in order to alleviate variations in performance of similar neurons—due to pro-

cess variation and mismatch—in a SNN is also proposed in Bamford et al. (2012a). All

previous approaches have used some techniques to reduce the effect of process vari-

ations, however, some neuromorphic engineers interestingly exploited variations in

their neural circuit structure.

Exploiting the Process Variation and Device Mismatch

Sheik et al. have shown that the unwanted device mismatch and variations can be

exploited in neuromorphic systems to implement axonal delays, which are required
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and useful for neural computations (Sheik et al. 2012a). In another work, neuromorphic

engineers exploited mismatch to perform vector-matrix multiplication in a extreme

learning machine (Yao et al. 2013). Despite all these methods, one may keep in mind

that using the process variation and mismatch such as the idea presented in Sheik et al.

(2012a), or trying to reduce the effect of variations and mismatch is challenging due to

mismatch inherent stochasticity.

All the mentioned approaches so far are only proposed to tackle the process varia-

tion and device mismatch. Although this is the most significant source of variation in

analog neuromorphic models of synaptic plasticity rules, other types of variations, i.e.

supply voltage and temperature variations must also be considered, especially when

a large-scale neuromorphic system is targeted. The following subsection discusses the

effect of variations on the design of a large-scale neuromorphic system in more details.

5.4.3 Voltage and Temperature (VT) Variation

Note that VLSI chips are susceptible to variations in many parameters and behave

differently under various cases of variations. These include (i) fabrication process pa-

rameter variation such as deviation in the threshold voltage and channel length from

the exact value specified for the fabrication process (this issue was discussed in de-

tails in the previous subsection); (ii) supply voltage variations from the ideal supply

voltage required for the device operation; and (iii) temperature variations from the

ideal temperature needed for the normal operation of the devices and interconnects.

Each of these variation sources has its own corners, beyond those the device might not

function properly. An instance of these corners are shown for process parameters in

Fig. 5.6(b), where the STDP learning window is produced for various device corners,

and fortunately for all of them it is close to the required behaviour. Since there are

three simultaneous sources (i.e. PVT) of variations in an analog VLSI system, these

variations should be coupled together in order to form various PVT variation corners,

in which the device has its best, typical or worst characteristic. Apart from devices,

variation also affects the characteristics of the interconnects, that have their own cor-

ners, which are usually different from those of the device. More directly, the device and

interconnects potentially have worst performance at different corners. Considering

these corners when designing the targeted application is essential, as the design might

be dominated by device corners, interconnect corners, or a mixture of both (Weste and

Harris 2005).
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5.4.4 Silicon Real Estate

Silicon area consumption of a neuromorphic systems is related to the area used by

each neuron and synapse, and to the way they are connected together. Considera-

tions on the area required by the interconnects are listed in the next subsection. Con-

cerning the area required by the silicon neuron and synapse designs, there are two

main approaches to consider. One is the biophysically realistic approach that attempts

to model in great detail the biophysics of neurons and synapses, usually producing

large circuits, such as the design proposed in Meng et al. (2011) and Rachmuth et al.

(2011). The other approach, that aims to implement the phenomenology of the ac-

tion potential generation mechanisms but sacrificing biological fidelity, usually pro-

duces more compact circuits (Indiveri et al. 2011). Perhaps the most critical com-

ponent however is the synapse design, as in learning architectures, most of the sil-

icon real estate is going to be consumed by these elements. If the synapses have

all the same type of (linear) temporal dynamics, it is possible to exploit the super-

position principle and use one single shared (linear) temporal filter circuit to model

the temporal dynamics of many synapses (Mitra et al. 2009). The individual synapse

elements are therefore “only” required to implement the weight update mechanism

and transmit a weighted pulse to the shared integrator. Naturally, the smaller the

weight-update circuit, the larger the number of synapses can be integrated in the

same area. There are very promising emerging technologies, e.g. based on 3D VLSI

integration (Lee et al. 2010), 3D VLSI packaging (Al-Sarawi et al. 1998), and Resis-

tive RAMS (Eshraghian 2010), which may offer ways of making extremely compact

synapse elements and (consequently) extremely dense synaptic arrays (Likharev and

Strukov 2005, Serrano-Gotarredona et al. 2013).

5.4.5 Interconnection and Routing

As in biology, wiring is a significant issue also in neuromorphic engineering. If each

neuron in neuromorphic architectures were to use a dedicated wire to target its des-

tination synapses (as real neurons use axons), then the area required by interconnects

would dominate, and (given the essentially 2D nature of VLSI technology) it would

be impossible to design large-scale systems. Fortunately, it is possible to exploit the

very large differences in time scales between typical neuron transmission times and

silicon communication circuits. In this way it is possible to time-multiplex the action
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potentials generated by the silicon neurons and share wires, creating therefore “virtual

axons”. The most common protocol that is used in the neuromorphic community to

accomplish this is based on the Address Event Representation (AER) (Deiss et al. 1994,

Boahen 2000). In this representation, the action potentials generated by a particular

neuron are transformed into a digital address that identifies the source neuron, and

broadcast asynchronously on a common data bus. By using asynchronous arbiters and

routing circuits (Moradi et al. 2013) it is therefore possible to create large-scale neural

networks with reconfigurable network topologies. These networks can be distributed

within the same chip e.g. among multiple neural cores (Arthur et al. 2012), or across

multiple chips (Merolla et al. 2013, Chicca et al. 2007).

5.4.6 Electronic Design Automation for Large-Scale Neuromorphic

Systems

Although there are a number of neuromorphic systems that deal with a relatively high

number of analog neurons, designing large-scale neuromorphic systems is still a very

complex task. One of the major obstacles on the way is the lack of an Electronic Design

Automation (EDA) tool, that can facilitate the design procedure, while taking into ac-

count the targeted design requirement. There are promising recent accomplishments

that exploit existing EDA tool-chains for automating the design of neuromorphic cir-

cuits. For examples see Imam et al. (2012) and Mostafa et al. (2013) for designing the

asynchronous logic circuits that make up the arbiters and routers described above.

However there is a need for a new generation of EDA tools that are optimised for

neuromorphic architectures with hybrid analog/digital circuits, asynchronous logic

circuits, and networks characterised by very large fan-in and fan-out topologies.

5.4.7 Bias Generation for Neuromorphic Circuits

The complex behaviour of neural circuitries including neurons and synapses are con-

trolled by many parameters including synapse potentiation and depression time con-

stants and amplitudes, neuron spiking thresholds, spiking frequency adaptation, and

refractory period parameters. For controlling silicon neurons and synapses, these pa-

rameters should be presented as small-scale and high accuracy voltages and currents

to silicon neurons and synapses. Generating these bias voltages and currents, which

usually span over a wide range, usually needs a specific dedicated VLSI circuit that
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generates these values in a programmable and reconfigurable manner. Fortunately,

there are a number of high resolution, wide-dynamic range, temperature compen-

sated analog programmable bias generator circuitries already available in the liter-

ature, which can be used for synaptic plasticity circuits and systems (Delbrück and

Van Schaik 2005, Delbrück et al. 2010). Considering large-scale neuromorphic systems

with large number of neurons and synapses, a bias sharing technique for neurons and

synapses that are laid out closely seems a practicable approach as it has been used in

Stanford University Neurogrid chips (Gao et al. 2012).

The challenges mentioned in the previous subsections are engaged with typical neuro-

morphic systems and are not specific to synaptic plasticity circuits. However, a specific

challenge on the way of implementing required synaptic plasticity rules and integrat-

ing them into network of neurons, is the synaptic weight storage method, which is

discussed in more details in the following subsection.

5.4.8 Synaptic Weight Storage and Stabilisation

Synaptic weight storage is another big challenge neuromorphic engineers encounter in

the process of synaptic plasticity circuit implementation. When implementing the cir-

cuit in VLSI, the synaptic weight is usually represented as the amount of charge stored

across a weight capacitor (Azghadi et al. 2013a). However, this weight is not stable

as the charge on the capacitor will leak away and therefore the learnt synaptic weight

will be lost. This instability is due to the leakage (i.e. off-current) of the transistor that

is in the order of fA. Therefore, the synaptic weight cannot be preserved longer than

hundreds of milliseconds to a few seconds, depending on the capacity of the weight

capacitor.

As there is a direct relationship between the stability of the voltage stored on a capac-

itor and its capacity, some previous STDP designs have used bulky capacitors (Bofill-

I-Petit and Murray 2004, Bamford et al. 2012b, Cruz-Albrecht et al. 2012, Azghadi et al.

2013a), which takes up a large portion of the precious silicon real estate, in order to

preserve the weight value at least for the period of time required for their desired

experiments. This does not appear compatible with the goal of neuromorphic engi-

neering, which ultimately aims to integrate a large scale neural system with billions of

synaptic circuits. Therefore a number of other approaches have been sought, in order
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to address this obstacle on the way of realising long-term plasticity in silicon. These

approaches are briefly reviewed as follows.

Accelerated-time Synaptic Plasticity Circuits

A number of neuromorphic designers have used a time-scaling approach, in order

to tackle the mentioned problem of weight storage (Schemmel et al. 2006, Mayr et al.

2010, Azghadi et al. 2013a). This approach utilises circuits that operate in accelerated

time scales compared to the timing of real neurons, therefore, these circuits operate

orders of magnitude (103 to 105) faster than biological neurons and synapses. An

instance of an accelerated neuromorphic system is the BrainScaleS wafer-scale sys-

tem (Schemmel et al. 2010). The main advantages of this approach are, (i) increased

speed of emulating large-scale neuromorphic systems that is useful for long exper-

iments, and (ii) a higher degree of density and integration, due to smaller capaci-

tors. On the other hand, main disadvantages of this approach are (i) the inability of

the accelerated-time system to be directly interfaced to biological sensors and systems

(Hamilton et al. 2008, Lichtsteiner et al. 2008, Hamilton et al. 2009) with biological time-

scales, and (ii) the high degree of communications in the network, which requires high-

performance control systems.

Utilising Reverse-biased Transistors to Decrease Leakage

Since the main reason for instability of the voltage stored on a weight capacitor is the

leakage current, one may increase the stability by reducing the leakage current. Us-

ing reverse-biased transistors in the path of charging/discharging weight capacitors,

reduces leakage currents and therefore increases the weight stability on that capaci-

tor. This approach was first proposed by Linares-Barranco and Serrano-Gotarredona

(2003). Recently, it has been successfully exploited in Bamford et al. (2012b) for stor-

ing the weight for a longer period of time in the order of hundreds of milliseconds.

In order to reverse bias the transistors in the design, as it is proposed in Bamford et al.

(2012b), the Gnd and Vdd are shifted few hundreds of millivolts toward Vdd and Gnd,

respectively. By reducing the supply voltage slightly or increasing the ground voltage

level, the transistor back gate will be in both cases at higher voltages, resulting in an

increase in the threshold voltage that leads to reduced leakage current.
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Bistability Mechanism

Another approach for synaptic weight stabilisation, which has been used in a number

of synaptic plasticity circuits and for various learning rules, is a bistability mechanism

that is based on the idea of having the long-term state of a synapse either potentiated

or depressed. As shown in Fig. 5.5(b), in this approach, an amplifier with positive

feedback is utilised to drive the synaptic weight stored on the weight capacitor and

updated by the desired synaptic plasticity rule in the short-term, slowly either upward

or downward depending on the current value of the synaptic weight that is above

or below a predetermined threshold (Chicca et al. 2003, Indiveri et al. 2006, Mitra et al.

2009). Furthermore, some other neuromorphic circuits use the same approach but with

storing the weight on a SRAM i.e. only two stable states (Arthur and Boahen 2006), or

mapping and storing the modified weight on a multi-stage analog memory (Hafliger

and Kolle Riis 2003, Hafliger 2007). Using this method, the synaptic weight stored on

the capacitor is updated whenever there are spikes, but as soon as there is no spike, the

weight is driven toward a high or low analog value, depending on the current synaptic

weight on the capacitor, which can be either potentiated, above a certain threshold, or

depressed, below that threshold, respectively.

Bistability mechanism has experimental support, as well as benefits over the use of

large weight capacitors, in large neuromorphic systems. Considering a large network

of neurons and synapses, on long time scales, synaptic efficacy can be assumed to have

only two high (potentiated) or low (depressed) values. This assumption is compatible

with experimental data (Bliss and Collingridge 1993, Petersen et al. 1998). In addition,

from a theoretical perspective, it has been argued that the performance of associative

networks is not necessarily degraded if the dynamic range of the synaptic efficacy

is restricted even into two stable states (Amit and Fusi 1994). Furthermore, bistable

synapses can be implemented in a small area compared to having large-scale capacitors

for preserving the synaptic weights for longer periods of time (Indiveri et al. 2006). Due

to these benefits, this technique is a suitable approach to be used in all of our reviewed

synaptic plasticity circuits including the STDP and TSTDP circuits.

Despite the usefulness of the bistability mechanism for short term learning and weight

changes, for permanent storage of synaptic weights, which are quantised to two high-

/low states using the bistable technique, there is a need for a non-volatile storage tech-

nique. A number of these storage techniques have been discussed in the following.
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Digitising the Synaptic Weight and Storing it in Memory

This approach has been followed in a few ways. In one of the pioneering works on

neural networks presented in 1989, the approach was to serially and periodically re-

fresh the analog weights stored on the capacitor with the weight stored in the memory

(Eberhardt et al. 1989). This approach however needs bulky Digital-to-Analog Convert-

ers (DACs) and Analog-to-Digital Converters (ADC). In addition, designing these de-

vices in the subthreshold low-current regime is a crucial task, as there is a high demand

for low power consumption and small silicon area in neuromorphic applications (Poon

and Zhou 2011). Moradi and Indiveri have used a single current-mode DAC, available

beside each synapse integrated circuit, in order to convert 5-bit digitally stored synap-

tic weights in asynchronous SRAMs, to a current that drives the synapse integrator

(Moradi and Indiveri 2011, Moradi and Indiveri 2014). Therefore, the synaptic weights

here are considered as virtual synapses and their weights come into effect whenever

they receive a spike from the AER system (Moradi and Indiveri 2011, Moradi and

Indiveri 2014). This approach utilises a time multiplexing technique and therefore only

uses one DAC per several synapse memory cell. Whilst this saves silicon area, it causes

extra communication. A similar approach of using virtual synapses with digitised

synaptic weights, has been employed by other neuromorphic engineers, in order to

tackle both synaptic weight storage and also reduce area usage (Vogelstein et al. 2007b).

In Pfeil et al. (2012), the authors discuss the issue of digitising weight on the PSTDP rule

and show that considering other constraints of neuromorphic designs, increasing the

weight storage resolution is not necessarily useful for PSTDP.

Floating Gate (FG)

Floating Gate technology (FG) is another possible approach for nonvolatile storage of

synaptic weights. It has been exploited extensively in neuromorphic systems to im-

plement Hebbian-based and STDP learning rules (Ramakrishnan et al. 2011, Gordon

and Hasler 2002, Holler et al. 1989). As already mentioned in Section 5.3.2, this storage

technique leads to a compact single transistor implementation of STDP, which saves

significant silicon area. However, the drawback for this approach is the severe mis-

match that occurs in the tunnelling and/or injection processes. Also the requirement

for a special purpose CMOS process and extra control circuitry are other drawbacks of

this approach.
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Memristor

The memristor as the fourth circuit element (Chua 2011) possesses invaluable charac-

teristics including non-volatility, low power, and high density (Strukov et al. 2008, For-

tuna et al. 2009, Eshraghian 2010, Eshraghian et al. 2012) which are the features have

always being sought for implementing large scale neuromorphic systems. Therefore,

memristors may be a possible solution for solving the problem of synaptic weight stor-

age (Jo et al. 2010, Zamarreño-Ramos et al. 2011, Pershin and Di Ventra 2012, Wang et al.

2014b, Sheri et al. 2014). It can also be integrated with CMOS (Eshraghian et al. 2011)

in order to form a non-volatile synapse circuit (Jo et al. 2010, Indiveri et al. 2013). These

hybrid CMOS/memristor synapse circuits then can be utilised to implement both com-

putational and detailed biophysical synaptic plasticity learning rules that are quite use-

ful for neural computation (Afifi et al. 2009, Ebong and Mazumder 2012, Azghadi et al.

2013d). Although the memristor has significant strengths, its weaknesses such as need

for read operation, the accuracy of device programming, the device yield, and its vari-

ation and non-linearity should be considered as well.

5.5 Discussion

In this chapter, after a brief review of some basic circuit building blocks useful for

synaptic plasticity models, the design and implementation of those models in VLSI

were discussed under various design strategies. Then, the main challenges neuro-

morphic engineers encounter when designing neuromorphic systems were presented.

Furthermore, several methods to address those challenges were discussed. In this Sec-

tion, first the goals for VLSI implementation of various synaptic plasticity rules are dis-

cussed, and then the performance of the reviewed VLSI designs in reaching these goals

as well as an efficient implementation are reviewed. Understanding these goals and

challenges, as well as the effective and useful strategies for designing various synaptic

plasticity rules is essential while new designs for other synaptic plasticity models are

proposed and discussed in the remainder of this thesis.

Shouval has argued in a recent article What is the appropriate description level for synaptic

plasticity? (Shouval 2011). He mentioned that the suitable and required level of descrip-

tion when considering synaptic plasticity is not yet known, but it essentially depends

on what we attempt to reach. He stated that in some sense a simple plasticity rule such
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as TSTDP theory of synaptic plasticity might provide a sufficient level of plasticity de-

scription, if only reproducing a set of experiments, including higher order phenomena,

is needed. However, he also indicated that further research is needed to understand

what is the required level of synaptic plasticity description and how detailed the bio-

physical synaptic plasticity models ought to be for various applications.

The same argument holds for the application domain of synaptic plasticity rules, spe-

cially those that are implemented in silicon. Before designing any synaptic plasticity

rule in VLSI, one should first consider, what are the goals, application area, and needs

for learning. Then, they should find the required level of synaptic plasticity descrip-

tion, ideal for their applications and proportionate to their other design requirements,

such as area and power consumption. At this step the designers must set a trade-off

between various design aspects, such as the required complexity of the network and

synaptic plasticity mechanism, the needed level of weight storage precision, and the

limitations in power consumption and silicon area. It is at this stage that the designer

selects an appropriate synaptic plasticity rule from the continuum of rules, depending

on the design specification and required synaptic details. Some therefore might choose

simple phenomenological rules such as STDP (Azghadi et al. 2013a), while other opt

for more detailed biophysical rules (Rachmuth et al. 2011).

Many of the mentioned designs in Section 5.3, have the simple research goal to imple-

ment, verify and understand desired synaptic plasticity rules such as pair-based STDP

(Indiveri et al. 2006), triplet-based STDP (Azghadi et al. 2013a), BCM (Azghadi et al.

2012a, Azghadi et al. 2013a), BCM-like LCP (Mayr et al. 2010), and biophysical ion

channel-based plasticity models (Rachmuth et al. 2011, Meng et al. 2011). In order to un-

derstand and verify a synaptic plasticity rule, reproducing biological experiments and

replicating the experimental data using various models (VLSI circuits) is quite help-

ful. For instance, many of the VLSI implementation of STDP rules (Bofill-I-Petit and

Murray 2004, Indiveri et al. 2006, Schemmel et al. 2006, Tanaka et al. 2009, Koickal et al.

2007, Bamford et al. 2012b, Azghadi et al. 2013a) have shown to be able to reproduce

the STDP learning window, which represents both potentiation and depression as they

occur in biology (Bi and Poo 1998, Markram et al. 1997). However, the way these cir-

cuits reproduce the window and other experimental results and the performance of

the circuits are different.

If a plasticity circuit can show a close match to experimental data, therefore it can

be of great help for neuroscience studies. Typically, the VLSI designs for conventional
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PSTDP rule are able to reproduce the STDP learning window (Bofill-I-Petit and Murray

2004, Indiveri et al. 2006, Schemmel et al. 2006, Tanaka et al. 2009, Koickal et al. 2007,

Bamford et al. 2012b). They are also able to show BCM-like characteristics (Azghadi et al.

2012a), similar to the BCM behaviours that were reproduced using computational

STDP models (Pfister and Gerstner 2006, Izhikevich 2003). However, the PSTDP rule

circuits are not able to reproduce more complicated experimental data. Therefore,

modified and extended version of these circuits, which are based on updated STDP

computational models such as Triplet-based STDP (TSTDP) learning model (Pfister

and Gerstner 2006), will be needed.

Besides these synaptic plasticity models and VLSI designs, sometimes it is desirable to

replicate the dynamics of synapses in detail, and study the effect of neuromodulators

and intracellular signalling. In these cases, all the ion channels and synapse dynamics

should be taken into account in the targeted VLSI implementation. These detailed

implementations are potentially useful also for various neuroprosthesis, neural-based

control, and machine learning tasks (Rachmuth et al. 2011).

Apart from the level of complexity and the required level of synaptic details, there are

some other factors that affect the complexity, hence the area and power consumption of

neuromorphic synaptic plasticity rules in VLSI. One of these factors is the weight stor-

age techniques (see Section 5.4.8) and the required level of precision when storing the

weight. This approach is also related to the targeted application and the goal of the im-

plemented VLSI synaptic plasticity rule (Pfeil et al. 2012). In general, designers should

always consider the trade-off between the level of synaptic weight precision they re-

quire for their target applications and the resources they can afford. For instance, neu-

romorphic engineers have shown that for synchrony detection application in spiking

neural networks, a 4-bit synaptic weight precision is viable (Pfeil et al. 2012). On the

other hand, a number of other studies show that if a suitable learning mechanism is

used, then even binary weight precision controlled by the bistability mechanism is suf-

ficient for the task of classifying complex rate-based patterns (Mitra et al. 2009).

Table 5.1 summarises the key properties of some neuromorphic systems for learning

and synaptic plasticity applications. Note that the estimated area and power con-

sumption data in this Table only reflect the reported data in the related papers. These

numbers are dependent on many parameters including the synaptic plasticity rule im-

plemented, the synaptic plasticity parameters, the weight storage techniques, and the

network stimulation patterns and protocols. Since in some papers, the exact power
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consumption and area requirement of the synapse is not available, the total power and

area of the chip are divided by the number of synapses and neurons on the chip, to

calculate a rough value of the size and power requirement of the synapse. Also, note

that the calculated estimated area for each synapse, encompasses both the synapse cir-

cuit as well as its synaptic plasticity circuit, which may be reported or implemented

separately in the related papers.

The feedforward network with STDP learning presented in Bofill-I-Petit and Murray

(2004) successfully implements the targeted synchrony detection, but it consumes sig-

nificant power and occupies a large area. The high power consumption is due to power

hungry biasing current distribution network designed to minimise mismatch between

synapses. In addition, the area of the designed STDP circuit is significantly large due

to huge capacitors of the order of several pFs.

The implementation of an array of neurons with bistable STDP synapses (Indiveri et al.

2006), is the next design that has better power and size performance compared to the

first mentioned design (Bofill-I-Petit and Murray 2004). Furthermore, this neuromor-

phic system utilises the AER communication protocol and therefore is reconfigurable,

in contrary to the hard-wired network structure presented in Bofill-I-Petit and Murray

(2004). The next two neural networks with STDP synapses, mentioned in Table 5.1, are

also configurable. This feature helps to customise the neural network topology where

there is a need for various studies and applications, such as the designs Indiveri et al.

(2006) and Schemmel et al. (2006), which have been used to show STDP learning win-

dow, LTP and LTD characteristics. In terms of silicon real estate required for the STDP

circuit, the design in Schemmel et al. (2006) has a compact structure that occupies an

area of 50 µm2 for the STDP circuit and 100 µm2 for the synapse including STDP, DAC

and memory cell for storing the synaptic weight. Power consumption information for

this FACETS accelerated-time neuromorphic architecture is not listed. The neuromor-

phic learning chip presented in Arthur and Boahen (2006) also uses STDP and on-chip

SRAM cells to store a binary state of the synaptic weight updated by the STDP circuit.

Considering the number of neurons and synapses in this architecture and the overall

area of the chip presented in Arthur and Boahen (2006), which is 10 mm2, this design

that has been used for learning patterns, also has a compact synapse size, on par with

the FACETS project chip (Schemmel et al. 2006).

The next design reviewed in Table 5.1 is an adaptive olfactory neural network with on-

chip STDP learning (Koickal et al. 2007). There is no power consumption information
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Table 5.1. Synaptic plasticity circuit comparison.

Learning network (Neuron, Synapse) Estimated power (Supply) Estimated area (Design Tech.) Weight storage (Precision) Plasticity Application

Feedforward (Bofill-I-Petit and Murray

2004) (5, 40)

0.34 mW (5 V) 19902 µm2 (0.6 µm) Capacitor (Analog)† STDP Synchrony detection

(Re)configurable (Indiveri et al. 2006)

(32, 256)

Not available 4495 µm2 (0.8 µm) Capacitor (Bistable)‡ STDP General purpose

(Re)configurable (Schemmel et al.

2006)** (384, 98304)

Not available 100 µm2 (0.18 µm) SRAM (4 bits) STDP The FACETS project

(Re)configurable (Arthur and Boahen

2006) (1024, 21504)

Not available 440 µm2 (0.25 µm) SRAM (1 bit) STDP Learning patterns

Adaptive olfactory (Koickal et al. 2007)

(9, 81)

Not available 72000 µm2 (0.6 µm) Capacitor (Analog)† STDP Odor classification

Hopfield Feedback (Tanaka et al. 2009)

(5, 10)

250 µW (3.3 V) 5000 µm2 (0.25 µm) Capacitor (Analog)† STDP Associative memory

Single Neuron-Synapse (Cruz-

Albrecht et al. 2012) (1, 1)

(@100 Hz) 37 pW (0.6 V) 4823 µm2 (90 nm) Capacitor (Analog)† STDP Test design

Recurrent/Hopfield (Seo et al. 2011)

(256, 64k)

(UVT*) 8 nW (0.53 V) (UVT*) 13 µm2 (45 nm) SRAM (1 bit) STDP Various cognitive tasks

Weight-dependent STDP

(Ramakrishnan et al. 2011) (-, 20k)

Not available 100 µm2 (0.35 µm) Floating gate (Analog) Weight-dependent

STDP

STDP test design

Weight-dependent STDP (Bamford et al.

2012b) (32, 2k)

(@1 KHz) 60 pW (3.3 V) 400 µm2 (0.35 µm) Capacitor (Analog)† Weight-dependent

STDP

STDP test design

(Re)configurable (Mitra et al. 2009) (16,

2048)

Not available 3000 µm2 (0.35 µm) Capacitor (Bistable)‡ SDSP (Brader et al. 2007) Pattern classification

(Re)configurable (Mayr et al. 2010,

Mayr et al. 2013)** (16, 512)

(@1 MHz) 11 µW (3.3 V) 700 µm2 (0.18 µm) Memory (4 bits) LCP (Mayr and

Partzsch 2010)

Beyond STDP experi-

ments

Single Synapse (Meng et al. 2011) (-, 1) 500 nW (1.2 V) 4 mm2 (0.15 µm) Not available Iono-Neuromorphic

(Meng et al. 2011)

STDP and BCM experi-

ments

Single Synapse (Rachmuth et al. 2011) (2,

2)

50 nW (5 V) 8 mm2 (1.5 µm) Digital bistable Iono-Neuromorphic

(Rachmuth et al. 2011)

STDP and BCM experi-

ments

* UVT = Ultra high Voltage Threshold

** The chip operates in an accelerated time of 104 compared to the real biological time.

† The synaptic weight value will decay if not refreshed. Nonvolatile weight storage techniques should be considered to retain the updated weights for later use (see Section 5.4.8).

‡ See Section 5.4.8.
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available in the paper. In addition, the exact area occupied by neurons and synapses

on the chip has not been reported. However, considering the die area of the fabricated

olfactory chip, the OTA-based synapse circuit with STDP occupies an area larger than

the area required for the design mentioned in Schemmel et al. (2006).

Tanaka et al. developed an accelerated-time neuromorphic chip with STDP learning in

a Hopfield network for associative memory. Although they used a similar VLSI tech-

nology to the design presented in Schemmel et al. (2006), their implemented synapse

takes up significantly larger silicon area. The power consumption of the synapse pre-

sented in this work is also 250 µW, which is high for a synapse circuit compared to

other designs presented in Table 5.1. In another attempt for implementing STDP, Cruz-

Albrecht et al. designed a test low-energy STDP circuit and have verified their de-

sign in terms of producing STDP learning window and its power consumption (Cruz-

Albrecht et al. 2012). The STDP synapse presented in this work consumes only 37 pW

of power at 100 Hz. On the other hand, this design that utilises different OTAs for

realising a STDP learning window, considering its 90 nm design technology, occupies

a large silicon area of 64,823 µm2.

Comparing to all previously mentioned STDP-based learning circuits and systems, the

neuromorphic learning network presented in Seo et al. (2011), with 256 neurons and

64K synapses, that only consumes 8 nW of power and occupies roughly 13 µm2 per

synapse in the UVT chip, is the most efficient neuromorphic design. It is shown in

Seo et al. (2011) that this design can be configured for various cognitive tasks such as

pattern recognition and classification as well as associative memory.

Further to these designs, Bamford et al. (2012b) developed a weight-dependent STDP

(W-STDP) circuit, which is different from designs mentioned so far that implemented

conventional form of STDP. They showed that the W-STDP design can be implemented

using the physical constrains of CMOS transistors and therefore their design has an

acceptable area and a low power consumption compared to previous STDP designs.

Another W-STDP design is the single transistor synapse device proposed in Ramakr-

ishnan et al. (2011). This device utilises a floating gate transistor to implement W-STDP,

while the synaptic weight changes are stored in a non-volatile manner in the floating

gate. It is shown that this device is able to demonstrate LTP, LTD and STDP behaviors,

and is highly scalable.

All neuromorphic systems mentioned so far have used STDP as the learning mecha-

nism in their networks. However, as already mentioned, other synaptic plasticity rules
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have also been implemented and tested in neuromorphic systems for applications and

synaptic plasticity experiment replications. One of the first designs that used a differ-

ent rule than STDP for a classification task, was the design presented in Mitra et al.

(2009) that employs SDSP learning algorithm for synaptic plasticity. The area of this

design is comparable to the area required for the STDP learning rule, implemented

in previous designs. The authors have also shown the significant performance of the

implemented neural network with SDSP learning in classifying complex rate-based

patterns (Mitra et al. 2009).

Another neuromorphic system that implements a different synaptic plasticity rule rather

than STDP is the design presented in Mayr et al. (2010) and Mayr et al. (2013). This de-

sign implements a BCM-like voltage-dependent rule called LCP (See 2.6.1) to replicate

synaptic plasticity experiments beyond STDP such as triplet (Froemke and Dan 2002)

and frequency-dependent STDP (Sjöström et al. 2001). Considering the higher ability

in replicating synaptic plasticity experiments compared to STDP, this circuit has higher

complexity. However, the presented design in Mayr et al. (2013) is in par with most of

the STDP designs presented so far in both power and area requirements.

There are also a few biophysical VLSI neuromorphic designs available in the litera-

ture that take into account details of synaptic plasticity phenomena and implement

its underlying mechanism with a high degree of similarity to biological synapses, in

silicon (Meng et al. 2011, Rachmuth et al. 2011). This similarity results in the specific

ability of these synapses to account for both SRDP and STDP experiments and repli-

cate intracellular dynamics of the synapse, where simple previous synapses with STDP

fail. It also leads to large silicon area requirement for these circuits, while their reported

power consumption is reasonable comparing to most of the other VLSI synaptic plas-

ticity designs presented in Table 5.1.

In addition to the custom made hardware systems that opt to implement a specific type

of learning (synaptic plasticity) rule and use it in a specifically designed and structured

spiking neural network for an application or neuromorphic research, general neural ar-

chitectures, such as the Spinnaker (Furber et al. 2013) can be instructed, using software,

to implement any desired spiking neural network (whether simple or complex) with

any learning rule of choice. In Spinnaker system, the targeted neural network is nu-

merically simulated in multiple core processors and the synaptic weights are stored in

shared Dynamic Random Access Memory (DRAM). This neural architecture utilises
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asynchronous design strategy for global routing in its design, so that the power con-

sumption of the design can potentially be improved. It also uses low-power micro-

processors and DRAMs to reduce the power consumption of the system. However,

implementing a specific synaptic plasticity rule in this general neural architecture con-

sumes more power than a typical custom VLSI design of that rule, due to its software

based approach.

5.6 Applications of Neuromorphic Circuits with Synaptic

Plasticity

In order to implement a system with the capabilities close to the brain, many neuro-

morphic engineers have been following a bottom-up design strategy. Therefore, they

start with building basic blocks of the brain in silicon. One of the main building blocks

is the synapse that itself includes the synaptic weight plasticity mechanism. This is

the main block that brings about learning, memory and computational properties of

the neural system (Gerstner and Kistler 2002). In this section, we briefly discuss and

review how VLSI implementation of various synaptic plasticity rules can be useful in

learning and real-world applications.

Since working with live creatures and measuring experimental data from biological

sources is time-consuming and challenging, maybe one of the first applications for

a neuromorphic system that contains both neurons and synapses with any desired

synaptic plasticity rule, is its use for experimental neuroscientists. These scientists can

use a neuromorphic system, which acts according to a desired synaptic plasticity rule

and neural combination, and therefore experiment with various features and charac-

teristics in that system. For example, the biophysically inspired iono-neuromorphic

circuits proposed in Meng et al. (2011) and Rachmuth et al. (2011), provide useful in-

sight into how the calcium level alters in a real synapse.

Furthermore, since it is widely believed that synaptic plasticity underlies learning and

computational power in the brain (Gerstner and Kistler 2002, Shouval 2011), various

mechanisms that have direct or hypothetical relation to the synaptic plasticity experi-

ments, are being used as the learning part of a spiking neural network, to perform vari-

ous cognitive and machine learning tasks (Mitra et al. 2009, Oliveri et al. 2007, Masque-

lier and Thorpe 2010, Ebong and Mazumder 2012, Neftci et al. 2013, Schmuker et al.

2014, Khosla et al. 2014).

Page 124



Chapter 5 Spike-based Synaptic Plasticity Rules in Silicon

It is known that, the spiking behaviour and the activity of the pre- and post-synaptic

neurons cause the synapses in the network to adapt themselves to these activities

(i.e. learn). These activities that are coded in the form of spikes, represent the input

to the network. It is therefore, absolutely essential to first have the correct spike coding

structure to effectively represent data to the neural network, and then it is critical to

adapt the synapses in a proper way, which is efficient for learning the current type of

inputs to the network. This means that the learning mechanism, i.e. the synaptic plas-

ticity rule, can heavily depend on the structure of input to the network, which in turn

depends on the application. Sometimes neuroscientists modify a rule or even combine

a number of rules to use them for their intended applications. It means that after a

careful study of the nature of the input and the required process on that to reach the

desired output, they decide on the structure of the learning method.

The study presented in D’Souza et al. (2010) shows an example of a learning method,

that couples STDP and Spike Frequency Adaptation (SFA) technique for updating

synaptic weights, to enable learning in a perceptron like structure. This work proposes

an effective platform for sensory guided processing, where two sources of auditory

and visual sensory inputs, result in changes in the perceptron neuron spiking activity.

It is shown that visual inputs can act as teacher in their used perceptron learning mech-

anism, while auditory inputs are used for updating the synaptic weights and learning

the input auditory patterns (D’Souza et al. 2010). Another example is the neuromorphic

architecture developed for object recognition and motion anticipation using a modified

version of STDP (Nere et al. 2012).

In another study, TSTDP is used to generate receptive field development, which is a

well-known feature of the rate-based BCM rule (Gjorgjieva et al. 2011). Gjorgjieva et

al. showed that TSTDP can learn up to third-order spatio-temporal correlations that is

of importance in neural coding applications (Pillow et al. 2008) where the PSTDP rule

lacks this capability, even though it is also able to account for the BCM rate-based rule

under specific assumptions (Izhikevich 2003, Azghadi et al. 2012a). This is useful for

developing direction and speed selectivity in the visual cortex (Gjorgjieva et al. 2011).

Therefore, this rule appears to be useful for pattern classification applications.

The previous three examples show that depending on the needs for the application,

and with mathematical and computational analysis, modification to synaptic plasticity

rules can be useful for performing tasks, which cannot be carried out with the simple

form of the plasticity rules such as STDP, SFA, and BCM. Therefore, the nature and
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needs of an application and its inputs has a direct impact on the synaptic plasticity

mechanism and hence on its VLSI implementation.

Perhaps the conventional form of STDP, which is according to the formulation shown

in Song et al. (2000) and is in agreement with PSTDP experiments in Bi and Poo (1998),

is the most examined type of synaptic plasticity rule that has been exploited for learn-

ing, in various applications ranging from pattern recognition (Masquelier et al. 2008),

to dataset classification (Oliveri et al. 2007), and to topographic mapping formation

(Bamford et al. 2010). The pair-based STDP has been also utilised for many learning

tasks including receptive field development through cortical reorganisation (Young et al.

2007), motion anticipation (Nere et al. 2012), unsupervised learning of visual features

(Masquelier and Thorpe 2007), learning cross-modal spatial transformations (Davison

and Frégnac 2006), object recognition (Masquelier and Thorpe 2010), odour data clas-

sification (Hsieh and Tang 2012), associative memory type of learning using STDP

(Tanaka et al. 2009), temporal synchrony detection (Bofill-I-Petit and Murray 2004),

robot navigation control (Arena et al. 2007, Arena et al. 2009) and associative memory, as

well as variability and noise compensation tasks (Arthur and Boahen 2006). Although

some of these learning applications such as the last five mentioned works, have been

successfully implemented as part of a neuromorphic system, many of the other synap-

tic plasticity rules that have been modelled based on biological experiments performed

in vivo and in vitro, are yet to be explored by neuromorphic engineers for other appli-

cations. Examples of these plasticity rules that have not been explored for any applica-

tion are the hybrid rules proposed in Mayr and Partzsch (2010), Clopath and Gerstner

(2010), and Graupner and Brunel (2012) as well as biophysical-based rule proposed

in Rachmuth et al. (2011), Shouval et al. (2002) and Meng et al. (2011). In addition to the

spike timing-based rules, other spike-based rules such as the SDSP (Brader et al. 2007)

rule is shown to be useful in other applications such as supervised learning for real-

time pattern classification (Mitra et al. 2009).

In general, when considering implementing learning (synaptic plasticity) circuits for

specific applications such as robotics, neuroprostheses, brain machine interfaces, neu-

ral computation, and control, a number of design aspects should be taken into account

including (i) the nature of inputs to the system that should be learned; (ii) the level of

complexity the implemented system and application can afford; (iii) the use of most

appropriate synaptic plasticity rule, in terms of VLSI implementation complexity and

performance in processing input neuronal data, which can account for the required
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level of performance for the targeted application; (iv) the possible need for modifying

the structure of available synaptic plasticity rules for better performance, lower im-

plementation complexity, or input data processing. As an example, here we review a

neuromorphic learning network and answer the above mentioned questions about it.

As already discussed, one of the most effective implementations of a VLSI SNN capable

of learning to preform a real-world task is the design presented in Seo et al. (2011). This

neuromorphic system is composed of 256 neurons and 256×256 synapses, in a crossbar

array structure to be used for various applications including an associative memory

task. The above mentioned questions are answered regarding this system.

(i) The input to this system can be set as 256 spike trains, each one corresponding to

a neuron in the network. These 256 spike trains encode the information embedded

in the input pattern and present it to the network of neurons. The network changes

its weights according to a PSTDP algorithm, in the training phase, when patterns are

presented to the network for learning. In the test phase, the neurons are presented with

a partial version of the original pattern, and the network through its weights reflects

the learned complete pattern, as output spikes.

(ii) The complexity of the targeted task and the number of patterns that can be learned

using this neuromorphic system is directly related to the complexity of the network, i.e.

its reconfigurability and neuron and synapses count. Since in the present network only

256 neurons with binary synapses are used, as the results in Seo et al. (2011) show, the

network can only learn 0.047 patterns per neuron in an associative memory task. It is

also shown that, if synapses with 4-bit precision are used instead of binary synapses,

the learning capacity of the hardware network increases up to 0.109 patterns per neu-

ron.

(iii) The spiking network implemented in this work has a highly reconfigurable struc-

ture with on-chip probabilistic PSTDP learning, thanks to its crossbar architecture and

transposable synapse SRAM cells, which make PSTDP possible. Therefore, it can re-

alise various network topologies and perform different cognitive tasks. Obviously, for

implementing more complex tasks and learning a high number of patterns, a large-

scale network with high-precision synapses is needed. Since this design is a basic

building block for a scalable neuromorphic system, this extension can be carried out

easily. The performance of the associative memory task presented for this network—

see (Seo et al. 2011)—shows that for this application, simple binary PSTDP synapses

integrated with digital integrate and fire neurons are enough. However, one can use
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other synaptic plasticity rules with higher complexity, such as those reviewed in this

thesis including TSTDP, SDSP, LCP and even biophysically-based rules, to reach better

performance or perform more complex tasks. However, the higher cost of these more

complex learning circuits should be considered.

(iv) In addition to the main chip that contains 64K probabilistic binary PSTDP synapses

and 256 neurons, three different variants of this chip were investigated to follow differ-

ent targets such as area, power consumption, and learning capability. It is shown that

the system with higher learning capability consumes the highest amount of power and

occupies the largest silicon real estate among all designs.

In addition to this digital event-driven synchronous neuromorphic learning network

that can be scaled up for various real-time learning tasks, in another work IBM scien-

tists have proposed a similar digital event-driven neuromorphic synaptic core, but this

time utilised asynchronous operation to decrease the active power of the system, and

also implemented learning off-chip. This system has been successfully used in various

applications including pattern recognition and auto-associative memory. It also shows

a one-to-one correspondence with a neural programming model that makes it possible

to realise any type of learning task that can be modelled in software (Arthur et al. 2012).

The questions mentioned above can be answered for this other neuromorphic learning

circuit along the same line as the first discussed design (Seo et al. 2011).

It is worth mentioning that the IBM neuromorphic learning network, presented in

Seo et al. (2011), utilised digital silicon neurons and binary silicon synapses. There-

fore, this neuromorphic learning system is not technically subject to device mismatch.

However, as already mentioned in Section 5.4.2, when designing a network of analog

learning circuits, the device mismatch can lead to inhomogeneity in synaptic plasticity

circuits across the network, which may result in an imbalance in potentiation and de-

pression rates, which can affect the learning performance of the system in any targeted

application. Hence, a careful assessment of the effect of mismatch while designing

neuromorphic learning systems is essential (Poon and Zhou 2011).

5.7 Chapter Summary

This chapter reviewed VLSI implementations of various synaptic plasticity rules rang-

ing from simple timing-based rules such as pair-based STDP rules, to hybrid rules that

consider both timing and rate of spikes, to complicated detailed biophysical rules. In
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addition, various challenges that neuromorphic engineers encounter when designing

neuromorphic systems and synaptic plasticity rules were discussed. Furthermore, the

use of these various approaches and the performance of various synaptic plasticity cir-

cuits that are implemented as part of different neuromorphic systems were reviewed

and compared. Besides, applications of neuromorphic systems with different plasticity

rules were highlighted and discussed.

The presented review and discussion in this chapter provide us with a deep insight to

the field of designing VLSI circuits for synaptic plasticity rules as part of a neuromor-

phic system that tends to be used in an engineering application. This insight is quite

helpful while designing new circuits for unexplored synaptic plasticity rules such as

the TSTDP rule, which is the focus of this thesis. The following chapters present new

circuit designs for the TSTDP rule, and show how these designs are able to reproduce

the outcomes of a variety of synaptic plasticity experiments ranging from timing-based

experiments to rate-based experiments, while they follow various design strategies

and targets.
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Chapter 6

First VLSI Designs for
Triplet-based Spike Timing

Dependent Plasticity

A
Sdiscussed in Chapter 2, classical model of STDP is incapable

of reproducing synaptic weight changes similar to those seen

in specific biological experiments that investigate the effects

of either higher order spike trains, or the simultaneous effects of the rate

and timing of spike pairs on synaptic plasticity. Significantly, a previously

described TSTDP rule succeeds in reproducing all of these synaptic plas-

ticity experiments. In this chapter, first, synaptic weight changes using a

number of widely used PSTDP circuits are investigated. The investigations

show that the class of PSTDP circuits fails to mimic the outcomes of the

mentioned complex biological experiments. Then, two new TSTDP VLSI

circuits, which are able to reproduce the outcomes of many complex ex-

periments, are presented. To the best of our knowledge, the presented cir-

cuits in this chapter are the first VLSI implementations of the TSTDP rule.

The new STDP VLSI circuits significantly improve upon previous circuits.

These new circuit capabilities in closely mimicking the outcomes of various

biological experiments, may play a significant role in future neuromorphic

VLSI systems with increased learning ability.
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6.1 Introduction

Spike Timing-Dependent Plasticity (STDP) is an unsupervised synaptic plasticity rule

that induces changes in individual synaptic weights, based on the timing difference

between pre- and post-synaptic spikes (Song et al. 2000, Bi and Poo 1998). The classical

STDP model employs a pair of spikes (pre-post or post-pre) as the trigger for changes

in synaptic plasticity (Song et al. 2000, Bi and Poo 1998). However, if the repetition

frequency of spike pairs is increased, this model fails to correctly reproduce synap-

tic weight changes as observed in physiological experiments (Sjöström et al. 2001).

Furthermore, it is not able to account for experiments using triplet or quadruplet of

spikes (Wang et al. 2005, Pfister and Gerstner 2006). An explanation for these shortcom-

ings is that traditional pair-based STDP does not account for known nonlinear interac-

tions between successive spikes when more complex spike patterns are used (Froemke

and Dan 2002). In order to resolve the short-comings of the classical pair-based model,

a simple yet elegant STDP model was proposed by Pfister and Gerstner (2006), where

synaptic weight changes based on triplets of spikes was developed.

As already mentioned in Chapter 5, research focusing on translating computational

synaptic plasticity models into neuromorphic devices including VLSI implementations

of both spiking neurons and synaptic plasticity, in particular STDP, has increased in

popularity over the last decade. When considering a VLSI implementation of STDP,

several issues need to be addressed such as power consumption, circuit area, noise,

output dynamic range, and the accuracy of the design in implementing the targeted

synaptic plasticity rule. Currently there are several VLSI implementations of pair-

based STDP rule such as the designs presented in Bofill-I-Petit and Murray (2004),

Cameron et al. (2005), Indiveri et al. (2006), Schemmel et al. (2006), Tanaka et al. (2009),

Ramakrishnan et al. (2011), and Bamford et al. (2012b). However, to the best of our

knowledge there is no VLSI implementation available for the TSTDP rule other than

those presented in this thesis.

This chapter proposes two new VLSI implementations for TSTDP. These implementa-

tions are based on two previous PSTDP circuits already presented in Bofill-I-Petit and

Murray (2004) and Indiveri et al. (2006). It is shown that both previous PSTDP designs

lack the ability to account for the experiments presented in previous experimental pa-

pers (Sjöström et al. 2001, Froemke and Dan 2002, Wang et al. 2005). Furthermore, It

is demonstrated that both proposed TSTDP circuits succeed in closely reproducing all

the experimentally observed biological effects.
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The remainder of this chapter is organised as follows. In Section 6.2, two sample

PSTDP circuits are presented and described. Section 6.3 introduces the new TSTDP

circuits and describes how they are related to the TSTDP learning rule. Section 6.4 pro-

vides information about experimental setup including, experimental protocols, data

sets and error functions. Experimental results are provided in Section 6.5, where it is

shown that the TSTDP circuit successfully mimic many experiments, while the class

of PSTDP circuits, including the two example circuits presented here fails. Section 6.6

compares the two proposed designs and also compares them to previous works that

implemented other synaptic plasticity rules with similar or less ability. The chapter

finishes by conclusions in Section 6.7.

The results shown in this chapter are presented in The 21st Japanese Neural Network Soci-

ety Annual Conference (Azghadi et al. 2011d), as well as in The 7th IEEE International Con-

ference on Intelligent Sensors, Sensor Networks and Information Processing (Azghadi et al.

2011c), and The 2012 IEEE International Joint Conference on Neural Networks (Azghadi et al.

2012b, Azghadi et al. 2012a).

6.2 VLSI Implementation of Pair-based STDP

Before discussing the structure of the circuits implementing the PSTDP rule, looking at

the PSTDP model that was already described in Section 2.6.1 is useful. In the following,

first the PSTDP model is presented and then the circuit models are shown. Note that

different parts of both of these circuits are mapped to different terms in the PSTDP

model to facilitate understanding the circuits.

6.2.1 Pair-based STDP Model

In the PSTDP plasticity model, potentiation occurs when a pre-synaptic spike precedes

a post-synaptic spike; otherwise depression occurs, where weight changes can be gov-

erned by a temporal learning window. The classical STDP temporal learning window

can be expressed as (Song et al. 2000)

∆w =







∆w+ = A+e
(−∆t

τ+
)

if ∆t > 0

∆w− = −A−e
( ∆t

τ−
)

if ∆t ≤ 0,
(6.1)
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where ∆t = tpost − tpre is the time difference between a single pair of post- and pre-

synaptic spikes, τ+ and τ− are time constants of the learning window, and finally A+

and A− represent the maximal weight changes for potentiation and depression, re-

spectively.

A VLSI implementation of the PSTDP rule must account for various parts of the rule

shown in Eq. 6.1. As already discussed in Section 5.3.2, there are various VLSI imple-

mentations of PSTDP rule available in the literature. In this chapter, two simple PSTDP

circuits as representatives of the class of PSTDP circuit models are selected and tested

for generating various synaptic plasticity experiments to verify their abilities. The two

chosen circuits are the PSTDP circuit proposed by Indiveri et al. (2006), and the current

mode circuit presented by Bofill-I-Petit and Murray (2004). These circuits are chosen

due to their different voltage- and current-mode structures, so that two different tech-

niques are verified in our investigations. In addition, both of these designs are simple

and have been proven as silicon devices, which are used for some learning applica-

tions. Besides, they use two different types of leaky integrators (see Section 5.2.3)

and produce different STDP learning windows (Bofill-I-Petit and Murray 2004, Indi-

veri et al. 2006). In the following section, it is shown how these circuits implement an

approximation of the PSTDP model using CMOS transistors.

6.2.2 Indiveri’s PSTDP Circuit Model

The implementation by Indiveri et al. (2006) was adopted, due to its low power and

small area. Fig. 6.1(a) depicts the Indiveri’s pair-based STDP circuit schematic and

Fig. 6.1(b) demonstrates its resulting temporal learning window for various τ+ and

τ− (Vtp, Vtd). The timing of pre- and post-synaptic spikes are used to induce weight

changes across Cw. This circuit results in a learning window which captures the essen-

tial features of STDP, where there are two distinct regions, one for potentiation where

∆t ≥ 0 and depression for ∆t < 0.

When a pre-synaptic pulse, Vpre, or a post-synaptic pulse (Vpost) occurs, Vpot(Vdep) will

be set to zero (Vdd). Note that Vpot (Vdep) then changes linearly over time to reach Vdd

(zero), and represents the required time constants τ+ (τ−). These time constants can be

set by changing the gate voltage of the corresponding transistor, i.e. Vtp (Vtd). Fig. 6.1(b)

demonstrates the variation of the learning window for different values of Vtp (Vtd), i.e.

τ+ (τ−). So, if a Vpre (Vpost) pulse occurs during time determined by its corresponding
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time constant, τ− (τ+), the output capacitor will be discharged (charged) by a current

that is proportional to the value of Vdep (Vpot) and VA− (VA+).

Figure 6.1. Indiveri’s PSTDP circuit model. (a) Schematic circuit diagram of Indiveri et al.

(2006). (b) The learning window of the circuit based on our simulations in an accelerated

time scale.

6.2.3 Bofill and Murray’s PSTDP Circuit Model

The PSTDP circuit presented by Indiveri et al. (2006) cannot reproduce the required

exponential behaviour seen in Eq. 6.1, while the circuit proposed by Bofill-I-Petit and

Murray (2004) shown in Fig. 6.2 can.

The PSTDP circuit presented in Bofill-I-Petit and Murray (2004) implements a weight-

dependent STDP rule, in which the current synaptic weight has an impact on the

amount of potentiation/depression. In order to make this PSTDP circuit compatible
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Figure 6.2. Bofill and Murray’s PSTDP circuit model. This circuit that is presented in Bofill-I-

Petit and Murray (2004) has a weight-dependency part, shown in the dashed-box, which

depending on the current weight controls the amount of weight change.

with the normal PSTDP rule, i.e. weight independent, which is also the case for the

TSTDP rule, some modifications are needed. These modifications lead to the circuit

shown in Fig. 6.3(a). The modifications are as follows: (i) Since the classical PSTDP

model (Eq. 6.1) is weight independent, in the modified circuit, the weight dependency

part (shown in the dashed box in Fig. 6.2) is omitted. (ii) Potentiation and depression

in the modified circuit are represented through an increase or a decrease in the amount

of charges stored on the weight capacitor, respectively, which is in contrast to the cir-

cuit presented in Bofill-I-Petit and Murray (2004). (iii) Also, in order to simplify the

circuit, preLong and postLong pulses which should be generated by an additional cir-

cuitry, were replaced with Vpre and Vpost. These signals represent the input pre- and

post-synaptic pulses in the modified circuit. (iv) Furthermore, using bias voltages for

time constants control results in significant variation in time constants under various

3σ process corners. So, in order to make the circuit more robust against this condition,

the bias voltages were represented as the gate-to-source voltage of a number of diode

connected transistors that are biased by current sources (M3 and M14). Fig. 6.3(b)

demonstrates that using this approach results in a slight change in time constants at

all different process corners when compared with MATLAB simulations. Beside time

constants, the amplitude constants are also implemented as current sources (Ipot and

Idep) to be less prone to process variations compared to the original circuit shown in

Fig. 6.2, and can later be used to fine tune the time constants when needed. This ap-

proach suggests that the time constants, as well as the amplitude parameters are more

robust against device mismatch.
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Figure 6.3. Modified PSTDP circuit. (a) The Bofill and Murray’s circuit shown in Fig. 6.2 was

modified (see the text for more detail). (b) STDP learning window generated by Matlab

simulation and also using different transistor process corners for the modified PSTDP

circuit shown in part (a). Note that similar protocols and time constants to Bi and Poo

(1998) are employed.

6.3 VLSI Implementation of Triplet-based STDP

Before discussing the structure of the circuits that implement the TSTDP rule, looking

at the TSTDP model that was already described in Section 2.6.1 is useful. In the fol-

lowing, first the TSTDP model is presented and then the proposed circuit models are

shown.
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6.3.1 Triplet-based STDP

As already mentioned, previous studies illustrated that classical STDP model fails to

reproduce the experimental outcomes involving higher order spike patterns such as

triplets and quadruplets of spikes (Wang et al. 2005, Pfister and Gerstner 2006). Further-

more, it fails to account for the observed dependence of synaptic plasticity on the rep-

etition frequency of pairs of spikes (Sjöström et al. 2001). To resolve these issues, pair-

based STDP was extended to include spike triplets that resulted in a spike-triplet-based

STDP learning rule which could sufficiently reproduce previously reported physiolog-

ical experiments. Based on the triplet synaptic learning rule presented in Pfister and

Gerstner (2006), the triplet synaptic modification rule can be written as

∆w =







∆w+ = A+
2 e

(
−∆t1

τ+
)
+ A+

3 e
(
−∆t2

τy
)
e
(
−∆t1

τ+
)

∆w− = −A−
2 e

(
∆t1
τ−

)
− A−

3 e(
−∆t3

τx
)e

(
∆t1
τ−

)
,

(6.2)

where ∆w = ∆w+ if t = tpost and ∆w = ∆w− if t = tpre. Here, A+
2 , A−

2 , A+
3 and A−

3 are

constants, ∆t1 = tpost − tpre, ∆t2 = tpost(n)− tpost(n−1)− ǫ and ∆t3 = tpre(n)− tpre(n−1)−

ǫ, are time difference between combinations of pre- and post-synaptic spikes, τ−, τ+, τx

and τy are time constants, and finally ǫ is a small positive value which selects the con-

tribution to the weight change just before the final spike of the presented triplet (Pfister

and Gerstner 2006). Hence, triplet-based model induces weight change in proportion

to eight parameters (in comparison to four parameters for classical pair-based model);

four potentiation parameters (A+
2 , τ+, A+

3 , and τy) and four depression parameters

(A−
2 , τ−, A−

3 , and τx).

The TSTDP model is not just a simple change in the degree of freedom of the PSTDP

model, but it tries to overcome some deficiencies of the PSTDP model. In Pfister and

Gerstner (2006), it is addressed that the TSTDP model, removed two main problems

of the PSTDP formula. These problems and how the TSTDP solves them are as fol-

lows: (i) As PSTDP considers just pairs of spikes, for any value of A+
> 0, if a pre-

synaptic spike precedes a post-synaptic one, it brings about potentiation, while ac-

cording to Sjöström et al. (2001), at low repetition frequencies, there is no potentiation.

In the TSTDP model, this deficiency can be solved by setting A2
+ to a small value or in

the case of minimal TSTDP rule, to zero. So it makes the potentiation very small, which

can be neutralised by a bit of depression, or it can be zero. (ii) Considering biological

experiments in Sjöström et al. (2001), for ∆t > 0, potentiation will increase with the in-

crease in frequency. However, this behaviour cannot be generated by PSTDP, as when
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the frequency of pairs of spikes increases, it causes the pairs to interact with each other,

so it causes no significant potentiation. This problem can be solved again by correctly

tuning the TSTDP parameters. In this case, A3
+ should be strong enough to make the

potentiation win over depression and so to have depression in high frequencies (Pfister

and Gerstner 2006).

A VLSI implementation of the TSTDP rule must account for all the mentioned details as

well as the various parts of the rule shown in Eq. 6.2. In this chapter, two new designs

for TSTDP are proposed, which account for the mentioned details and various parts

of the TSTDP rule. These circuits are tested for generating various synaptic plasticity

experiments to verify their abilities. The two proposed circuits are built upon the two

example PSTDP circuits shown in Section 6.2.

6.3.2 Voltage-mode Triplet-based STDP Circuit Model

Unlike the pair-based model, in the triplet model, a pre-synaptic (post-synaptic) spike

further to having an affect on its successive post-synaptic (pre-synaptic) spike can also

have an affect on its consecutive pre-synaptic (post-synaptic) spike(s). In the proposed

triplet circuit, two more pulses, Vpost(n−1) and Vpre(n−1), are used in addition to Vpost(n)

and Vpre(n), as shown in Fig. 6.4.

These extra pulses result in the required nonlinearity in the triplet-based model (Pfister

and Gerstner 2006). The circuit works as follows: upon the arrival of a post-synaptic

pulse, Vpost(n), the M5, M10 and M18 transistor switches turn on. Then M10 sets a de-

potentiating voltage Vdep1 to Vdd. This voltage then starts decaying linearly with time

which can result in depression, if a pre-synaptic pulse, Vpre(n) arrives during the time

Vdep1 is decaying to zero (τ− time constant). In this situation, Cw will be discharged

through M7-M9 by a current that is limited by the M7 bias voltage (VA−
2

).

In contrast to M10, which can result in depression after receiving a post-synaptic pulse,

M5 and M18 can lead to two different potentiations. The first one can occur if M5 turns

on during time constant of Vpot1 (τ+). This potentiation will be through M4-M6 and is

proportional to the bias voltage at M6 (VA+
2

). The second potentiation term can charge

Cw through M16-M19 and is proportional to VA+
3

if M18 is on at the required time, i.e.

when Vpot1 and Vpot2 have still kept M16 and M17 on, respectively. This is the term

that distinguishes triplet from pair-based STDP, as there is no such term in pair-based

STDP. Similarly, upon the arrival of a pre-synaptic pulse, Vpre(n), a potentiating voltage
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Figure 6.4. Proposed voltage-mode full TSTDP circuit. This figure shows a symmetric voltage-

mode design for triplet-based STDP rule (Azghadi et al. 2011d).

Vpot is set to zero and starts increasing linearly in time which can result in potentiation

when a Vpost(n) pulse arrives within the τ+ time constant. In addition, two possible

depressions proportional to A−
2 and A−

3 can take place, if this pre-synaptic pulse is in

the interval area of effect of Vdep1 and Vdep2, i.e. in τ− and τx time constants. It is worth

mentioning that the required time constants in the proposed circuit, τ−, τ+, τx and τy,

are adjusted by altering their corresponding bias voltages, Vtd1, Vtp1, Vtd2 and Vtp2.

6.3.3 Current-mode Triplet-based STDP Circuit Model

Fig. 6.5 presents the proposed current-mode circuit for the TSTDP model. In this cir-

cuit, there are eight parameters that can be tuned by controlling eight bias currents as

follows: the first four currents including Idep1, Ipot1, Idep2 and Ipot2 represent the ampli-

tude of synaptic weight changes for post-pre, pre-post, pre-post-pre and post-pre-post

combinations of spike triplets, respectively. Another control parameter for these ampli-

tude values in the circuit is the pulse width of the spikes which was kept fixed during

all experiments in this chapter (1 µs). In addition to these amplitude parameters, four

more currents control the required time constants in the model for post-pre, pre-post,
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pre-post-pre and post-pre-post combinations of spike triplets, and can be adjusted us-

ing Itd1, Itp1, Itd2 and Itp2 respectively.

Figure 6.5. Proposed current-mode full TSTDP circuit. This figure shows a current-mode

circuit for the TSTDP rule (Azghadi et al. 2012b).

The proposed circuit works as follows: upon the arrival of a post-synaptic pulse,

Vpost(n), M2, M8 and M22 switch on. At this time, Idep1 can charge the first depres-

sion capacitor, Cdep1, through M2 to the voltage of Vdep1. After finishing Vpost(n), Vdep1

starts decaying linearly through M4 and with a rate proportional to Itd1. Now, if a

pre-synaptic pulse, Vpre(n) arrives at M6 in the decaying period of Vdep1, namely when

M5 is still active, the weight capacitor, CW , will be discharged through M5-M6 tran-

sistors and a depression occurs due to the occurrence of a pre-synaptic pulse in the

interval of affect of a post-synaptic spike (post-pre combination of spikes). Addition-

ally, if a pre-synaptic spike arrives at M13, soon before the present post-synaptic spike
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at M8, the weight capacitor can be charged through M7-M8 transistors and a potentia-

tion happens. This potentiation happens because the current post-synaptic spike is in

the time of affect of a pre-synaptic spike (pre-post combination of spikes). The amount

of potentiation depends on Vpot1, which itself can be tuned by the relevant amplitude

parameter Ipot1. Also, the activation interval of M11 can be modified by changing the

related time constant parameter Itp1. Furthermore, another contribution to potentia-

tion can occur if a previous post-synaptic pulse, Vpost(n−1), arrives at M27 soon enough

before the current post-synaptic happens at M8 and also before a pre-synaptic pulse

happens at M32 (this is the same pulse as for M13). In this situation, the weight capac-

itor can be charged again through M7-M8 and by an amount proportional to Vpot2 and

Vpot3. This is a triplet interaction in the proposed circuit that leads to the required non-

linearity mentioned in the triplet learning rule, appears. A similar description holds for

the situation when a pre-synaptic pulse occurs at M6, M13 and M21 transistors. But

this time one potentiation and two depression events can happen if the appropriate

situation is provided.

The first two parts of this current-mode TSTDP circuit (on the top left and the top right)

are identical to the PSTDP circuit presented in Fig. 6.3(a). Also, the two bottom parts of

this circuit carry out the triplet terms interactions. This circuit is in correspondence to

the full triplet learning rule presented in Pfister and Gerstner (2006) which takes into

account all four possible potentiation and depression interactions. However, as it is

shown in following sections, only some of the terms are really necessary to reproduce

the expected biological experiments. This is referred to as minimal triplet learning rule

in Pfister and Gerstner (2006), which makes the required circuit simpler and smaller.

In the next section, the two proposed circuits for the TSTDP model and the mentioned

PSTDP circuits are verified for reproducing the outcomes of several biological exper-

iments. These circuits are used in a specific experimental setup, which is explained

below.

6.4 Experimental Setup

6.4.1 VLSI Circuit Simulation Setup

The presented simulations of the two proposed TSTDP circuits as well as the two men-

tioned PSTDP circuits were carried out using parameters for a 0.35 µm standard CMOS
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technology in HSpice. The widths and lengths used for all transistors in presented de-

signs are 0.7 µm and 0.35 µm, respectively. The capacitor values for these circuits are as

follows. Indiveri’s PSTDP and the proposed voltage-mode TSTDP circuits weight ca-

pacitors Cw = 1 pF. Bofill and Murray’s PSTDP circuit and the proposed current-mode

TSTDP circuits weight capacitors Cw = 10 pF, and other capacitors in these designs are

set to 10 fF.

The synaptic weight capacitors in the proposed designs occupy a large portion of the

silicon area, as it is the case for almost all synaptic circuits. Therefore, one of the con-

cerns here is to reduce this capacitor value in order to make the area of the design

smaller. There are a number of approaches to reduce the size of these capacitors as

discussed in Section 5.4.8. In addition, our simulation results also show that, it is pos-

sible to scale the capacitor value (and hence, its size) to a significantly smaller value

and optimise the circuit biases for the amount of weight changes stored on this smaller

capacitor. However, the minimum fitting error (discussed in the next section) might

significantly increase.

It should be noted that, during all experiments in this thesis, the nearest spike interac-

tion, which considers the interaction of a spike only with its two immediate succeeding

and immediate preceding nearest neighbours, was used (see Section 2.6.1). In addition,

the simulations presented in this chapter are all carried out in an accelerated time scale

of 1000 compared to real biological time scale. It means that in the performed simu-

lations, each ms corresponds to one second of actual biological time. For the sake of

simplicity while comparing the results from the proposed circuits, to the one from bio-

logical experiments, all the simulations are scaled back to the real time. The approach

of time-scaling has been used extensively in many previous neuromorphic studies such

as Schemmel et al. (2006), Tanaka et al. (2009) and Mayr et al. (2010).

6.4.2 Data Sets

In order to compare pair-based and triplet-based VLSI implementations to experimen-

tal data, the same experimental protocols and experimental data sets that were used

in Pfister and Gerstner (2006) and explained in Chapter 2, are adopted. The simula-

tions were conducted using two types of data sets: The first data set originates from

experiments on the visual cortex (Sjöström et al. 2001), which investigated how altering

the repetition frequency of spike pairings affects the overall synaptic weight change.
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This data set is composed of 10 data points that are obtained from Table 1 of Pfister and

Gerstner (2006) that represents experimental weight change, ∆w, for two different ∆t’s,

and as a function of the frequency of spike pairs under a pairing protocol in the visual

cortex. The second experimental data set that was utilised, originates from hippocam-

pal cultures experiments from Wang et al. (2005), which examined pairing, triplet and

quadruplet protocols effects on synaptic weight change. This data set consists of 13

data points obtained from Table 2 of Pfister and Gerstner (2006). This data set shows

the experimental weight change, ∆w, as a function of the relative spike timing ∆t, ∆t1,

∆t2 and T under pairing, triplet and quadruplet protocols in hippocampal cultures.

6.4.3 Error Function

Identical to Pfister and Gerstner (2006) that tests its proposed triplet model, as well as a

PSTDP model simulation results against the experimental data and reports their differ-

ences as Normalised Mean Square Error (NMSE) for each data set, here the mentioned

PSTDP and TSTDP circuit simulation results are verified under same conditions. The

mentioned NMSE (Pfister and Gerstner 2006) is calculated using the following equa-

tion (presented already in Section 2.5):

E =
1

p

p

∑
i=1

(

∆wi
exp − ∆wi

cir

σi

)2

, (6.3)

where ∆wi
exp, ∆wi

cir and σi are the mean weight change obtained from biological ex-

periments, the weight change obtained from the circuit under consideration, and the

standard error mean of ∆wi
exp for a given data point i, respectively; p represents the

number of data points in a specified data set (can be 10 or 13).

In order to minimise the resulting NMSE for a circuit, there was a need to adjust the

parameters and time constants to minimise the resulting NMSE. In the following sub-

sections, the circuit simulation results and applied bias currents, and voltages for set-

ting the required parameters, in order to have the minimum achieved NMSEs for each

circuit under test, are reported.

The following section shows the experimental circuit results after optimising circuit

biases for the four different PSTDP and TSTDP circuits presented in the previous sec-

tions.
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6.5 Experimental Circuit Results

6.5.1 Indiveri’s PSTDP Circuit Results

In order to test the accuracy of Indiveri’s PSTDP circuit, Fig. 6.1(a), first the circuit was

checked for producing the frequency-dependent pairing experimental data, i.e. first

data set. The circuit parameters were optimised to minimise the NMSE for reproducing

the 10 data points available in the first data set. Obtained results shown in Fig. 6.6

clearly demonstrates that this PSTDP circuit fails to mimic the experimental data. The

final set of optimised parameters for the shown results are those reported in Table 6.1

and the minimal resulting NMSE was 10.03. This error is close to the error reported in

the best case of parameters obtained from classical pair-based STDP model simulations

reported in Pfister and Gerstner (2006) where NMSE ∼= 7.5—data obtained from Fig. 6

of Pfister and Gerstner (2006).

Figure 6.6. Indiveri’s PSTDP circuit fails to reproduce the outcomes of frequency-dependent

pairing experiments. Frequency-dependent pairing protocol (see Section 2.5.2) is

applied to the circuit. Here, ρ is the repetition rate of pre- and post-synaptic spike

pairs. Note that there is no experimental data available at ρ = 30 Hz.

In addition, further simulations on pairing, quadruplet and triplet protocols were con-

ducted. Again, we optimised the parameters of the VLSI implementation of pair-based

STDP so that the NMSE was minimal across the entire data set, i.e. for all three pro-

tocols, we employed similar VA+ , VA− , τ+ and τ− values. Obtained results show that

the classical VLSI implementation for pair-based STDP, like its mathematical model,

fails to reproduce the experimental data obtained using quadruplet, Fig. 6.7(a), and

triplet protocols, Fig. 6.7(b)-(c). The NMSE in this case was 11.3, which is close to the
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Table 6.1. Indiveri’s PSTDP circuit bias voltages for mimicking two different data sets and

their resulting NMSEs. The first data set includes 10 data points from pairing fre-

quency experiments presented in Sjöström et al. (2001) and the second data set consists

of 13 data points from pairing experiments (2 points), quadruplet experiments (3 points)

and two different triplet experiments (each one with 4 points) presented in Wang et al.

(2005).

Data set VA+ (V) VA− (V) Vtp (V) Vtd (V) NMSE

First 2.36 0.69 2.87 0.29 10.03

Second 2.28 0.68 2.8 0.25 11.36

Table 6.2. Bofill and Murray’s PSTDP circuit bias currents for mimicking two different data

sets and their resulting NMSEs. Similar data sets to Table 6.1 are used.

Data set Ipot (nA) Idep (nA) Itp (pA) Itd (pA) NMSE

First 150 150 24 18 7.26

Second 410 190 20 5 10.76

optimal value obtained from the pair-based model in Pfister and Gerstner (2006)—

NMSE ∼= 10.5, data obtained from Fig. 6 in Pfister and Gerstner (2006).

6.5.2 Bofill and Murray’s PSTDP Circuit Results

Simulation results for the frequency-dependent pairing experiments, using the circuit

presented in Fig. 6.3(a) is demonstrated in Fig. 6.8. This figure shows how this PSTDP

circuit, similar to the previous PSTDP circuit, fails to reproduce the observed experi-

mental results in visual cortex reported in Sjöström et al. (2001). The minimal NMSE

obtained in this situation was 7.26, which is consistent with the reported minimal

achieved error using computer simulation of the PSTDP rule in Fig. 6A of Pfister and

Gerstner (2006). The four required bias currents for controlling the model parameters

are reported in Table 6.2.

Simulation results of the second data set also suggest that this PSTDP circuit fails to

reproduce experimental results observed in hippocampal cultures. Fig. 6.9(a) shows
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Figure 6.7. Indiveri’s PSTDP circuit fails to reproduce the outcomes of triplet and quadru-

plet experiments. (a) Quadruplet spikes were applied to the circuit, under the quadru-

plet protocol, and the biases were optimised to minimise the NMSE to fit the 3 quadru-

plet experimental data points (with error bars) shown in (a), as well as the 8 triplet

data bars shown in (b) and (c). (b) Pre-post-pre triplet of spikes were applied to the

circuit according to the triplet protocols. (c) Same as (b), but for the post-pre-post

spike triplets.

the circuit simulation results along with experimental data for the quadruplet proto-

col, while Fig. 6.9(b)-(c) represent the results under triplet protocols for pre-post-pre

and post-pre-post combinations of spike triplets, respectively. The minimal NMSE ob-

tained in this situation was 10.76, again consistent with the reported results in Fig. 6B

of Pfister and Gerstner (2006). The four required bias currents for controlling the model

parameters are reported in Table 6.2.

6.5.3 Proposed Voltage-mode TSTDP Circuit Simulation Results

The simulation results shown in Figs. 6.10 and 6.11 demonstrate that the proposed

VLSI triplet-based circuit has a significantly improved weight change prediction capa-

bility in comparison to its pair-based counterparts. Like pair-based circuit experiments,

Fig. 6.10 shows the total weight change induced by a pairing protocol for various pulse
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Figure 6.8. Bofill and Murray’s PSTDP circuit fails to reproduce the outcomes of frequency-

dependent pairing experiments. Frequency-dependent pairing protocol (see Section

2.5.2) is applied to the circuit. Here, ρ is the repetition rate of pre- and post-synaptic

spike pairs. Note that there is no experimental data available at ρ = 30 Hz.

Table 6.3. Proposed voltage-mode TSTDP circuit bias voltages for mimicking two different

data sets and their resulting NMSEs. Similar data sets to Table 6.1 are used.

Data set VA2+ (V) VA2− (V) Vtp1 (V) Vtd1 (V) VA3+ (V) VA3− (V) Vtp2 (V) Vtd2 (V) NMSE

First 2.49 0.59 2.49 0.59 2.36 0.25 2.44 2.6 0.82

Second 2.49 0.66 2.4 0.59 2.3 0.25 2.45 2.7 3.46

repetition rates. As can be seen from the figure, a better match between the experimen-

tal data and simulations was observed. The NMSE achieved was 0.82, which is far

better than the NMSE for the pair-based case and much closer to the NMSE = 0.22,

obtained through analytical calculation of the triplet-based model, given in Table 3 of

Pfister and Gerstner (2006). The optimised bias voltages to reach this NMSE are shown

in Table 6.3.

In addition to the bias optimisation performed on the circuit, to approximate the first

data set, the circuit bias parameters were also optimised to approximate the outcome

of triplet, and quadruplet experiments. Achieved results for these experiments are

shown in Fig. 6.11. The minimal obtained NMSE for this case was 3.46 that is close to

the one achieved using the optimised parameters for the TSTDP model (NMSE = 2.9)

presented in Pfister and Gerstner (2006). The optimised bias voltages to reach this

NMSE are shown in Table 6.3.
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Figure 6.9. Bofill and Murray’s PSTDP circuit fails to reproduce the outcomes of triplet,

and quadruplet experiments. (a) Quadruplet spikes were applied to the circuit, under

the quadruplet protocol, and the biases were optimised to minimise the NMSE to fit the

3 quadruplet experimental data points (with error bars) shown in (a), as well as the 8

triplet data bars shown in (b) and (c). (b) Pre-post-pre triplet of spikes were applied to

the circuit according to the triplet protocols. (c) Same as (b), but for the post-pre-post

spike triplets.

Note that in the presented simulations for the proposed voltage-mode design, the full

TSTDP circuit, which is in accordance to the full TSTDP model is used. However, as

discussed in Pfister and Gerstner (2006), the rule can be minimised without having sig-

nificant effect on the performance of the rule in generating the required experiments.

Similarly, in the case of the proposed circuits, simulation results for replicating the

shown experiments using minimal versions of the circuit (and minimal circuit), show

similar performance in reproducing the outcomes of the targeted experiments. In the

case of the minimal model, the corresponding circuit that contains 26 transistors, is

minimised to a circuit with 16 transistors for reproducing the visual cortex experiments

(first date set). In this case M4-M6, M13-M15 and M20-M23 are removed from the full

TSTDP circuit shown in Fig. 6.1. In addition, the circuit is minimised to 19 transis-

tors for the hippocampal experiments (second data set), since M13-M15 and M20-M23

transistors are removed from the full TSTDP circuit.
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Figure 6.10. Proposed voltage-mode TSTDP circuit mimics the outcomes of frequency-

dependent pairing experiments. Frequency-dependent pairing protocol (see Section

2.5.2) is applied to the circuit. Here, ρ is the repetition rate of pre- and post-synaptic

spike pairs. Note that there is no experimental data available at ρ = 30 Hz.

6.5.4 Proposed Current-mode TSTDP Circuit Simulation Results

In order to test the proposed current-mode TSTDP circuit under the mentioned pro-

tocols and using the two data sets, firstly the full TSTDP circuit was employed. This

circuit is shown in Fig. 6.5 and consists of four distinct parts each of them related to

one of the pair or triplet combination of spikes. However, as stated in Pfister and Ger-

stner (2006), only some of these combinations are really necessary and play significant

roles in synaptic weight change under different protocols. Therefore, the full TSTDP

circuit was changed to two minimal TSTDP circuits in correspondence to two minimal

TSTDP rules in Pfister and Gerstner (2006). In these circuits, the inconsequential parts

of the proposed full-triplet circuit are removed to have the minimal circuits. This is in

the contrary to the voltage-mode design simulations that utilised the full TSTDP circuit

and optimised all circuit biases to reach a minimal NMSE.

As it can be extracted from the last line of Table 3 in Pfister and Gerstner (2006), the

minimal TSTDP rule that is capable of reproducing the expected visual cortex weight

change experiments (the first data set), sets pre-post and pre-post-pre spike combina-

tion amplitude parameters to zero. This means that this rule neither require the pre-

post interactions of spikes, nor the pre-post-pre interactions to take part in synaptic

weight modification. Therefore, these parts are not needed also in the corresponding

minimal TSTDP circuit. This circuit composed of 19 transistors (exclude the parts in
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Figure 6.11. Proposed voltage-mode TSTDP circuit mimics the outcomes of triplet, and

quadruplet experiments. (a) Quadruplet spikes were applied to the circuit, under

the quadruplet protocol, and the biases were optimised to minimise the NMSE to fit

the 3 quadruplet experimental data points (with error bars) shown in (a), as well as

the 8 triplet data bars shown in (b) and (c). (b) Pre-post-pre triplet of spikes were

applied to the circuit according to the triplet protocols. (c) Same as (b), but for the

post-pre-post spike triplets.

the dashed and dotted boxes in the circuit presented in Fig. 6.5) and it can reproduce

very similar results to the full TSTDP circuit which contains 34 transistors (Fig. 6.5).

The minimum NMSE obtained for the first data set and using this first minimal TSTDP

circuit was 0.64, which is near the minimum NMSE obtained by means of computer

simulations of minimal TSTDP model, NMSE = 0.34, obtained from Table 3 of Pfister

and Gerstner (2006). The five required bias currents for controlling the model parame-

ters are reported in Table 6.4.

Furthermore, the minimum obtained NMSE for the second data set using the second

minimal TSTDP circuit is 2.25. The achieved results are shown in Fig. 6.13(a)-(c). The

second minimal TSTDP circuit is composed of the whole top parts and the right bottom

part of the full TSTDP circuit presented in Fig. 6.5—see the last line of Table 4 in Pfister

and Gerstner (2006). The obtained NMSE using this circuit is slightly better than the

NMSE obtained using minimal TSTDP model and by means of computer simulations,
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Figure 6.12. Proposed current-mode TSTDP circuit mimics the outcomes of frequency-

dependent pairing experiments. Frequency-dependent pairing protocol (see Section

2.5.2) is applied to the circuit. Here, ρ is the repetition rate of pre- and post-synaptic

spike pairs. Note that there is no experimental data available at ρ = 30 Hz.

Table 6.4. First TSTDP circuit bias currents and its resulting NMSE. The first data set includes

10 data points from pairing frequency experiments presented in Sjöström et al. (2001).

Data set Idep1 (nA) Itp1 (nA) Itd1 (pA) Ipot2 (µA) Itp2 (pA) NMSE

First 300 40 40 1.5 50 0.64

NMSE = 2.9, extracted from Table 4 of Pfister and Gerstner (2006). The six required

bias currents for controlling the model parameters are recorded in Table 6.5.

6.6 Discussion

In this chapter, a current-mode (Azghadi et al. 2012b) and a voltage-mode (Azghadi et al.

2011c) VLSI design, were proposed to implement the TSTDP learning rule. Although

it is shown that both circuits are able to account for various synaptic plasticity ex-

periments, the presented results in this chapter suggest that these two circuits have

different performance in reproducing the outcomes of various experiments. From the

NMSEs obtained for each of the circuits and for two different data sets, it is clear that

the current-mode design has a better performance in reproducing the experiments out-

comes. This is mainly because of the fact that the current-mode design produces a bet-

ter exponential behaviour, which is closer to the TSTDP model. On the other hand,
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Table 6.5. Second TSTDP circuit bias currents and its resulting NMSE. The second data set

consists of 13 data points from pairing experiments (2 points), quadruplet experiments

(3 points) and two different triplet experiments (each one with 4 points) presented in

Wang et al. (2005).

Data set Ipot1 (nA) Idep1 (nA) Itp1 (pA) Itd1 (pA) Ipot2 (nA) Itp2 (pA) NMSE

Second 160 130 28 20 400 10 2.25

the voltage-mode design has a simpler structure and uses a smaller number of tran-

sistors and capacitors, compared to the current-mode design. Therefore, each of the

proposed circuit models for TSTDP rule has its own pros and cons in terms of area,

power consumption, or synaptic accuracy. The voltage-mode design presents a better

area and power performance, but lacks in terms of accuracy, while the current-mode

design presents a high accuracy at the cost of more area and power.

Previous computational studies show that PSTDP (Izhikevich and Desai 2003) and

TSTDP (Pfister and Gerstner 2006) rules under specific circumstances can reproduce

BCM-like learning behaviour with a sliding threshold feature (Bienenstock et al. 1982,

Cooper et al. 2004). As part of the investigations in this thesis, the proposed voltage-

mode TSTDP circuit was examined to generate the BCM-like learning behaviour. Ob-

tained results presented in Azghadi et al. (2011a) demonstrate that the proposed circuit

can successfully generate this behaviour. In another study (Azghadi et al. 2012a), in

order to compare the performance of both PSTDP and TSTDP circuits for producing

the BCM-like behaviour, the voltage-mode PSTDP circuit proposed by Indiveri et al.

(2006) as well as the proposed voltage-mode TSTDP circuit were stimulated according

to a Poissonian protocol (see Section 2.5.6) to reproduce the required behaviour. Simu-

lation results demonstrate that the TSTDP circuit significantly produces the threshold-

based behaviour of the BCM. Also, the results suggest that the PSTDP circuit is able to

account for the BCM-like behaviour (Azghadi et al. 2012a).

In addition to the two proposed TSTDP designs, which have capabilities beyond the

PSTDP circuits, there is a previous VLSI implementation proposed by Mayr et al. (2010)

that is capable of reproducing the mentioned biological experiments (except the quadru-

plet protocol which has not been shown) similar to the proposed triplet circuits. In

terms of functionality, these implementations are different, since the design of Mayr et al.

(2010) implements the BCM-like rule, requiring the voltage of the neuron to take part
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Figure 6.13. Proposed current-mode TSTDP circuit mimics the outcomes of triplet, and

quadruplet experiments. (a) Quadruplet spikes were applied to the circuit, under

the quadruplet protocol, and the biases were optimised to minimise the NMSE to fit

the 3 quadruplet experimental data points (with error bars) shown in (a), as well as

the 8 triplet data bars shown in (b) and (c). (b) Pre-post-pre triplet of spikes were

applied to the circuit according to the triplet protocols. (c) Same as (b), but for the

post-pre-post spike triplets.

in learning, and eventually leads to compatible changes in the neuron architecture.

By contrast, the proposed designs in this chapter are based upon triplets of spikes

from which the required triplet, quadruplet, and pairing frequency experiments are

extracted. In addition, unlike the circuit presented in Mayr et al. (2010), the proposed

VLSI circuits act as STDP circuits, which can be simply used to connect to other sets of

(neuromorphic) neurons of choice. Furthermore, it is shown that the proposed circuits

not only can reproduce the required behaviours seen in the mentioned experiments,
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but also they can be tuned to mimic those experimentally observed behaviour with

a small error, while Mayr et al. (2010) just depict the behaviour and not the required

values observed in biological experiments. Also, the proposed circuits would require

smaller silicon real estates and presents lower power consumption when compared to

the circuit presented in Mayr et al. (2010).

6.7 Chapter Summary

This chapter reviewed two different VLSI circuits that implement the PSTDP rule and

showed how these circuits as the representative of the class of PSTDP circuits, fail to

account for a variety of synaptic plasticity experiments. The chapter then introduced

two new VLSI circuits of another STDP rule, which in contrast to the normal PSTDP

rule that alters the synaptic weight according to the timing of pairs of spikes, works

based on the timing of triplets (and not pairs) of spikes. It is shown how the newly

proposed VLSI designs generate the outcomes of frequency-dependent pairing exper-

iments, as well as pairing, triplet, and quadruplet biological experiments, with a small

error, while the PSTDP circuits have significantly large errors. Although the proposed

VLSI circuits presents a novel design in the area of VLSI design for synaptic plasticity

rules, the minimal NMSE obtained using these circuits is still significant and should

be improved. In addition, the complexity and power consumption of the proposed

designs can also be improved using different design techniques and a better approxi-

mation of the TSTDP rule. Furthermore, the proposed VLSI designs in this chapter are

not able to correctly account for some other synaptic plasticity experiments involving

other spike triplets (Froemke and Dan 2002) than those used in the current chapter.

Next chapter proposes a new TSTDP circuit that improves the synaptic ability com-

pared to the designs presented in this chapter and results in significantly lower error,

while reproducing the outcomes of many experiments, some of which cannot be repli-

cated by the circuits presented in this chapter.
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Chapter 7

High-performance TSTDP
VLSI Design

T
HIS chapter introduces circuit design and implementation of a

new high-performance VLSI design for the TSTDP rule that out-

performs the other TSTDP VLSI designs in several aspects. It is

shown in this chapter, how different terms in the TSTDP synaptic plasticity

equation, are implemented to have a very close fit to the model. This results

in the proposed design to have significantly lower synaptic plasticity pre-

diction error, in comparison with previous designs for TSTDP and PSTDP

rules. In addition, it is shown that the new proposed design can success-

fully account for a number of new experiments, including experiments in-

volved with various spike triplet combinations, where the previous TSTDP

designs do not show acceptable performance and cannot mimic the exper-

iments effectively. This chapter also discusses some of the main challenges

in designing the proposed TSTDP circuit such as power consumption, sil-

icon real estate and process variations. We show that it is possible to miti-

gate the effect of process variations in the proposed circuit. In addition, the

power consumption and area of the proposed design are also investigated

and discussed in this chapter. The proposed circuit has been fabricated as a

proof of principle. Performed chip measurement results testify the correct

functionality of the fabricated circuit in performing triplet-based synaptic

weight modification.
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7.1 Introduction

As already discussed in Chapter 2, neuro-physiological experiments have illustrated

that plastic changes to synapses can occur via spike-timing, varying the frequency of

inputs to the neuron, or changes to internal concentration of calcium in the neuron’s

spine apparatus (Bi and Poo 1998, Sjöström et al. 2001, Wang et al. 2005). Many theoret-

ical and experimental studies have focused on studying changes to synaptic strength

caused by STDP (Gerstner et al. 1996, Bi and Poo 1998, Song et al. 2000, Froemke and

Dan 2002, Wang et al. 2005, Pfister and Gerstner 2006, Iannella and Tanaka 2006, Ian-

nella et al. 2010). At the same time, there have been attempts at translating such rules

to VLSI circuit implementations (Bofill-I-Petit and Murray 2004, Indiveri et al. 2006,

Tanaka et al. 2009, Rachmuth et al. 2011, Azghadi et al. 2011a, Azghadi et al. 2011b,

Azghadi et al. 2011c, Azghadi et al. 2011d, Azghadi et al. 2012a, Azghadi et al. 2012b).

These attempts represent the crucial technological steps in developing smart VLSI

chips with adaptive capabilities similar to that of the mammalian brain. The long term

aim is to have VLSI circuits that can learn to adapt to changes and result in modifying

their functionality to improve their performance. The realisation of such adaptive VLSI

circuits will have widely varying applications ranging from artificial bionic prostheses

through to improved autonomous navigation systems.

The main contribution of this chapter is to significantly advance previous VLSI imple-

mentations of triplet-based STDP and introduce a new synaptic analog circuit that pos-

sesses some critical capabilities that have not been demonstrated in previous VLSI im-

plementations. The proposed circuit not only can replicate known outcomes of STDP,

including the effects of input frequency, but also it is capable of mimicking BCM-like

behaviour (Bienenstock et al. 1982). It improves the synaptic weight change modifica-

tion ability and results in less error while curve fitting the experimental data. In ad-

dition, the proposed circuit captures important aspects of both timing- and rate-based

synaptic plasticity that is of great interest for researchers in the field of neuromorphic

engineering, specifically to those who are involved in experiments dealing with learn-

ing and memory in-silico.

This chapter is organised as follows. Section 7.2 represents a different arrangement

of the previously introduced TSTDP rule, that is helpful in understanding the design

procedure of the new proposed TSTDP circuit. In Section 7.3, a description of the pro-

posed circuit operation is given. Section 7.4 is dedicated to simulation results where

the various capabilities of the proposed circuit are illustrated. Section 7.5 discusses
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and describes the effects of process variation and transistor mismatch on the proposed

design, and suggests a tuning mechanism to overcome the performance degradation

in the presence of physical variations. Section 7.6 describes the VLSI implementation

of the proposed high-performance design and presents chip measurement results. Sec-

tion 7.7, provides a discussion of advantages as well as limitations of the proposed

design and suggests ways and their costs, in order to reduce the limitations of the

novel presented circuit. Section 7.8 gives concluding remarks of the chapter.

The results shown in this chapter are presented mainly in Neural Networks (Azghadi et al.

2013a).

7.2 A Different Arrangement of Triplet-based STDP

In order to have a better understanding of the structure of the proposed circuit in this

chapter, the TSTDP synaptic plasticity rule is again mentioned here. However, a dif-

ferent arrangement of the rule presented in Eq. 2.3 has been utilised, which facilitates

understanding the structure of the new proposed circuit. This new arrangement of the

TSTDP rule (Pfister and Gerstner 2006) is given by

∆w =











∆w+ = e
(
−∆t1

τ+
)
(

A+
2 + A+

3 e
(
−∆t2

τy
)
)

∆w− = −e
(

∆t1
τ−

)
(

A−
2 + A−

3 e(
−∆t3

τx
)
)

,
(7.1)

where ∆w = ∆w+ for t = tpost and if t = tpre then the weight change is ∆w =

∆w−. A+
2 , A−

2 , A+
3 and A−

3 are potentiation and depression amplitude parameters,

∆t1 = tpost(n) − tpre(n), ∆t2 = tpost(n) − tpost(n−1) − ǫ and ∆t3 = tpre(n) − tpre(n−1) − ǫ,

are the time differences between combinations of pre- and post-synaptic spikes. Here, ǫ

is a small positive constant which ensures that the weight update uses the correct val-

ues occurring just before the pre or post-synaptic spike of interest, and finally τ−, τ+, τx

and τy are time constants (Pfister and Gerstner 2006). Prior to this TSTDP model, there

was another rule proposed by Froemke and Dan (2002) which considers higher order

temporal patterns (quadruplets) of spikes to induce synaptic modification. Both of

these rules tend to explore the impact of higher order spike patterns on synaptic plas-

ticity. In this study, the proposed analog circuit aims to mimic the model presented in

Eq. 7.1.
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7.3 High-performance Circuit for TSTDP Rule

The new high-performance circuit produces a close fit to the outcomes of the TSTDP

rule. Fig. 7.1 presents the proposed circuit implementation of the full TSTDP model.

In the full TSTDP model, there are eight parameters that can be tuned in the proposed

circuit, by controlling eight bias currents as follows: Idep1, Ipot1, Idep2 and Ipot2 represent

the amplitude of synaptic weight changes for post-pre (A−
2 ) and pre-post (A+

2 ) spike

pairs, and pre-post-pre (A−
3 ) and post-pre-post (A+

3 ) combinations of spike triplets,

respectively. Another control parameter for these amplitude values in the circuit is

the pulse width of the spikes, which was kept fixed during all experiments in this

chapter (1 µs). In addition to these amplitude parameters, the required time constants

in the model for post-pre (τ−), pre-post (τ+), pre-post-pre (τx) and post-pre-post (τy)

spike patterns, can be adjusted using Itd1, Itp1, Itd2 and Itp2 respectively (see Eq. 7.1 and

Fig. 7.1).

The proposed circuit works as follows: upon the arrival of a pre-synaptic pulse, Vpre(n),

M9 and M15 are switched on. At this time, Ipot1 can charge the first potentiation capac-

itor, Cpot1, through M9 to the voltage of Vpot1. After finishing Vpre(n), Vpot1 starts decay-

ing linearly through M11 and with a rate proportional to Itp1. Now, if a post-synaptic

pulse, Vpost(n) arrives at M13 in the decaying period of Vpot1, namely when M12 is still

active, the weight capacitor, CW, will be discharged through M12-M13 transistors and

a potentiation occurs because of the arrival of a post-synaptic pulse in the interval of

effect of a pre-synaptic spike (pre-post combination of spikes). Additionally, if a post-

synaptic spike has arrived at M19, soon before the current pre-synaptic spike at M15,

the weight capacitor can be charged through M14-M15 transistors and a depression

happens. This depression happens because the present pre-synaptic spike is in the

time of effect of a post-synaptic spike (post-pre combination of spikes). The amount

of depression depends on Vdep1, which itself can be tuned by the relevant amplitude

parameter Idep1. Also, the activation interval of M18 can be modified by changing the

related time constant parameter Itd1. Furthermore, another contribution to depression

can occur if a previous pre-synaptic pulse, Vpre(n−1), has arrived at M26 soon enough

before the current pre-synaptic happens at M15 and also before a post-synaptic pulse

happens at M19. In this situation, the weight capacitor can be charged again through

M14-M15 by an amount proportional to an effect of both Vdep2 and Vdep1, simulta-

neously. This triplet interaction leads to the required non-linearity mentioned in the

triplet learning rule.
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A similar description holds for the situation when a post-synaptic pulse occurs at M13

and M19 transistors. But this time one depression will take place as the result of charg-

ing the weight capacitor up through M14-M15 and because of an arriving post-synaptic

spike at M19 before a pre-synaptic spike at M15. Besides, two potentiation events can

happen if an appropriate situation is provided to discharge the weight capacitor be-

cause of a pre-post or a post-pre-post combination of spikes. Note that, in this im-

plementation, the synaptic strength is inversely proportional to the voltage stored on

the weight capacitor, CW. However, for the sake of simplicity when comparing the

achieved results to experimental data, the weights are shown in a consistent way to

biological data, i.e. potentiation with positive strength and depression with negative

strength.

Upon examination of the TSTDP expression (Eq. 7.1), there are four different parts that

need to be implemented, in order to satisfy the equation as accurately as possible. The

proposed circuit (Fig. 7.1) is composed of four leaky integrators which are arranged in

a way that form the required addition and multiplications in the formula in a simple

manner. Furthermore, in order to have the exponential behaviour required for the

TSTDP rule, M5, M12, M18 and M25 are biased in the subthreshold region of operation.

The most left part of the circuit implements the potentiation triplet component of the

rule using a simple leaky integrator and the resulting current produced by this part

(Ipot−trip) is given by

Ipot−trip = A+
3 e

(
−∆t2

τy
)
, (7.2)

where Ipot2 represents A+
3 , Itp2 can control τy and finally ∆t2 = tpost(n) − tpost(n−1) − ǫ

controlled by M2 and M13. Next, Ipot−trip is added up to Ipot1 current which repre-

sents A+
2 in the TSTDP formula (Eq. 7.1). Hence, the amount of current going to M8

transistor is given by

IM8 = A+
2 + A+

3 e
(
−∆t2

τy
)
. (7.3)
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Figure 7.1. Proposed circuit for the full triplet-based STDP rule. Each section of the circuit aims to implement one part of the rule mentioned

in Eq. 7.1. There are two potentiation parts which are shown in red dashed boxes and two depression parts that are presented in blue

dashed boxes. The analytical term corresponding to each part of the circuit is depicted on each box also. Note that, the synaptic weight

is inversely proportional to the value over weight capacitor, CW.
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This current then goes to the second leaky integrator on the second left box in Fig. 7.1

and will result in Ipot−total passing through M12 and M13 and discharging the weight

capacitor, CW, hence causes a potentiation equal to ∆w+. The amount of this current

which is in result of the contribution of both triplet and pair-based spike patterns, can

be written as

Ipot−total = e
(
−∆t1

τ+
)
(

A+
2 + A+

3 e
(
−∆t2

τy
)
)

, (7.4)

where Itp1 can control τ+ and finally ∆t1 = tpost(n) − tpre(n) is controlled by M9 and

M13.

The same approach applies for the depression part of Eq. 7.1. There are two leaky

integrators (the blue boxes in Fig. 7.1), each one is responsible for building an expo-

nential current and the final current (Idep−total) which will be mirrored through M14

and M17 into the weight capacitor and result in charging the weight capacitor and

hence depression. This is the full TSTDP circuit which realises the full-TSTDP rule

(Eq. 7.1). However, according to the analytical calculations and numerical simulations

presented in Pfister and Gerstner (2006), some parts of the full TSTDP rule may be

omitted without a significant effect on the efficiency of the rule when replicating bi-

ological experiments. Pfister and Gerstner called these new modified rules, minimal

triplet rules.

According to the first minimal TSTDP rule, when generating the biological experi-

ment outcomes for the visual cortex data set presented in Sjöström et al. (2001), the

triplet contribution for depression, as well as the pairing contribution of the potentia-

tion parts of Eq. 7.1 can be dismissed (i.e. A−
3 = 0 and A+

2 = 0) and the outcome will

be quite similar to using the full TSTDP rule—Table 3 in Pfister and Gerstner (2006).

Furthermore, the second minimal TSTDP rule which considers a zero value for A−
3

(Eq. 7.1) has quite similar consequences to the full TSTDP rule and allows reproducing

the hippocampal culture data set experimental data presented in Wang et al. (2005).

As the rules are simplified, the full TSTDP circuit also can be minimised. This minimi-

sation can be performed by removing those parts of the circuit that correspond to the

omitted parts from the full TSTDP model. These parts are M23-M29 transistors which

can be removed when Idep2 = 0 (i.e. A−
3 = 0). Also Ipot1 can be set to zero, as it repre-

sents A+
2 that is not necessary for the first minimal triplet rule. The resulting minimal

circuit based on these assumptions is shown in Fig. 7.2 with two separate parts for

potentiation and depression.
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Figure 7.2. Proposed minimal triplet-based STDP circuit. The synaptic weight is inversely proportional to the value over weight capacitor,

CW. (a) This part of the circuit brings about potentiation due to pre-post and post-pre-post combinations of spikes. Potentiation

means discharging the weight capacitor through M12-M13. This part of the circuit should be replicated for all synapses (on all dendrite

branches come from various pre-synaptic neurons). (b) This section of the circuit is responsible for depression through charging the

weight capacitor. This part needs to be implemented only once per neuron and it can result in area saving as it does not need to be

replicated for all synapses.
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The potentiation part (a) which is composed of two leaky integrators is responsible for

voltage decrements across the weight capacitor (potentiation), in case of pre-post or

post-pre-post of spike patterns in the required timing periods. This part receives two

inputs backpropagated from the post-synaptic neuron (Vpost(n−1), and Vpost(n)), and

another input forwarded from a pre-synaptic neuron (Vpre(n)). As there can be several

synapses on each post-synaptic neuron, this part of the minimal circuit which receives

inputs from different pre-synaptic neurons, needs to be replicated for every synapse.

However, the depression part of the minimal circuit, part (b), just receives an input

from the post-synaptic neuron and hence can be replicated once per neuron. That is

why we represent the potentiation and depression inversely to the charge stored on

the weight capacitor. As the number of neurons is significantly lower than the number

of synapses, this area saving can result in a significantly smaller area for a large neuro-

morphic system with TSTDP synapses. A similar approach was also utilised by Bofill-

I-Petit and Murray (2004).

7.4 Simulation Results

The proposed circuit shown in Fig. 7.2 was simulated using parameters for the 0.35 µm

C35 CMOS process by AMS. All transistors in the design are set to 1.05 µm wide and

0.7 µm long. The capacitor values are 10 pF for the weight capacitor and 100 fF for

all the capacitors in the leaky integrators. The circuit was simulated in Spectre within

Cadence and circuit bias optimisation was performed using HSpice and Matlab, as

described later in this chapter. All reported experiments in this chapter assume the

nearest spike interaction, which considers the interaction of a spike only with its two

immediate succeeding and preceding nearest neighbours (see Section 2.6.1). Further-

more, in order to facilitate the simulation of the circuits, a scaling approach, which has

been used in similar VLSI implementations of synaptic plasticity e.g. (Schemmel et al.

2006, Tanaka et al. 2009, Mayr et al. 2010), was adopted, which uses a time scale of mi-

croseconds to represent milliseconds, i.e a scaling factor of 1000. However, in all simu-

lation results presented in this chapter, the results are scaled back to biological time in

order to facilitate comparisons with published data from biological experiments.

In order to validate the functionality of the proposed TSTDP circuit, 12 different pat-

terns of spikes including spike pairs (four patterns), spike triplets (six patterns) and

spike quadruplets (two patterns) were utilised. These patterns were applied to the cir-

cuit and recorded weight changes were compared to their corresponding experimental
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data. All simulation results show a good match to their related experimental data. The

first and second simulations were performed using two different data sets and for dif-

ferent experimental protocols. The optimisation scheme and the data fitting method

used here were that of Pfister and Gerstner (2006). The required experimental proto-

cols, different sets of data, the data fitting method as well as the achieved simulation

results, are explained and presented in the following subsections.

Additionally, for the third set of simulations, the proposed circuit was examined for

generating weight changes using all six possible spike triplet patterns presented in

Froemke and Dan (2002). Furthermore, the circuit was also used to reproduce the

weight changes produced by the rate-based BCM rule under a Poissonian protocol.

The achieved results for these two simulations, the triplet and Poissonian protocols are

also explained in the following subsections.

7.4.1 The Proposed Circuit Response to Various Experimental Pro-

tocols

The experimental protocols used to stimulate the proposed triplet circuit are those ex-

plained in Section 2.5. The results presented in this section are due to the different

protocols to the proposed circuit.

Pairing Protocol

Fig. 7.3 shows that the proposed minimal triplet circuit can reproduce the exponential

learning window produced by both PSTDP and TSTDP models, under the conven-

tional pairing protocol described in Section 2.5.1 and adopted in many experiments (Bi

and Poo 1998, Wang et al. 2005). This exponential learning window can also be repro-

duced using a number of the previously described PSTDP circuits e.g. Bofill-I-Petit and

Murray (2004).

However, it has been illustrated in Sjöström et al. (2001) that altering the pairing rep-

etition frequency affects the total change in weight of the synapse. As it is shown

in Azghadi et al. (2011c) and Azghadi et al. (2012b) and was discussed in Chapter 6,

PSTDP circuits are not capable of reproducing such biological experiments that inves-

tigators examine the effect of changes in pairing frequency on synaptic weight. How-

ever, Fig. 7.4 illustrates how the proposed TSTDP circuit can readily reproduce these

experiments.
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Figure 7.3. Exponential learning window produced by the proposed minimal TSTDP circuit.

The learning window was produced based on the pairing protocol for different transistor

process corners. The required bias currents taken for the triplet circuit correspond to

the hippocampal culture data set (Table 7.1). Experimental data and error bars are

extracted from Wang et al. (2005).

Triplet Protocol

There are two types of triplet patterns that are used in the hippocampal experiments,

which are also adopted in this chapter to compute the prediction error as described

in Section 2.5.3. Figures 7.5(a)-(b) show how the proposed minimal triplet circuit pro-

duces a close fit to the triplet experiments reported in Wang et al. (2005).

Quadruplet Protocol

Fig. 7.6 shows the weight changes produced by the proposed minimal TSTDP circuit

under quadruplet protocol conditions. This protocol is explained in detail in Sec-

tion 2.5.5. Identical to Pfister and Gerstner (2006), in all quadruplet experiments in

this chapter, ∆t = −∆t1 = ∆t2 = 5 µs. Note that none of the previously proposed

PSTDP circuits are capable of showing such a close fit, neither to triplet, nor to quadru-

plet experiments (Azghadi et al. 2011c, Azghadi et al. 2012b).
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Figure 7.4. Weight changes produced by the proposed minimal TSTDP circuit under a

frequency-dependent pairing protocol. This figure demonstrates weight changes in

a pairing protocol as a function of the pairing frequency, ρ. The synaptic weight changes

are reproduced by the proposed minimal TSTDP circuit for different transistor process

corners. Experimental data points and error bars are extracted from Sjöström et al.

(2001)—no data point at ρ = 30 Hz. The required bias currents taken for the triplet

circuit correspond to the visual cortex data set (Table 7.1).

7.4.2 Data Sets

The proposed circuit is expected to be capable of reproducing experimental weight

changes induced by pairing, triplet and quadruplet protocols in hippocampal cultures

reported in Wang et al. (2005). It should also be able to reproduce experimental weight

changes induced by a pairing protocol and in the presence of spike pairing frequency

changes, in the visual cortex presented in Sjöström et al. (2001). In order to check if the

proposed circuit is capable of doing so, simulations were conducted using two types

of data sets similar to those used in Chapter 6. The first data set originates from exper-

iments on the visual cortex which investigated how altering the repetition frequency

of spike pairings affects the overall synaptic weight change. This data set is composed

of 10 data points—obtained from Table 1 of Pfister and Gerstner (2006)—which rep-

resent experimental weight change, ∆w, for two different ∆t’s, and as a function of

the frequency of spike pairs under a pairing protocol in the visual cortex (10 black

data points and error bars shown in Fig. 7.4). The second experimental data set that
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Figure 7.5. Weight changes produced by the proposed minimal TSTDP circuit under triplet

protocol for two different spike triplet combinations. (a) This shows weight changes

induced by the triplet protocol for the pre-post-pre combination of spikes. The synaptic

weight changes are reproduced by the proposed minimal TSTDP circuit for different

transistor process corners. (b) This shows the same case as (a), but for the post-

pre-post combination of spikes. The required bias currents taken for the triplet circuit

correspond to the hippocampal culture data set (Table 7.1).

was utilised originates from hippocampal culture experiments, which examine pair-

ing, triplet and quadruplet protocols effects on synaptic weight. This data set consists

of 13 data points obtained from Table 2 of Pfister and Gerstner (2006) including (i) two

data points and error bars for pairing protocol in Fig. 7.3, (ii) three data points and er-

ror bars for quadruplet protocol in Fig. 7.6, and (iii) eight data points and error bars for

triplet protocol in Figures 7.5(a) and (b). This data set shows the experimental weight

change, ∆w, as a function of the relative spike timing ∆t, ∆t1, ∆t2 and T under pairing,

triplet and quadruplet protocols in hippocampal culture.

7.4.3 Data Fitting Approach

Identical to Pfister and Gerstner (2006) that test their proposed triplet model simu-

lation results against the experimental data using a Normalised Mean Square Error

(NMSE) for each of the data sets, and similar to the error measurements in experiments

performed in Chapter 6, the proposed circuit is verified by comparing its simulation

results with the experimental data and ensuring a small NMSE value. The NMSE is

calculated using the following equation:
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Figure 7.6. Weight changes produced by the proposed minimal TSTDP circuit under quadru-

plet protocol. The synaptic weight changes are reproduced by the proposed minimal

TSTDP circuit for different transistor process corners. The required bias currents taken

for the triplet circuit correspond to the hippocampal culture data set (Table 7.1). Ex-

perimental data points and error bars are after Wang et al. (2005).

NMSE =
1

p

p

∑
i=1

(

∆wi
exp − ∆wi

cir

σi

)2

, (7.5)

where ∆wi
exp, ∆wi

cir and σi are the mean weight change obtained from biological ex-

periments, the weight change obtained from the circuit under consideration, and the

standard error mean of ∆wi
exp for a given data point i, respectively; p represents the

number of data points in a specified data set (can be 10 or 13).

In order to minimise the resulting NMSEs for the circuit and fit the circuit output to

the experimental data, there is a need to adjust the circuit bias parameters and time

constants. This is an optimisation process of the circuit bias currents which results in

reaching a minimum NMSE value and so the closest possible fit to the experimental

data. In the following subsection, the optimisation method used to tune the circuit

bias currents is introduced.
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Table 7.1. Minimal TSTDP circuit bias currents and the resulted NMSEs for the two data

sets. The visual cortex data set includes 10 data points from pairing frequency exper-

iments presented in Sjöström et al. (2001) and the hippocampal data set consists of

13 data points from pairing experiments (2 points), quadruplet experiments (3 points)

and two different triplet experiments (each one with 4 points) presented in Wang et al.

(2005).

Data set Ipot1 Idep1 Itp1 Itd1 Ipot2 Itp2 NMSE

Visual cortex 0 220 nA 500 pA 140 pA 1.15 µA 80 pA 0.33

Hippocampal 130 nA 190 nA 900 pA 170 pA 280 nA 140 pA 1.74

7.4.4 Optimisation Method

In order to minimise the NMSE function mentioned above and achieve the highest

analogy to the experimental data, the circuit bias currents which tunes the required

parameters from the model should be optimised as it is the case for TSTDP model pa-

rameters (Eq. 7.1). For this purpose, Matlab and HSpice were integrated in a way to

minimise the NMSE resulted from circuit simulations using the Matlab built-in func-

tion fminsearch. This function finds the minimum of an unconstrained multi-variable

function using a derivative-free simplex search method. Table 7.1 demonstrates bias

currents achieved from the mentioned optimisation method in order to reach the min-

imum NMSE for the two sets of data: the visual cortex data set and the hippocampal

culture data set. The minimum obtained NMSEs for the visual cortex and hippocampal

data sets are also presented in Table 7.1. These results are consistent with the obtained

NMSEs using TSTDP model reported in Pfister and Gerstner (2006).

In addition to the above mentioned experiments that have been carried out in Pfister

and Gerstner (2006), the proposed design has been additionally tested for all possible

combination of spike triplets. Applied protocol and more explanation on these experi-

ments are provided in the following subsection.

7.4.5 Extra Triplet Patterns

Apart from reproducing the behaviour of the TSTDP model proposed by Pfister and

Gerstner (2006), the proposed circuit is also able to reproduce the observed weight

modifications for other combinations (rather than pre-post-pre or post-pre-post) of
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spikes triplets which have not been explored in Pfister and Gerstner (2006), but have

been used in another set of multi-spike interaction experiments performed by Froemke

and Dan (2002). In these experiments, six different combinations of spike triplets in-

duce synaptic weight changes. These changes in Froemke and Dan (2002) have been

calculated according to a suppressive model described in Section 2.6.1.

The simulation protocol (for suppressive STDP model) as described in Froemke and

Dan (2002) is as follows; a third spike is added either pre- or post-synaptically to the

pre-post spike pairs, to form a triplet. Then this triplet is repeated 60 times at 0.2 Hz to

induce synaptic weight changes. Here, the same protocol has been used to stimulate

the proposed minimal TSTDP circuit. In this protocol, there are two timing differences

shown as ∆t1 = tpost − tpre which is the timing difference between the two most left

pre-post or post-pre spike pairs, and ∆t2 = tpost − tpre which is the timing difference

between the two most right pre-post or post-pre spike pairs.

Although the proposed circuit implements the triplet model presented in Pfister and

Gerstner (2006), and not the suppressive model in Froemke and Dan (2002), obtained

results shown in Figs 7.7(a)-(b) demonstrate qualitative regional agreement with the

reported results in Froemke and Dan (2002). Nonetheless, there is a direct contrast

between our circuit results and their results in the post-pre-post case of spike patterns.

Indeed, the weight changes induced by the pre-post-post, post-post-pre, pre-pre-post,

and pre-post-post spike triplets are significantly matched to the weight changes re-

sulted from the similar spike patterns obtained from the Froemke-Dan model. How-

ever, there is a slight difference in the results for pre-post-pre and a significant dif-

ference in the results for post-pre-post spike combinations when using these two dif-

ferent models. Right bottom square in Fig. 7.7(a) which represents the post-pre-post

case shows potentiation as it is the case for the post-pre-post spike pattern case in

Fig. 7.5(b) also. However Froemke-Dan model results show a depression for this spike

combination—Fig. 3b in Froemke and Dan (2002). According to the discussion pro-

vided in Pfister and Gerstner (2006), the difference in the result is due to the nature

of the original suppressive rule where post-pre-post contributions gave rise to a de-

pression, in contrast to TSTDP where this specific combination leads to potentiation.

Note that the Froemke-Dan revised model presented in 2006 addressed this issue,

since in this model there are two different potentiation and depression saturation val-

ues (Froemke et al. 2006). This revised model now reproduces the expected experimen-

tal outcomes from Sjöström et al. (2001).
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Figure 7.7. Synaptic weight changes in result of the extra triplet protocol and using the proposed minimal TSTDP circuit. (a) Synaptic

weight changes in result of the extra triplet protocol for pre-post-post (top right triangle), post-post-pre (bottom left triangle) and

post-pre-post (right bottom square) combination of spikes. (b) Synaptic weight changes in result of the extra triplet protocol for pre-
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bias currents taken for the triplet circuit correspond to the hippocampal culture data set (Table 7.1).P
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7.4 Simulation Results

7.4.6 Poissonian Protocol for the BCM Rate-based Learning

As already mentioned, in addition to the ability of reproducing the synaptic weight

changes resulting from the pairing protocol (both window and change in pairing fre-

quency), triplet protocol and quadruplet protocol (which all demonstrate the influence

of timing-based variations of inputs on the synaptic weights), the proposed circuit also

has the ability to give rise to a rate-based learning rule which mimics the effects of

BCM. In order to demonstrate how the proposed circuit can reproduce a BCM-like be-

haviour, a Poissonian protocol has been used as follows. Under this protocol, the pre-

synaptic and post-synaptic spike trains are generated as Poissonian spike trains with

firing rate of ρpre and ρpost, respectively. This is the same protocol that has been used in

Pfister and Gerstner (2006) to show how their proposed TSTDP model can show a close

mapping to the BCM model. This chapter utilises a similar protocol to stimulate the

minimal TSTDP circuit and examines if it is capable of reproducing a similar BCM-like

behaviour as in Pfister and Gerstner (2006).

In order to extract BCM-like characteristics, as described by the general BCM model

(shown in Eq. 2.6), out of the TSTDP rule, Pfister and Gerstner (2006) used a minimal

TSTDP rule by setting A−
3 = 0. They specifically observed the statistical nature of the

weight changes associated with this rule including the time averaged learning dynam-

ics of the weight changes. Consequently, in order to show that the circuit is capable

of reproducing similar BCM-like behaviour, the same protocol as used by Pfister and

Gerstner (2006), has been implemented here. Therefore, either Idep2 must be set to zero

in the full-triplet circuit (Fig. 7.1), or the circuit can be changed to the minimal TSTDP

circuit presented in Fig. 7.2. The simulation results for the Poissonian protocol and

using the proposed minimal TSTDP circuit are shown in Fig. 7.8.

In this figure, each data point at each post-synaptic frequency, ρpost, demonstrates the

average value of weight changes for ten different realisations of post-synaptic and pre-

synaptic Poissonian spike trains. In addition, each error bar shows the standard de-

viation of the weight changes over these ten trials. The demonstrated results were

produced using the bias currents which correspond to the visual cortex data set (Table

7.1). In the circuit, Vpost(n−1), Vpost(n), Vpre(n) and Vpre(n) are Poissonian spike trains

where ρpost, ρpost, ρpre and ρpre denote their average firing rates, respectively. The

three different curves presented in Fig. 7.8 display three different weight modification

thresholds. In the original BCM rule, these thresholds are related to the post-synaptic
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Figure 7.8. The proposed TSTDP circuit can generate BCM-like behaviour. The required

bias currents for the circuit correspond to those used for the visual cortex data set

(Table 7.1). The three different curves show the synaptic weight changes according to

three different synaptic modification thresholds demonstrating the points where LTD

changes to LTP, which is controlled by the current Ipot2. The threshold is adjustable

using the TSTDP rule parameters. In order to move the sliding threshold toward left

or right, the Ipot2 parameter can be altered as depicted in this figure. The rate of

pre-synaptic spike trains, ρpre, is 10 Hz in all experiments. Each data point shows the

mean value of the weight changes for 10 different trials and the error bars depict the

standard deviations of the weight changes for each value of ρpost for these trials.

firing rate, ρpost. Based on Pfister and Gerstner (2006), the modification threshold for

the all-to-all spike interactions can be expressed as

θ =
〈

ρ
p
post

〉 (A−
2 τ−A+

2 τ+)

(ρ
p
0 A+

3 τ+τy)
, (7.6)

where
〈

ρ
p
post

〉

is the expectation over the statistics of the pth power of the post-synaptic

firing rate and ρ
p
0 =

〈

ρ
p
post

〉

for large time constants (10 min or more). However,

for the nearest-spike model which is the case for the proposed TSTDP circuit, it is

not possible to derive a closed form expression for the modification threshold based

on ρ
p
post, however for post-synaptic firing rate up to 100 Hz, a similar behaviour to

what Eq. 7.6 presents is inferable from the simulation results (supplementary materials

of Pfister and Gerstner (2006)). The three different curves in Fig. 7.8 are the results of

three different values for Ipot2 currents which correspond to three different values of
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A+
3 . This simulation suggests that the proposed circuit not only can reproduce timing-

based experimental outcomes, but also can reproduce some rate-based synaptic weight

modifications.

Other examples of post-synaptically driven BCM-like behaviour can be found in Ap-

pendix A; for these the circuit simulations were conducted by fixing the pre-synaptic

rates to 5 Hz and 15 Hz, respectively and post-synaptic rates varied from 0 to 50 Hz.

For both these cases a BCM-like behaviour was observed.

To analyse how BCM-like behaviour emerges from TSTDP, we need to go through the

same analysis used by Pfister and Gerstner (2006). In this circumstance, the triplet

learning rule can be recast into a simpler form by considering the statistical properties

of TSTDP weight changes which leads to the following time averaged equation,
〈

dw

dt

〉

= −A−
2 τ−ρpreρpost + A+

2 τ+ρpreρpost

−A−
3 τ−τxρ2

preρpost + A+
3 τ+τyρ2

postρpre,

(7.7)

where ρpre and ρpost are the pre- and post-synaptic firing rates, respectively. The other

parameters in the above equation τ−, and τ+, are time constants for the pair-based

contribution and τx, and τy are the corresponding time constants for the triplet-based

contribution of the original triplet learning rule by Pfister and Gerstner (2006).

By considering the mapping of Eq. 7.7 into a mathematically similar functional form of

the BCM rule, shown in Eq.2.6—following the method as described in Pfister and Ger-

stner (2006)—one can simply set A−
3 = 0 and for simplicity, keep A−

2 and A+
2 constant

in Eq. 7.7. This gives rise to the following expression
〈

dw

dt

〉

= −A−
2 τ−ρpreρpost + A+

2 τ+ρpreρpost

+A+
3 τ+τyρ2

postρpre. (7.8)

The above equation, given an appropriate choice of parameter values, can mimic BCM-

like nonlinear weight change dynamics by keeping ρpre fixed and altering the value of

the ρpost; under these conditions, one can numerically illustrate that the weight changes

as a function of increasing post-synaptic frequency, has a similar profile to the weight

changes of the original BCM rule as described by Eq. 2.6.

However, one must keep in mind an important aspect of the original BCM experi-

ments (Kirkwood et al. 1996, Cooper et al. 2004) in order not to introduce any mis-

conceptions about the original BCM rule. This aspect (excluding neuromodulatory
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effects) is that the original experiments were conducted using increasing pre-synaptic

frequency of inputs (Kirkwood et al. 1996). It is a well-known and undisputed fact that

neurophysiological experiments have shown that pre-synaptic activity typically drives

post-synaptic responses, and changes in post-synaptic firing rate only occurs as a re-

sult of changes to input activity. Put simply, changes in post-synaptic firing cannot be

considered independent from changes in pre-synaptic activity, they are functionally re-

lated. Hence, in a more precise physiological terms, the firing rate of the post-synaptic

neuron really needs to be considered as a function of its pre-synaptic inputs. A more in-

formative analysis of the weight dynamics of the triplet rule should take this fact about

pre- and post-synaptic firing rate, i.e. ρpost = F(ρpre), into account. Hence changing

the post-synaptic firing rates should really be driven by changes in pre-synaptic firing

rates, as they do in any neurophysiological setting; in this manner one can deduce a

more informative link between the plasticity model and the original BCM rule. Chang-

ing ρpost while keeping the pre-synaptic firing rate ρpre fixed, needs to be viewed with

caution as it represents a misinterpretation in the application of the original stimulus

protocol used in LTD/LTP experiment, despite leading to BCM-like weight changes.

As a check that our circuit can reproduce BCM-like behaviour which is driven by pre-

synaptic (rather than post-synaptic) activity, we have repeated our circuit simulations

but made the naive assumption that post-synaptic firing rate is a linear function of the

pre-synaptic firing rate, i.e. ρpost = Aρpre and for the sake of simplicity we let A = 1,

i.e ρpost = ρpre. Despite such a crude approximation, the circuit successfully was able

to mimic BCM-like behaviour where weight changes were pre-synaptically driven, as

illustrated in Fig. 7.9. In this figure, each data point shows the mean value of the weight

changes for 10 different trials and the error bars depict the standard deviations of the

associated weight changes.

Additionally, Matlab simulations were conducted using both the linear Poisson neuron

model and the Izhikevich model, in order to assess whether such models can reproduce

pre-synaptically driven BCM-like changes to synaptic strength. We found that in the

case of increasing the pre-synaptic activity, the resulting synaptic weight changes fol-

lowed a BCM-like profile where for low pre-synaptic activity, there was no alteration

to synaptic weight; for moderate levels of pre-synaptic activity, gave rise to depres-

sion (LTD) and for further increases in (pre-synaptic) activity led to potentiation (LTP).

Such a pre-synaptically driven BCM-like profile of synaptic change occurs for each
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Figure 7.9. The proposed TSTDP circuit can generate pre-synaptically driven BCM-like

weight changes. In this simulation, post-synaptic firing rate is a linear function of

pre-synaptic firing rate.

above stated neuron model and the results of these simulations are presented in Ap-

pendix A. These preliminary Matlab simulations were pursued in order to inform us

whether combining a circuit based model of a neuron with our TSTDP circuit will lead

to a circuit implementation capable of both timing and rate-based synaptic plasticity

changes.

7.5 Mismatch and Variation

Neuromorphic models are an approximation to biological experiments and as we can

see from these experiments there is a significant variation associated with them (Bi and

Poo 1998, Wang et al. 2005, Pfister and Gerstner 2006). Nonetheless, it is of interest to

produce circuits that mimic these models, the most important usually being the trend

of the circuit behavior. Having said that, as mentioned in Section 5.4.2, the variation

and mismatch inherent in the fabrication process of transistors in submicron scales and

subthreshold design regime are major concern when designing analog CMOS neuro-

morphic circuits especially in large-scale. The majority of neuromorphic models are

designed in the subthreshold regime to gain the required neuronal behavior and at the

same time enjoy less power consumption compared to above threshold operational re-

gion. However, the subthreshold regime usually brings about severe transistor thresh-

old voltage variations as well as inevitable transistor mismatch (Poon and Zhou 2011).
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In order to minimise the effect of variations and mismatch, the analog VLSI signal pro-

cessing guidelines proposed by Vittoz (1985) can be adopted. It should be acknowl-

edged that a complete elimination of mismatch and variations is not possible.

The proposed circuit uses a number of transistors operating in the subthreshold region

and also includes current mirrors. Therefore, it is expected that this circuit will be

susceptible to process variations. In order to show that the proposed design is process

tolerant, two types of analysis were performed here. First, the proposed design was

simulated using the worst case process corners of the AMS 0.35 µm CMOS model. The

simulation results shown in Figs. 7.3 to 7.6 demonstrate that under the process corners,

the proposed circuit functions within expectation (reasonable bounds) and can show

the expected behaviour in all cases. These figures show that there are slight variations

in the amplitudes, which can be adjusted by retuning the circuit’s bias currents. This

robustness suggests that the physical implementation of the proposed design would

be also robust and work within the expected design boundaries—Chapter 4 of Weste

and Harris (2005).

Furthermore, since the proposed design utilises current mirrors to copy currents and

set the required amplitudes and time constants of the TSTDP model, the effect of tran-

sistors mismatch on the circuit performance must be considered. Therefore as the sec-

ond variation analysis, the proposed circuit was examined against process variation

and transistor mismatch. For this purpose, a 1000 Monte Carlo (MC) runs were per-

formed on the proposed circuit in order to test its operational robustness.

The process variation scenario is as follows. All the circuit transistors go under a lo-

cal variation which changes their absolute parameter values in the typical model. The

process parameter that was chosen to go under these variations is the transistor thresh-

old voltage, which is one of the most important process parameters especially in the

proposed design consisting of transistors operating in the subthreshold region of op-

eration (Seebacher 2005). The parameters vary according to the AMS C35 MC process

statistical parameters. The threshold voltages of PMOS and NMOS transistors varied

according to a one sigma Gaussian distribution, which can change the threshold volt-

ages by up to 30 mV. This variation can be much less if larger transistor aspect ratios be

used for the design. According to Pelgrom’s law (Pelgrom et al. 1989), the variation has

a relation with transistors aspect ratio. According to the transistor sizing in the pro-

posed circuit, a σ(∆Vth) equal to 10 mV might be faced. Under such a circumstance,
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a 1000 MC runs were performed on the proposed circuit for three different cases, as

described below.

As the first case of MC analysis, the circuit was stimulated by a pairing protocol to re-

produce the exponential STDP learning window in the presence of the mentioned local

variation. The circuit bias currents correspond to those used for the typical model and

hippocampal data set reported in Table 7.1. Note that Fig. 7.10 shows a 1000 MC analy-

sis performed on the proposed circuit. This figure also shows that the proposed circuit

is less susceptible to process variation and the overall LTP/LTD exponential behaviour

can be preserved. However, the strength of the proposed circuit is in its controllabil-

ity using the bias currents. The observed variations in the design can be alleviated

by means of readjusting the circuit bias currents. This tuning can be conducted even

after the circuit is fabricated. If the fabricated circuit performance changes from the ex-

pected characteristics, the circuit bias currents, which serve as inputs to the fabricated

chip, can be retuned to reach the required behaviour.

[V
]

Figure 7.10. STDP learning windows produced in 1000 MC runs using the optimised bias

parameters for the hippocampal data set. Each curve represents the weight change

obtained from the minimal TSTDP circuit that is stimulated according to the pairing

protocol to reproduce the STDP window. In each run, a random variation of transistors

threshold voltages occurs. The circuit bias parameters are those used for the typical

transistor model for the hippocampal data set, which are reported in Table 7.1. The

inset figure shows the STDP experimental data extracted from Bi and Poo (1998).

Note the similarity between the simulation results and the experimental data.
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The second analysis was performed under similar process variation conditions to the

first case, but this time the circuit was stimulated by the frequency-dependent pair-

ing protocol to reproduce the visual cortex data set and the resulting NMSEs were

computed for 1000 MC runs. The circuit bias currents correspond to those used for

the typical model, which are reported in Table 7.1. The obtained results are shown

in Fig. 7.11. Furthermore, as the third case, the same analysis was carried out for the

hippocampal data set and bias parameters presented in Table 7.1. Achieved results

are demonstrated in Fig. 7.12. Figures 7.11 and 7.12 show significant variations in the

value of NMSE compared to the typical transistor parameters that the circuit bias cur-

rents (see Table 7.1) were optimised for. Despite these deviations in the NMSE values

under process variations, they are easily treatable by retuning the bias currents.

Figure 7.11. NMSEs obtained to reproduce the visual cortex data set in 1000 MC runs,

using the optimised bias parameters for this data set. Each run represents a

NMSE value obtained from the minimal TSTDP circuit that is stimulated according

to the freqneucy-dependent pairing protocol to mimic the visual cortex data set. The

circuit bias parameters are those used for the typical transistor model for the visual

cortex data set, which are reported in Table 7.1. In each run, a random variation of

transistors threshold voltages occurs.

In the case of the visual cortex data set, the worst NMSE was almost 78 that is much

larger than a minimal NMSE obtained using the typical model, NMSE = 0.33. Also,

in the case of hippocampal data set, the worst NMSE is about 306, which is again

significantly bigger than the NMSE obtained using the typical model, NMSE = 1.74.

These major deviations can be significantly reduced by retuning circuit bias currents
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and optimising them to get a minimal NMSE, in the presence of process variation. It

means that, some bias tuning should be performed on the circuit to reach a minimal

NMSE comparable to the design target.

Figure 7.12. NMSEs obtained to reproduce the hippocampal data set in 1000 MC runs,

using the optimised bias parameters for this data set. Each run represents a

NMSE value obtained from the minimal TSTDP circuit that is stimulated according

to the triplet, qudruplet, and pairing protocols to mimic the hippocampal data set.

The circuit bias parameters are those used for the typical transistor model for the

hippocampal data set, which are reported in Table 7.1. In each run, a random variation

of transistors threshold voltages occurs.

As an example, the worst case of NMSE for the hippocampal data set (NMSE = 306.4)

is in the case of some big changes in the threshold voltages around 30 mV. In the pres-

ence of these parameter variations in the design, all circuit bias currents were adjusted

again and a new minimum NMSE was obtained. The achieved NMSE, which is equal

to 1.92, is consistent with the design expectations. The retuned circuit bias currents in

this case are given in Table 7.2. Using these new bias currents, the required behaviour

for the pairing experiment (Fig. 7.3), the quadruplet experiment (Fig. 7.6), as well as the

triplet experiment (Figures 7.5(a) and (b)) were well observed. The same approach was

considered for the visual cortex data set, and the worst NMSE(= 78) changed to an ac-

ceptable NMSE = 0.47 that can faithfully represent the required frequency-dependent

behaviour in the pairing visual cortex experiment shown in Fig. 7.4.

Both worst case and MC analysis performed on the circuit show the robustness and

the controllability of the design in the presence of physical variations. Hence, despite
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Table 7.2. Retuned TSTDP circuit bias currents and the resulted NMSEs in the presence

of the worst case variation in 1000 MC runs. The table shows the NMSEs in the

presence of the worst case variation in 1000 MC runs shown in Figures 7.11 and 7.12.

NMSEs were equal to 78 and 306.4 for the visual cortex and the hippocampal data sets,

respectively, but they were brought back to the shown NMSEs by readjusting the circuit

bias currents from the values shown in Table 7.1.

Data set Ipot1 Idep1 Itp1 Itd1 Ipot2 Itp2 NMSE

Visual cortex 0 260 nA 1 nA 120 pA 590 nA 150 pA 0.47

Hippocampal 510 nA 240 nA 270 pA 860 pA 110 nA 180 pA 1.92

the fact that the proposed design has some susceptibility to process variations, a post-

fabrication calibration is possible through retuning the bias currents of the design to

achieve a minimal NMSE to faithfully reproduce the needed learning behaviour.

7.6 VLSI Implementation of the Proposed TSTDP Cir-

cuit and Chip Measurement Results

The proposed TSTDP circuit was designed and integrated on a multi-neuron chip,

named MN256R1, fabricated in collaboration with the Neuromorphic Cognitive Sys-

tems (NCS) group in the Institute of Neuroinformatics (INI), Uni/ETH Zurich, Switzer-

land. Figure 7.13(a) shows the chip and its bounding wires under the microscope.

The test block of the TSTDP circuit is shown in the bottom of the chip. In addition,

Fig. 7.13(b) demonstrate the TSTDP circuit block under the microscope. Note to the

five large capacitors sitting besides each other to form the required biological time

constants as well as to restore the synaptic weight for longer times. Unlike the circuit

simulations shown earlier in this chapter that utilised accelerated time to reproduce

the TSTDP behaviour, the proof circuit is fabricated to realise biologically plausible

time constants in the order of tens of ms. In addition, the updated synaptic weight

value must be retained to perform various synaptic plasticity experiments in the sys-

tem. Therefore, large capacitors were employed in the chip to ensure the required long

time constants, as well as keeping the updated synaptic weight changes for required

time. The issue of large capacitors in neuromorphic design to obtain large time con-

stants was already discussed in Section 5.4.8.
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Figure 7.13. The MN256R1 multi-neuron chip under the microscope. (a) This figure shows

the complete chip including neurons and plastic synapses. The TSTDP circuit block

is shown inside a red dashed box. (b) This photo micrograph shows further detail of

the TSTDP circuit block and its five large capacitors. Note that the relevant circuit

is inside the area surrounded by the red dashed box.

The chip was designed and fabricated using a 1-poly 6-metal 0.18 µm AMS CMOS

process. The utilised design kit was Hit-Kit 4.01, and the supply voltage is 1.8 V. The

layout of the implemented TSTDP circuit is shown in Fig. 7.14. The required silicon

area for the implemented circuit is 165 µm ×60 µm, from which almost 75 percent is
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occupied by the five capacitors. In addition to the four time constants capacitors i.e.

Cpot1, Cdep1, Cpot2 and Cdep2, as shown in Fig. 7.1, another capacitor is the Cw capacitor,

which has the same size as the time constant capacitors.

Figure 7.14. The layout of the TSTDP circuit implemented on the MN256R1 chip. The

layout shows various parts of the TSTDP circuit, including five large capacitors with

the size of 500 fF in order to reach biologically plausible time constants in the order of

ms, in contrary to the circuit simulations that were performed in an accelerated time

scale and therefore four of the capacitors related to the TSTDP time constants were

smaller and only the weight capacitor was large for retaining the synaptic weight for

longer time. The occupied area by the implemented TSTDP circuit is 165 µm× 60 µm.

Performed chip measurement results show that the implemented TSTDP device func-

tions as expected and correctly follows the weight update pattern of the TSTDP rule.

As an example, Fig. 7.15 depicts measurement results from the TSTDP circuit, while

it is stimulated with four required signals, namely pre, post, pre(n-1) and post(n-

1). These signals are generated as pulses with 1 ms width. Each signal is repeated

with a delay of 20 ms for a period of time. The time difference among pre and post-

synaptic spikes is set to be 10 ms. This time difference can be both increased and

decreased, which therefore results in different synaptic weight changes amplitudes,

which is shown as the fourth signal in Fig. 7.15. The figure shows that the synaptic

weight, W, is first depressed when a pre-synaptic spike arrives. This is due to a pre-

post-pre (the first pre in this pattern is not shown in the figure) spike triplet, which

results in depression, as expected. Next the synaptic weight is increased (potentiated),

which is in result of a post-pre-post (the first pre in this pattern is not shown in the

figure) spike combination, as expected. Finally, the synaptic weight is shown to be

depressed again at the arrival of the second pre signal shown in the figure. This de-

pression is in result of the pre-post-pre triplet, which is shown in the figure. Note that,
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the circuit also needs a delayed version of pre- and post-synaptic spikes, pre(n-1) and

post(n-1), to function correctly. The figure only shows the post(n-1) signal, which is a

duplicate of post spike train, with 1 ms delay. Note that the circuit also needs to re-

ceive pre(n-1), which is a delayed version of pre spike train with 1 ms delay, to function

according to the TSTDP equation (see Eq. 7.1).

Figure 7.15 shows stronger potentiation than depression. As already discussed in Sec-

tion 7.2, in the TSTDP rule, the magnitude of potentiation and depression are deter-

mined by eight synaptic parameters including pair- and triplet-based potentiation and

depression time constants and magnitude parameters. The same set of parameters are

available in the implemented circuit as eight input analog biases that are set by a pro-

grammable bias generator device. In the shown measurement, the circuit is set in a

way to show stronger potentiation than depression.

Figure 7.15. Measurement results of the fabricated TSTDP circuit. This figure demonstrtaes

synaptic weight changes due to pre-post-pre, post-pre-post and pre-post-pre spike com-

binations from left to right. The synaptic weight signal, W, shows the voltage changes

across the weight capacitor. As expected, a pre-post-pre combination of spikes results

in depression, while a post-pre-post spike triplet results in potentiation. The magnitude

of weight change at the time of each spike is controlled by pair and triplet potentia-

tion and depression time constants and amplitude parameters (see circuit description

in Section 7.3 and equation 7.1) that are applied to the circuit as 8 different analog

biases.
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The MN256R1 is composed of 256 low power IF neurons. The implemented TSTDP

learning circuit can be interfaced to 256 low power IF neurons on the MN256R1 chip,

using the available AER system already discussed in Sections 3.2 and 3.3. The AER

system is also useful to generate the required pre(n-1) and post(n-1) spike trains which

are delayed versions of pre- and post-synaptic spike trains.

7.7 Discussion

As it is shown in this chapter, the proposed VLSI design for the TSTDP learning rule

produces a very close fit to the experimental data. Having a minimal fitting error has

been the primary goal of the proposed design. Although this goal has been success-

fully satisfied, considering the challenges mentioned in Section 5.4, this design faces

some challenges when integrated in a large-scale SNN, to be used in a learning or

computation application. One of the first challenges that is generic to almost all VLSI

implementations of synaptic plasticity models is the silicon real estate used by the de-

sign and its weight storage technique. In the proposed design, a large capacitor has

been utilised to store the synaptic weights for long period of times in the orders of

hundreds of ms. However, in a large-scale neuromorphic system having such large

capacitors for storing the synaptic weight is not practicable. A number of methods to

tackle the weight storage technique problem was discussed in Section 5.4.8.

A counter approach that is appropriate in the proposed design is to use a smaller ca-

pacitor along with a bistability circuit (Indiveri et al. 2006). However, this technique

has its own problem, as it confines the synaptic weights to two final steady states and

therefore, the analog nature of the weight is compromised. In addition, integrating the

TSTDP circuit with a memristive memory element is also another option to save silicon

area (Azghadi et al. 2013d). This approach has its own problems such as high variabil-

ity though. Besides, the use of compact CMOS memory elements to store the synaptic

weight (Seo et al. 2011) is another promising solution for storing the synaptic weight.

Either of the mentioned methods are useful to decrease the silicon are required for

weight storage, however none of them decrease the large area required for the TSTDP

circuit itself that contains 37 transistors, and four capacitors. In the next chapter, a

new design will be proposed that minimise the number of transistors used to realise

the TSTDP rule, and decrease the size of the weight capacitor by a factor of 10, while

loosing just a little of synaptic weight change prediction ability.
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In addition to the weight storage, another challenge the proposed design faces to be

used in large-scale systems is its susceptibility to process variation, similar to all analog

VLSI designs in micro/nano meter design regime. Although the presented MC simula-

tion analysis and the result from fine-tuned circuits (presented in Section 7.5) show that

it is possible to minimise the effect of process variations, fine tuning of the circuit bias

parameters in a large spiking neural network of neurons and proposed triplet synapses

sounds to be not practical. Hence, a variation aware design technique is required that

take into account the process variation while designing the desired neuronal circuit.

The technique utilised to alleviate variations and mismatch in our design is using the

rules of transistor matching proposed by Vittoz (1985). However, in the worst case

variation condition, this approach is not adequate.

An interesting approach available in the literature that is useful for the proposed TSTDP

circuit when it is integrated in a large-scale neuromorphic system is the use of already

available AER framework in the system to fine-tune the circuit. This approach has been

successfully utilised in previous works for both small-scale (Neftci and Indiveri 2010)

and large-scale SNNs (Choudhary et al. 2012).

Another approach available in the literature, which is not useful for our proposed cir-

cuit design, is the design technique proposed and well utilised by Rachmuth et al.

(2011) and Meng et al. (2011) in neuromorphic modelling of ion channel and ionic dy-

namics. This variation aware design technique exploits source degeneration and neg-

ative feedback methods to increase the dynamic range of input voltages of transistors

and make them robust against mismatch errors that happen mainly because of the low

input voltage dynamic range in traditional subthreshold current mode circuits (Poon

and Zhou 2011). The exploitation of the source degeneration and negative feedback de-

sign techniques can be another alternative to build a network of neurons with TSTDP

synapses, which are not susceptible to process variations.

Apart from the above mentioned challenges, power consumption of the proposed de-

sign is another essential feature of a neuromorphic learning circuit, which should be

considered. The simulation results show that the proposed design consumes almost

60 pJ energy per spike, which is rather high comparing to some other synaptic plas-

ticity circuit implementations as presented in Table 5.1. Note that in a large-scale neu-

romorphic system that contains billions of synaptic plasticity circuit, saving a little of

energy per circuit is critical. Next chapter proposes a new TSTDP design that not only
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is more compact, but also is more energy efficient than the current design. This be-

comes possible with the cost of losing a bit of weight modification accuracy.

7.8 Chapter Summary

A high performance synaptic plasticity circuit for the TSTDP rule was proposed in

this chapter. The presented results show that this new circuit is able to very closely

fit many biological experiments including rate-based (Bienenstock et al. 1982, Pfister

and Gerstner 2006), timing-based (Bi and Poo 1998, Wang et al. 2005), and hybrid rate

and timing-based experiments (Sjöström et al. 2008). It was also shown that the circuit

is able to closely match the experiments for the extra triplet patterns of a suppres-

sive STDP model presented in Froemke and Dan (2002). Furthermore, the rate-based

behaviour of the proposed timing-based circuit was examined under various experi-

mental protocols to stimulate the circuit both pre- and post-synaptically to mimic the

results presented in computational model experiments—post-synaptically driven—

(Izhikevich 2003, Pfister and Gerstner 2006) as well as the pre-synaptically driven bio-

logical experiments (Kirkwood et al. 1996).

In addition to its biological accuracy and plausibility, the circuit was investigated in

terms of process variation. As reported in the chapter, although the inherent analog

VLSI process variation may result in incorrect circuit operation, it is possible to retune

the circuit to perform its expected function. However, designing a circuit with the

same capabilities, but less prone to variation will be of high interest, since in this case

the functionality is not severely affected by the variations, so the circuit may work as

expected without the need for retuning.

Besides, the investigation on the power consumption of the circuit shows that, despite

having a high performance when reproducing the biological experiments, it consumes

relatively high energy, compared to some of the low energy designs available in the

literature (Cruz-Albrecht et al. 2012). Besides, it was discussed that this design that

utilises a large capacitor for storing the synaptic weight occupies large silicon area, a

problem that is generic to most of the synaptic plasticity learning circuits (Bofill-I-Petit

and Murray 2004, Indiveri et al. 2006, Koickal et al. 2007). Therefore, there is a need for

a new design that not only reproduces all the mentioned biological experiments with

an acceptable accuracy, but also is very low energy and compact.
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In the next chapter, a novel ultra low-energy, and compact design is presented that

improves the previous designs in all essential aspects, but in result its synaptic weight

modification ability is slightly compromised.
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Chapter 8

Low Energy and Compact
Neuromorphic Circuit for

Spike-based Synaptic
Plasticity

T
HIS chapter introduces a new accelerated-time circuit that has

several advantages over its previous neuromorphic counterparts,

which were discussed in previous chapters, in terms of compact-

ness, power consumption, and capability to mimic the outcomes of bio-

logical experiments. The proposed circuit is investigated and compared

to other designs in terms of tolerance to mismatch and process variation.

Monte Carlo (MC) simulation results show that the proposed design is

much more stable than its previous counterparts in terms of vulnerability to

transistor mismatch, which is a significant challenge in analog neuromor-

phic design. All these features make the proposed circuit an ideal device

for use in large scale spiking neural networks, which aim at implementing

neuromorphic systems with an inherent capability that can adapt to a con-

tinuously changing environment, thus leading to systems with significant

learning and computational abilities.
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8.1 Introduction

The brain processes large amounts of data in real-time in the presence of noise, while

consuming little power. It also takes little space and has extraordinary processing fea-

tures. The ultimate goal for neuromorphic engineers is to develop a cybernetic sys-

tem, which closely mimics the capabilities of the brain. To reach this goal, as already

mentioned, understanding and implementing in silico the main components of cortical

networks, i.e. neurons and synapses, is a crucial first step.

Currently, the dynamical behaviour of biological neurons is best understood through

biophysically detailed models, such as the Hodgkin-Huxley (HH) model (Hodgkin

and Huxley 1952), which given the correct parameters, can replicate various experi-

mentally observed response properties. Using such models one can develop hypothe-

ses about cortical circuit behaviour and any underlying computations taking place.

The complexity of such biophysical models can be a prohibitive bottleneck when trans-

lation into silicon is desired. For this reason simpler models, such as the Integrate-

and-Fire (IF) (Izhikevich 2004, Indiveri et al. 2011), have been adopted in simulating

networks, even though they lack the dynamic realism of real cortical circuits.

Identical to neuron models, there are a variety of synaptic plasticity models. Some

of these models embrace certain features of real biological synapses, however they

tend to be complex in their (mathematical) formulation. On the other hand, other

models have been mathematically formulated to replicate the outcomes of a subset

of known experiments. Their representation is typically simpler in form allowing, in

some cases, reduced problematic translation into silicon. Generally, the main purpose

of such simplified rules is to mimic, as accurately as possible, the outcomes of various

experimental synaptic plasticity protocols (Mayr and Partzsch 2010, Morrison et al.

2008).

In this chapter, a new VLSI implementation of a malleable synaptic circuit that is capa-

ble of mimicking the outcomes of various synaptic plasticity experiments, is proposed.

It is demonstrated that the new design has a compact structure and possesses low

power features, which are required for VLSI implementations of large-scale spiking

neural networks. In addition, the robustness of the proposed circuit is verified against

transistor mismatch and process variations. The results show that the new circuit is a

reliable design in terms of transistor mismatch. These features make this new design

an ideal learning component that may benefit various VLSI synaptic plasticity systems.

The proposed circuit is of potential interest for future large scale neuromorphic circuits
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with significantly high numbers of neurons and synapses, where low power consump-

tion, compactness, accuracy and mismatch tolerance are absolutely essential.

The results shown in this chapter are presented mainly in PLOS ONE (Azghadi et al.

2014a), as well as in The 2013 IFIP/IEEE International VLSI/SOC conference (Azghadi et al.

2013c), and in The 20th IEEE International Conference on Electronics, Circuits and Sys-

tems (Azghadi et al. 2013b).

8.2 Minimal Representation of Triplet STDP Model

As discussed and shown in Section 2.6.1, the weight changes in the triplet-based STDP

(TSTDP) model of synaptic plasticity occur according to the timing differences among

triplet of spikes in contrary to the pair-based STDP, which alters the synaptic weight

based on the timing differences between pairs of spikes. The TSTDP rule is described

by

∆w =







∆w+ = A+
2 e

(
−∆t1

τ+
)
+ A+

3 e
(
−∆t2

τy
)
e
(
−∆t1

τ+
)

∆w− = −A−
2 e

(
∆t1
τ−

)
− A−

3 e(
−∆t3

τx
)e

(
∆t1
τ−

)
,

(8.1)

where the synaptic weight can be decreased (depressed) if a pre-synaptic spike oc-

curs, or can be increased (potentiated) at the time when a post-synaptic spike arrives.

Here, A+
2 , A+

3 and A−
2 , A−

3 are the potentiation and depression amplitude parame-

ters, respectively. In addition, ∆t1 = tpost(n) − tpre(n), ∆t2 = tpost(n) − tpost(n−1) − ǫ

and ∆t3 = tpre(n) − tpre(n−1) − ǫ, are the time differences between combinations of pre-

and post-synaptic spikes, while ǫ is a small positive constant, which ensures that the

weight update uses the correct values occurring just before the pre or post-synaptic

spike of interest. In Eq. 8.1, τ− and τx are depression time constants, while τ+ and τy

are potentiation time constants (Pfister and Gerstner 2006).

In addition, it was pointed out that since the TSTDP rule utilises higher order temporal

patterns of spikes, it is shown to be able to account for the outcomes of several exper-

imental protocols including the frequency-dependent pairing experiments performed

in the visual cortex (Sjöström et al. 2001), or triplet, and quadruplet spike experiments

performed in the hippocampus (Wang et al. 2005). Note that, the PSTDP rule fails to

reproduce the outcomes of these experiments (see Chapter 6). This is due to a linear

summation of the effect of potentiation and depression in the PSTDP rule, while the

underlying potentiation and depression contributions in the TSTDP rule, do not sum

linearly (Froemke and Dan 2002).
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Numerical simulation results presented in Section 2.6.1 demonstrate how a minimised

version of the full TSTDP rule, which is shown in Eq. 8.1, can approximate a number

of biological experiments performed in hippocampal including quadruplet, triplet and

STDP window experiments outcomes. This minimised TSTDP rule is presented as

∆w =







∆w+ = A+
2 e

(
−∆t1

τ+
)
+ A+

3 e
(
−∆t2

τy
)
e
(
−∆t1

τ+
)

∆w− = −A−
2 e

(
∆t1
τ−

)
.

(8.2)

This model is able to account for quadruplet, triplet, and pairing (window) experi-

ments as shown in Pfister and Gerstner (2006) and Azghadi et al. (2013a). In addition to

the capability of simultaneously approximation of triplet, quadruplet and STDP win-

dow experiments with the same set of synaptic parameters, another minimal version

of TSTDP rule, is also capable of reproducing the results of the frequency-dependent

pairing experiments performed in the visual cortex (Sjöström et al. 2001). The minimal

model for this experiment can be shown as

∆w =







∆w+ = A+
3 e

(
−∆t2

τy
)
e
(
−∆t1

τ+
)

∆w− = −A−
2 e

(
∆t1
τ−

)
,

(8.3)

which is simpler and utilises a lower number of synaptic parameters, and therefore

needs a new set of parameters, in comparison with the previous minimal model for

hippocampal experiments.

Besides the ability of reproducing timing-based experiments, the TSTDP rule has the

capability to demonstrate BCM-like behaviour. The BCM learning rule is an exper-

imentally verified (Dudek and Bear 1992, Wang and Wagner 1999) spike rate-based

synaptic plasticity rule, proposed in Bienenstock et al. (1982). Unlike STDP, which is a

spike-timing based learning rule, synaptic modifications resulting from the BCM rule

depends on the rate (activity) of the pre- and post-synaptic spikes (Bienenstock et al.

1982).

In the following section, a novel VLSI design for TSTDP rule is proposed that have

fewer number of transistors, smaller area, and lower power consumption, than all pre-

viously published circuits, yet with all their synaptic capabilities. These features make

this design an ideal learning component for large-scale neuromorphic circuits. It is

shown that the proposed circuit is able to faithfully reproduce the outcomes of many

biological experiments, when examined under experimental protocols mentioned in

Section 2.5.
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8.3 Proposed Low Energy and Compact STDP Circuit

The proposed design in this chapter is implemented based on a different arrangement

of the TSTDP rule presented in Eq. 2.3. This new arrangement is given by

∆w =











∆w+ = e
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3 e(
−∆t3

τx
)
)

.
(8.4)

The new TSTDP circuit is demonstrated in Fig. 8.1. This symmetric circuit operates

as follows: When a pre-synaptic spike, Vpre(n), is received at the gate of M6 at tpre(n),

Vpot1 reaches ground resulting in switching on M8, and then starts to increase linearly

toward Vdd. The rate of this increase is determined by Vtp1 that is applied to the gate of

M5, and corresponds to the pairing potentiation time constants, τ+, which is present

in both pairing and triplet potentiation terms as shown in the first line of Eq. 8.1.

Figure 8.1. Proposed circuit for the full TSTDP rule. This circuit corresponds to the modified

full TSTDP rule shown in Eq. 8.4. The minimal circuit that corresponds to the first

minimal TSTDP model shown in Eq. 8.2 does not include transistors M1-M4 shown

in the red dashed-box. Furthermore, the minimal TSTDP circuit that corresponds to

the second minimal TSTDP model shown in Eq. 8.3, does not include the M1-M4

transistors, nor the M7 transistor, shown in the blue dashed-box.

In fact, Vpot1 is a triangular voltage, which is controlled by the leaky integrator com-

posed of the output conductance of M5 and the gate capacitor of M8, to control the
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existence of the potentiation in the first place and allows a current, Ipot, to flow through

the potentiation branches (M7-M9 and/or M15-M16-M8-M9) at the time of arrival of a

post-synaptic spike at M9, tpost(n).

The linear increase of Vpot1, which starts at tpre(n), and leads to charging the weight

capacitor through M8 once tpost(n) arrives, is approximately proportional to

e
(
−∆t1

τ+
)
,

where ∆t1 = tpost(n) − tpre(n) and τ+ approximates by Vtp1. This term is repeated twice

in the first line of Eq. 8.1, and can be factorised as it is shown in the first line of Eq. 8.4.

Furthermore, the addition term shown in the second term of first line of Eq. 8.4 that de-

termines the amount of potentiation as a result of both pair and triplet interactions, is

approximated through a sum of two currents that charge the weight capacitor, Cw, and

represent synaptic weight potentiation. The first current is controlled by the control-

lable voltage VA+
2

, while the second one is determined by both the second potentiation

dynamic Vpot2, as well as the controllable voltage VA+
3

. When a post-synaptic spike

arrives at M18, Vpot2 reaches ground and after the post-synaptic pulse duration is fin-

ished, it starts to increase linearly toward Vdd. The rate of this increase is determined

by Vtp2 that is applied to the gate of M17, and corresponds to the triplet potentiation

time constants, τy. Therefore, the current flowing through M15-M16 can be an approx-

imation of

A+
3 e

(
−∆t2

τy
)
,

where ∆t2 = tpost(n) − tpost(n−1). The current flowing through M15-M16 transistors

accumulates with the current flowing through M7 transistor (which is controlled by

gate voltage VA+
2

) and forms the total current that is approximately proportional to

A+
2 + A+

3 e
(
−∆t2

τy
)
,

and it represents an approximation of the second term of the first line of Eq. 8.4.

The same dynamic operates in the depression half of the proposed circuit, in which

currents flow away from the weight capacitor, Cw, and represent synaptic weight de-

pression. In this part, current sinks away from the weight capacitor through M10-

M12, if there has been a pre-synaptic action potential that arrives at M10, in a spec-

ified time window defined by Vtd1 (which corresponds to τ−), after a post-synaptic
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spike arrives at M13. The amount of this current is first determined by the time dif-

ference between the pre- and post-synaptic spikes (∆t1) and then by the controllable

voltage, VA−
2

. Therefore, this current approximates

A−
2 e

(
∆t1
τ−

)
,

where ∆t1 = tpost(n) − tpre(n). This is the pairing depression current that flows away

from the weight capacitor and results in depression due to post-pre spike pairs.

In addition, another current that can discharge the capacitor and results in depression,

will flow through M10-M11-M3-M4, if two conditions are satisfied. First, if there has

been a previous pre-synaptic spike, Vpre(n−1), in a specified time window, set by Vtd2

(which corresponds to τx), before the current pre-synaptic spike, Vpre(n), arrives at M10

gate. And second, if a post-synaptic spike arrived at M13 gate in a specified time

window set by Vtd1 before the current and after the previous pre-synaptic spikes. The

magnitude of this current is first controlled by the time difference between the pre-

and post-synaptic spikes (∆t1), second with the time difference between the Vpre(n) and

Vpre(n−1) spikes, (∆t3), and then by controllable voltage, VA−
3

. Therefore, this current

approximates

A−
3 e

∆t1
τ− e

−∆t3
τx ,

where ∆t1 = tpost(n) − tpre(n) and ∆t3 = tpre(n) − tpre(n−1). This is the triplet depression

current that flows away from the weight capacitor and results in depression due to

pre-post-pre spike triplet.

If the above two currents accumulate together, they form the depression term of both

Eqs. 8.1 and 8.4 that are equal as follows,

−A−
2 e

(
∆t1
τ−

)
− A−

3 e
∆t1
τ− e

−∆t3
τx = −e

(
∆t1
τ−

)(
A−

2 + A−
3 e

−∆t3
τx ), (8.5)

where the negative sign indicates that the current is depressive and that it flows away

from the weight capacitor.

Note that the above explanations contain assumptions that approximate the TSTDP

rule using our proposed circuit. However, from a circuit analysis point of view, if M3-

M4, M7-M12, and M15-M16 operate in the subthreshold regime (Liu et al. 2002), the
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analytical expressions for Ipot and Idep, which are potentiation and depression currents,

respectively, can written as follows

Ipot(t) =
I0

e
−(κ/UT)Vpot1(t−tpre(n))+e

−(κ/UT)VA2+
+

I0

e
−(κ/UT)Vpot1(t−tpre(n))+e

−(κ/UT)Vpot2(t−tpost(n−1))+e
−(κ/UT)VA3+

,
(8.6)

Idep(t) =
I0

e
−(κ/UT)Vdep1(t−tpost(n))+e

−(κ/UT)VA2−
+

I0

e
−(κ/UT)Vdep1(t−tpost(n))+e

−(κ/UT)Vdep2(t−tpre(n−1))+e
−(κ/UT)VA3−

(8.7)

where tpre(n) and tpost(n) are current pre- and post-synaptic spike times respectively,

while tpre(n−1) and tpost(n−1) are the times at which the previous pre- and post-synaptic

spikes have arrived. Therefore, the voltage change in synaptic weight, shown as Vw in

Fig. 8.1, is approximated as:

∆Vw =















∆V+
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(

Ipot(tpost(n))

Cpot1

)

∆tspk

∆V−
w =
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Idep(tpre(n))

Cdep1

)

∆tspk

(8.8)

where ∆tspk are the width of pre- and post-synaptic spike pulses, and Cpot1 and Cdep1

are the parasitic capacitance at the gate of M8, and M11, respectively. Please note that,

in the proposed circuit, similar to the TSTDP model, whenever a pre-synaptic spike

arrives at tpre(n), a depression can happen, while a potentiation can happen whenever

a post-synaptic spike arrives.

Below, experimental results of the proposed circuit are presented. In addition, the cir-

cuit is compared with previous synaptic plasticity circuits in terms of power consump-

tion, area and ability in reproducing the outcomes of various biological experiments.

8.4 Experimental Results

8.4.1 Experimental Setup

This section provides information about the experimental setup, under which simula-

tions are performed. These simulations are carried out in order to verify the perfor-

mance of the proposed circuit and compare its performance with published synaptic

plasticity circuits in the literature.
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Minimal TSTDP Circuits

As already discussed, in order to regenerate the outcomes of several biological ex-

periments, minimal models of the TSTDP rule, shown in Eqs. 8.2 and 8.3 are suffi-

cient. Matlab simulation results of the first minimal model, presented in Pfister and

Gerstner (2006) demonstrate that the first minimal TSTDP model, shown in Eq. 8.2,

can efficiently generate STDP window, triplet, and quadruplet experiments, using the

synaptic parameters optimised for these experiments. In addition, according to an-

other set of numerical simulations, the frequency-dependent pairing experiments and

also the BCM-like rate-based experiments, can be regenerated through the second min-

imal model, shown as Eq. 8.3, and by employing the synaptic parameters optimised for

the frequency-dependent pairing experiments. As the full TSTDP rule is minimised,

the proposed circuit that approximates the full TSTDP rule, can also be further mod-

ified and hence the number of transistors is reduced from the 18 transistors required

for the full TSTDP circuit shown in Fig. 8.1.

This chapter presents experimental results of two minimal TSTDP circuits that corre-

spond to the two minimal TSTDP models mentioned in previous paragraph. Accord-

ing to the minimal rules shown in both Eqs. 8.2 and 8.3, the depression contribution

of the spikes triplet interactions can be neglected without having a significant effect

on the circuit performance in reproducing the targeted biological experiments. The

triplet depression part in the full TSTDP circuit shown in Fig. 8.1, is the four transis-

tors surrounded in the red-dashed box. Therefore, the minimal TSTDP circuit, is the

one shown in Fig. 8.1 minus the part enclosed in the red-dashed box, i.e only 14 tran-

sistors are needed to regenerate all desired biological experiments, as it is shown in

Fig. 8.2. This is the first minimal TSTDP circuit.

In addition, the numerical simulation results suggest that, for generating the frequency-

dependent pairing experiments, as well as the BCM experiment, further to the triplet

depression part of the circuit, the pairing potentiation part is not also necessary and

can be removed (see Section 2.6.1). Therefore, in the case of second minimal TSTDP

rule, shown in Eq. 8.3, A+
2 can be set to zero. As a result, one more transistor that

is shown in the blue dashed-box can be also removed from the proposed full TSTDP

circuit (Fig. 8.1) and therefore only 13 transistors are required for generating the men-

tioned pairing and BCM experiments (Pfister and Gerstner 2006). The resulting circuit

is shown in Fig. 8.3. This is the second minimal TSTDP circuit (Azghadi et al. 2013b).
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Figure 8.2. First minimal TSTDP circuit. This circuit corresponds to the first minimal TSTDP

model shown in Eq. 8.2. Therefore, this circuit does not include the triplet depression

section of the full TSTDP circuit shown in Fig. 8.1.

Experiments Data Sets

Since there are two versions of the minimal TSTDP rule each corresponding to a mini-

mal TSTDP circuit, two sets of simulations are performed using the proposed minimal

circuits. Each simulation set considers a specific set of data from the experiments. The

first experimental data set that is utilised originates from hippocampal culture experi-

ments that examine pairing, triplet and quadruplet protocols effects on synaptic weight

change (Wang et al. 2005). This first data set consists of 13 data points obtained from

Table 2 of Pfister and Gerstner (2006). These data points include (i) two data points

and error bars for pairing protocol (ii) three data points and error bars for quadru-

plet protocol, and (iii) eight data points and error bars for triplet protocol. This data

set shows the experimental weight changes, ∆w, as a function of the relative spike tim-

ing ∆t, ∆t1, ∆t2 and T under pairing, triplet and quadruplet protocols in hippocampal

culture.
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Figure 8.3. Second minimal TSTDP circuit. This circuit corresponds to the second minimal

TSTDP model shown in Eq. 8.3. Therefore, this circuit does not include the triplet de-

pression section of the full TSTDP circuit shown in Fig. 8.1, nor its pairing potentiation

part (Azghadi et al. 2013b).

The second data set originates from experiments on the visual cortex, which investi-

gated how altering the repetition frequency of spike pairings affects the overall synap-

tic weight change (Sjöström et al. 2001, Sjöström et al. 2008). This data set is composed

of 10 data points—obtained from Table 1 of Pfister and Gerstner (2006)—that repre-

sent experimental weight change, ∆w, for two different ∆t’s, and as a function of the

frequency of spike pairs under a frequency-dependent pairing protocol in the visual

cortex. Note that, the two mentioned data sets are those that were also used in the ex-

periments performed in the previous chapters, when other instances of PSTDP as well

as TSTDP circuits were verified for showing various synaptic plasticity experimental

outcomes.

Page 201



8.4 Experimental Results

Circuit Simulation and Configuration

The minimised circuits are simulated in HSpice using the 0.35 µm C35 CMOS pro-

cess by AMS. All transistors in the both designs (shown in Figs. 8.2 and 8.3) are set to

1.05 µm wide and 0.7 µm long. The weight capacitor value is set to 1 pF. It should be

noted that the circuits are simulated in an accelerated time scale of 1000 times com-

pared to real time, with all pulses having a 1 µs pulse width. This is the same approach

that has been utilised in previous chapters and by previous synaptic plasticity circuit

implementations such as Schemmel et al. (2006), Tanaka et al. (2009), Schemmel et al.

(2010), Mayr et al. (2010) and Wijekoon and Dudek (2012). For the sake of simplic-

ity when comparing simulation results to the biological experimental data, all shown

results are scaled back to real time.

Furthermore, similar to previous chapters, the nearest-spike interaction of spikes is

implemented in the proposed circuit that corresponds to the nearest-spike model of

TSTDP rule presented in Pfister and Gerstner (2006). The circuit is examined under

same protocols, using which the biological experiments presented in Sjöström et al.

(2001), Froemke and Dan (2002), Wang et al. (2005), and the Matlab numerical simula-

tions (performed in Chapter 2) were carried out.

Data Fitting Approach

Identical to the TSTDP computational simulations (Pfister and Gerstner 2006) and pre-

vious TSTDP circuit studies (Azghadi et al. 2011c, Azghadi et al. 2013a), which test

the triplet model/circuit simulation results against the experimental data using a Nor-

malised Mean Square Error (NMSE) for each of the data sets, the proposed circuit is

verified by comparing its simulation results with the experimental data and ensuring

a small NMSE value. The NMSE is calculated using Eq. 2.1.

In order to minimise the resulting NMSEs for the circuit and fit the circuit output to

the reported experimental data in the literature, there is a need to adjust the circuit

bias parameters and time constants. This is an optimisation process of the circuit bias

voltages, which results in reaching a minimum NMSE value and so the closest possible

fit to the experimental data.

Circuit Bias Optimisation Method

In order to minimise the NMSE function and achieve the highest analogy to the exper-

imental data, the circuit bias voltages, which tunes the required parameters from the
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models should be optimised. For this purpose, Matlab and HSpice were integrated in a

way to minimise the NMSE resulted from circuit simulations using the Matlab built-in

function fminsearch. This function finds the minimum of an unconstrained multi-

variable function using a derivative-free simplex search method. This is the same op-

timisation function that was also used in the simulation results of the previous TSTDP

circuits.

8.4.2 Synaptic Plasticity Experiments with the Proposed TSTDP

Minimal Circuits

Pairing Experiment (STDP Timing Window)

The first simulation that is performed using the first proposed minimal TSTDP cir-

cuit shown in Fig. 8.2, is reproducing the STDP learning window that demonstrates

spike timing-dependent potentiation and depression, under pairing protocol (see Sec-

tion 2.5.1). Fig. 8.4 shows how the proposed circuit can successfully perform the tim-

ing dependent weight modifications. This figure shows the normalised experimental

data extracted from (Bi and Poo 1998) in blue. It suggests that the proposed circuit

behaviour under a pairing (window) protocol can approximate the experimental data

generated with the same protocol. Besides the blue experimental data, two other ex-

perimental values for ∆t = 10 ms and ∆t = −10 ms are shown with their standard

error mean represented by black bars. These points are the first two points of the 13

data points of the aforementioned first (hippocampal) data set. These two points, were

utilised to test and optimise the bias voltages of the first minimal TSTDP circuit. This

is a similar approach to the method used in Pfister and Gerstner (2006). The circuit

bias parameters for generating the STDP window are those corresponding to the hip-

pocampal data set as shown in Table 8.1.

Quadruplet Experiment

The second simulation is performed using the first minimal TSTDP circuit and under

quadruplet protocol. Fig. 8.5 demonstrates how the proposed circuit approximates the

timing dependent weight modifications close to those for quadruplet experiment. In

these results, the black data points are extracted from Wang et al. (2005), and the black

deviation bars and data points are those that were used in Pfister and Gerstner (2006)

Page 203



8.4 Experimental Results

Figure 8.4. STDP timing window experiment in the hippocampal region can be approxi-

mated using the first minimal TSTDP circuit. Synaptic weight changes are pro-

duced under pairing protocol. The circuit bias parameters for generating the window

approximation are those corresponding to the hippocampal data set shown in Table 8.1.

The first experimental data set shown in black contains two data points with their

standard error mean extracted from Pfister and Gerstner (2006), and the second exper-

imental data set is part of the normalised experimental data extracted from Bi and Poo

(1998).

for quadruplet experiments. The circuit bias parameters for generating the quadruplet

approximation are those corresponding to the hippocampal data set shown in Table 8.1.

Triplet Experiment

The third experiment that is performed on the first minimal TSTDP circuit is the triplet

experiment performed in the hippocampal region and reported in Wang et al. (2005)

and Pfister and Gerstner (2006). Fig. 8.6 demonstrates how the proposed circuit ap-

proximates the timing dependent weight modifications close to those for triplet exper-

iments. In the shown results, the black data and deviation bars are those that were used

in Wang et al. (2005) and Pfister and Gerstner (2006) for triplet experiments. The circuit

bias parameters for generating the triplet approximation are those corresponding to

the hippocampal data set as shown in Table 8.1.
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Figure 8.5. Quadruplet experiment in the hippocampal region can be approximated using the

first minimal TSTDP circuit. Synaptic weight changes are produced under quadru-

plet protocol. The circuit bias parameters for generating the quadruplet approximation

are those corresponding to the hippocampal data set as shown in Table 8.1. The exper-

imental data shown in black were extracted from Wang et al. (2005) and Pfister and

Gerstner (2006).

Simulation results show that the TSTDP circuit can distinguish between the pre-post-

pre and post-pre-post spike combinations and show analogy to the experiments. How-

ever, the simulation results using the computational pair-based STDP model shown in

Pfister and Gerstner (2006), as well as the results generated using different PSTDP cir-

cuits (Azghadi et al. 2011c, Azghadi et al. 2012b), demonstrate that the pair-based STDP

models and circuits do not have the ability to distinguish among triplet combinations.

Considering Figs. 8.4 to 8.6, the first proposed minimal TSTDP circuit, can reach a

good approximation of pairing, quadruplet, and triplet experiments, using a shared

optimised set of bias voltages. Using these bias voltages a NMSE = 2.04 is obtained,

when considering the 13 data points in the hippocampal data set. This is better than the

minimal NMSE obtained using the minimal TSTDP computational model, as presented

in Pfister and Gerstner (2006).
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Table 8.1. Optimised biases for the minimal TSTDP circuits and two data sets. The presented

values show optimised bias parameters for the minimal TSTDP circuits in order to reach

the minimal NMSEs for the targeted set of data and experiments. The hippocampal

(first) set of optimised bias parameters generate the results shown for pairing, quadruplet

and triplet experiments. The visual cortex (second) set of optimised bias parameters are

used to reach the minimal NMSE in frequency-dependent pairing experiment.

Data set VA+
2
(V) VA−

2
(V) VA+

3
(V) Vtp1 (V) Vtd1 (V) Vtp2 (V) NMSE

Hippocampal (first) 3.2 0.32 2.7 2.75 0.35 2.65 2.04

Visual cortex (second) 0 0.29 2.7 2.7 0.17 2.86 0.39

Besides the above experiments, which are similar to the experiments performed by

Pfister and Gerstner (2006), the proposed minimal circuit is additionally tested for all

possible combination of spike triplets under the same protocol that used by Froemke

and Dan (2002).

Extra Triplet Experiment

As already mentioned, in 2002 Froemke and Dan proposed a suppression model for

higher order spike trains and performed some experiments using the aforementioned

extra triplet protocol. Their proposed suppression model can account for the required

non-linearity in STDP experiments, when considering higher order of spike combi-

nations. Fig. 8.7 shows that the first minimal TSTDP circuit, under the extra triplet

protocol, and using the same set of parameters that were optimised for hippocam-

pal experiments (shown in Table 8.1), is able to account for a similar behaviour to the

experiments performed by Froemke and Dan in 2002 and for extra triplet patterns.

Nonetheless, there is slight contrast between the achieved results using the TSTDP cir-

cuits and those produced under the suppressive model and reported in Froemke and

Dan (2002). The result shown in the right bottom square of Fig. 8.7(a), which presents

synaptic weight changes due to post-pre-post, demonstrates potentiation. This is in

total agreement to the result shown in Fig. 8.6(b), which also shows potentiation for

post-pre-post spike combination. However, the suppressive model results show a de-

pression for this spike combination—Fig. 3b in Froemke and Dan (2002). Pfister and

Gerstner (2006) discussed that this difference is due to the nature of the suppressive

model, which gives rise to a depression when a post-pre-post spike triplet occurs, while

Page 206



Chapter 8 Compact Low Energy Neuromorphic Circuit for Triplet STDP

Figure 8.6. Triplet experiments in the hippocampal region can be approximated using the

first minimal TSTDP circuit. Synaptic weight changes are produced under the triplet

protocol. The circuit bias parameters for generating the triplet approximation are those

corresponding to the hippocampal data set as shown in Table 8.1. The experimental

data, shown in black and their standard deviations extracted fromWang et al. (2005) and

Pfister and Gerstner (2006). (a) Simulation and experimental results for the pre-post-

pre combination of spike triplets with various timings. (b) Simulation and experimental

results for the post-pre-post combination of spike triplets with various timings.

clearly it leads to a potentiation in the TSTDP model. In a later study, Froemke et al.

(2006) revised their model in order to address this issue.
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Figure 8.7. Extra triplet experiments using the suppression STDP model can be approxi-

mated using the first minimal TSTDP circuit. Synaptic weight changes in result

of extra triplet protocol for (a) pre-post-post (top right triangle), post-post-pre (bot-

tom left triangle) and post-pre-post (right bottom square) and (b) for pre-post-pre (top

left square), pre-pre-post (top right triangle) and post-pre-pre (left bottom triangle)

combination of spikes produced by the first minimal TSTDP circuit. The circuit bias

parameters for generating the synaptic weight changes shown in this figure correspond

to the hippocampal bias set shown in Table 8.1.
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Frequency-dependent Pairing Experiment

As already mentioned, the frequency-dependent pairing experiments that were per-

formed in the visual cortex, can also be replicated using a minimal TSTDP model. This

model is simpler than the first minimal model and not only does not require the A−
3

parameter from the full triplet model, but also it does not need the A+
2 parameter (see

Eq. 8.3). Hence, the minimal circuit for generating this experiment is also simpler from

the first minimal circuit as shown in Fig. 8.3. In order to approximate the outcome of

frequency-dependent pairing experiments, which corresponds to the aforementioned

visual cortex (second) data set, as reported in Sjöström et al. (2001) and Pfister and Ger-

stner (2006), a new set of synaptic parameters for the model and therefore a new set of

bias voltages for second minimal circuit is required.

As shown in Fig. 8.8, the optimised biases (shown in Table 8.1) for the second min-

imal circuit can closely approximate the outcomes of experiments under frequency-

dependent pairing protocol. The minimal obtained NMSE for this experiments was

0.39, which is close to the numerical simulation result of 0.34 reported in Pfister and

Gerstner (2006). It is worth mentioning that the second minimal TSTDP circuit has

only one transistor more than the simple PSTDP circuit proposed in Indiveri et al.

(2006), but it has the ability to reproduce the frequency-dependent pairing experi-

ments, while all neuromorphic PSTDP circuits, even with much higher number of

transistors—see (Bofill-I-Petit and Murray 2004, Tanaka et al. 2009, Bamford et al. 2012b)

for example—fail to replicate these experiments (Azghadi et al. 2011c).

BCM-like rate based experiment

In addition to the outcome of frequency-dependent experiments, the second minimal

TSTDP circuit is also able to account for a BCM-like behaviour. By employing the same

circuit and set of bias parameters, which were used to generate frequency-dependent

pairing experiments shown in Fig. 8.8, a BCM-like experiment is also reproducible.

Fig. 8.9 depicts the synaptic weight changes produced by the second minimal TSTDP

circuit and under the aforementioned Poissonian protocol (Section 2.5.6). In this fig-

ure, three different curves show synaptic weight changes according to three different

synaptic modification thresholds that demonstrate the points where LTD changes to

LTP. The threshold is adjustable using the TSTDP rule parameters. In order to move

the sliding threshold toward left or right, the VA3+ parameter can be altered as it is

depicted in Fig. 8.9. The rate of random pre-synaptic Poissonian spike trains, ρpre, is
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Figure 8.8. Frequency-dependent pairing experiment in the visual cortex region can be ap-

proximated using the second minimal TSTDP circuit. Simulation results are pro-

duced under frequency-dependent pairing protocol (Azghadi et al. 2013b). The circuit

bias parameters for generating the synaptic weight changes shown in this figure corre-

spond to the visual cortex (second) set of bias parameters shown in Table 8.1. The

experimental data shown in black are extracted from Sjöström et al. (2001) and Pfister

and Gerstner (2006).

equal to 10 Hz, and the trains with this spiking rate, are regenerated for each data

point. Each data point shows the mean value of the weight changes for 10 various

post-synaptic Poissonian spike trains and the error bars depict the standard deviations

of the weight changes for each data points over 10 runs. In this experiment, similar

to the experiment performed in Pfister and Gerstner (2006), the frequency of the post-

synaptic spike, ρpost is swept over a range of frequencies from 0 Hz up to 50 Hz, while

the pre-synaptic spiking frequency, ρpre, is kept fixed at 10 Hz.

Although Pfister and Gerstner have used this methodology to show that their model

is able to reproduce a BCM-like behaviour, in the original BCM experiments reported

in Kirkwood et al. (1996), the synaptic weight changes were measured whilst the pre-

synaptic and not the post-synaptic spike rate was swept (Cooper et al. 2004). In order to

check that the proposed circuit could reproduce BCM-like behaviour, which is driven

by pre-synaptic activity, the circuit simulation was repeated. Similar to the experiments

presented in Chapter 7, we made this simple assumption that post-synaptic firing rate
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is a linear function of the pre-synaptic firing rate, i.e. ρpost = Aρpre and for the sake

of simplicity we let A = 1, i.e ρpost = ρpre. Despite such a crude approximation, the

circuit is successfully able to mimic BCM-like behaviour where weight changes were

pre-synaptically driven, as illustrated in Fig. 8.10. In this figure, each data point shows

the mean value of the weight changes for 10 different trials using random Poissonian

pre- and post-synaptic spike trains for each trial, and the error bars depict the standard

deviations of the associated weight changes over these 10 trials.

Figure 8.9. Post-synaptically driven BCM-like behaviour with sliding threshold feature can

be approximated using the second minimal TSTDP circuit. Simulation results are

produced under Poissonian protocol for BCM. The circuit bias parameters for generating

the synaptic weight changes shown in this figure correspond to the visual cortex (second)

set of bias parameters shown in Table 8.1. In this simulation, the pre-synaptic frequency,

ρpre, was kept fixed at 10 Hz, and the post-synaptic frequency, ρpost, was swept (see

the text for more details).

All these experiments suggest that the proposed timing-based circuit has sufficient

ability to replicate the outcome of other synaptic plasticity experiments, for BCM-like

behaviour. In the next section we discuss and compare the proposed circuit and its

counterparts from various circuit design as well as biological plausibility perspectives.
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Figure 8.10. Pre-synaptically driven BCM-like behaviour with sliding threshold feature can

be approximated using the second minimal TSTDP circuit. Simulation results

are produced under Poissonian protocol for BCM. The circuit bias parameters for

generating the synaptic weight changes shown in this figure correspond to the visual

cortex (second) set of bias parameters shown in Table 8.1. In this simulation, the

pre-synaptic frequency, ρpre, was swept, while the neuron is linear and ρpre = ρpost

(see the text for more details).

8.5 Synaptic Plasticity Circuit Comparison

In order to measure the efficiency of the proposed analog neuromorphic circuit, it

should be compared to its counterparts in terms of strength in reproducing the out-

comes of various synaptic plasticity experiments. Besides, it is also essential to com-

pare the proposed design with available synaptic plasticity circuits in various circuit

design aspects such as required silicon real-estate, energy consumption, and process

variation tolerance. In the following sections, we demonstrate that the proposed synap-

tic plasticity circuit outperforms most of its previous counterparts. In addition, it will

be shown that the proposed circuit is much simpler, consumes less power and occu-

pies smaller area in comparison to previous synaptic plasticity circuits. Furthermore,

we show that the presented synaptic plasticity circuit is better than its counterparts in

terms of process variation tolerance when a trade-off between complexity and perfor-

mance is considered.
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8.5.1 Synaptic Plasticity Ability for Reproducing Experimental Data

As already mentioned, the proposed design is able to regenerate the outcomes of a

variety of synaptic plasticity experiments. These experiments are not reproducible by

any of the previous circuits designed for PSTDP rule. However, they can be replicated

using a number of previously proposed TSTDP circuits, as well as a few other synaptic

plasticity designs. Table 8.2 shows a detailed comparison among investigated circuits,

in terms of the ability to mimic various biological experimental outcomes.

This table demonstrates that all PSTDP and TSTDP circuits are able to account for a

BCM-like behaviour. However, simulation results presented in Azghadi et al. (2012a)

suggest that, using a TSTDP circuit, a better BCM-like behaviour is attainable and since

there are more parameters available in the circuit, there will be a higher degree of

control over the sliding threshold of the BCM rule. In addition, there is no evidence,

if any of the circuits proposed in Mitra et al. (2009) or Meng et al. (2011) are capable of

showing a BCM-like behaviour with sliding threshold feature.

The table also summarises the ability of the proposed TSTDP circuit in reproducing

other required experiments. Although a number of other synaptic plasticity circuits

that are shown in the table, are also capable of qualitatively generating the required

experiments (Mayr et al. 2010, Rachmuth et al. 2011), they need changes in their synap-

tic parameters or in their initial implementations, in order to be able to mimic biological

experiments closely and with a small error. The table shows that the TSTDP designs

proposed in Azghadi et al. (2011c), Azghadi et al. (2012b) and Azghadi et al. (2013a)

as well as the proposed design in this chapter are able to account for all experiments

using shared set of bias parameters. This is a useful feature of the synaptic plasticity

circuit, to be able to reproduce as many experimental outcomes as possible, using a

single set of parameters, and by means of least changes to the hardware. As a result,

this new plasticity circuit can be used in developing large-scale networks of spiking

neurons with high synaptic plasticity abilities.

When implementing a large-scale network of spiking neurons, the synaptic plasticity

circuits should be as area- and power-efficient as possible. This leads to the essential

requirements of a large scale neuromorphic design, which include low power con-

sumption and small area occupation. Despite these essential needs, most of the previ-

ously available synaptic plasticity VLSI designs do not meet these requirements. Some

of these designs mimic the required biological functions well, but at the same time
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Table 8.2. Comparison of various synaptic plasticity VLSI circuits.

X indicates that the outcomes of experiments can be closely mimicked using the circuit.

X* indicates that the related study has not investigated the corresponding experiment,

but according to its plasticity rule, it can most likely reproduce the expected experiment,

though using a different set of plasticity parameters.

X** indicates that the related study has not investigated the corresponding experiment,

but according to its plasticity rule, it might be able to reproduce the expected experi-

ment.Ö indicates that the outcomes of experiments cannot be generated using the circuit.

`
`
`
`
`
`
`
`
`
`
`
`
`

Plasticity Circuit

Experiment
STDP window Pairing frequency Triplet Quadruplet BCM

PSTDP (Bofill-I-Petit and Murray 2004) X Ö Ö Ö X

PSTDP (Cameron et al. 2005) X Ö Ö Ö X

PSTDP (Indiveri et al. 2006) X Ö Ö Ö X

PSTDP (Schemmel et al. 2006) X Ö Ö Ö X

PSTDP (Arthur and Boahen 2006) X Ö Ö Ö X

PSTDP (Koickal et al. 2007) X Ö Ö Ö X

PSTDP (Tanaka et al. 2009) X Ö Ö Ö X

PSTDP (Ramakrishnan et al. 2011) X Ö Ö Ö X

PSTDP (Cassidy et al. 2011) X Ö Ö Ö X

PSTDP (Bamford et al. 2012b) X Ö Ö Ö X

PSTDP (Cruz-Albrecht et al. 2012) X Ö Ö Ö X

SDSP (Mitra et al. 2009) X* X** X** X** X**

Voltage-based BCM (Mayr et al. 2010) X X X X* X

Iono-neuromorphic (Meng et al. 2011) X* X** X** X** X**

Iono-neuromorphic (Rachmuth et al. 2011) X* X** X** X** X

TSTDP (Azghadi et al. 2011c) X X X X X

TSTDP (Azghadi et al. 2012b) X X X X X

TSTDP (Azghadi et al. 2013a) X X X X X

New low energy and compact TSTDP circuit X X X X X

are large and power hungry such as the designs presented in Bofill-I-Petit and Mur-

ray (2004), Mayr et al. (2010), Meng et al. (2011), Rachmuth et al. (2011), Azghadi et al.

(2012b) and Azghadi et al. (2013a). Some other designs such as the synaptic plasticity

circuits presented in Indiveri et al. (2006), Tanaka et al. (2009), Bamford et al. (2012b)

and Cruz-Albrecht et al. (2012), have improved power and area features, but do not

have most of the required biological abilities. Therefore, a circuit with low power and

area consumption and at the same time with high synaptic plasticity capabilities is re-

quired. The design presented in this chapter aims at reaching these goals. This design
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has high synaptic weight modification ability, while it is low power and occupies small

silicon area.

8.5.2 Area and Power Consumption

Since the proposed design only uses a small number of transistors to reach its required

synaptic plasticity features, compared to many previous designs with inferior or equal

synaptic capability, the area and power consumption in this design are lower than

all previous designs with similar capabilities, and close to other designs with much

lower synaptic strength. Table 8.3 compares the proposed design, with a number of the

previous synaptic plasticity designs available in the literature, in terms of complexity

(required number of transistors and capacitors), which has a direct relation with the

needed silicon area, and their estimated power consumption.

Power consumption of a synaptic plasticity circuit is directly linked to its synaptic bias-

ing parameters such as its synaptic time constants e.g. Vtp1, Vtd1, Vtp2, Vtd2, as well as its

synaptic amplitude parameters e.g. VA+
2

, VA−
2

, VA+
3

, VA−
3

. In addition, consumed power

is in a direct relation with the supply power, as well as the spike pulse width. There-

fore, in order to have a fair comparison among synaptic plasticity circuits, they should

all be compared under similar conditions. The presented results in the last six rows

of Table 8.3, depict the simulation results for various circuits under similar conditions.

The synaptic parameters, for all these synaptic circuits are firstly optimised to reach

the best NMSEs for the hippocampal data set. The optimisation process determines

the value of synaptic biasing parameters, which significantly influence the power con-

sumption of these circuits. For instance, the high power consumption observed in the

TSTDP circuit proposed in Azghadi et al. (2013a) is due to large time constants required

for reaching a small NMSE = 1.74, which results in transistors being on for longer pe-

riod of time and this leads to high power consumption. Table 8.3 reports the energy

consumption per spike for a number of the mentioned designs. The energy consump-

tion is measured on both pre-synaptic and post-synaptic spikes. Due to differences

in depression and potentiation biasing parameters, different energy consumptions are

measured for pre- and post-synaptic spikes, but the larger one is reported in Table 8.3.

The energy consumption per spike for the first three designs in Table 8.3, are extracted

from related papers. These circuits are PSTDP circuits, which do not possess the high
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Table 8.3. Area and power comparison for various synaptic plasticity circuits.

* The biases are optimised for the hippocampal (first) data set to reach minimal NMSEs and then the energy consumptions are measured.

** The PSTDP and TSTDP designs presented in the last six rows of this table are all simulated using a 3.3 V supply voltage, while other

designs use equal or lower supply voltages.

*** This design has been implemented in a 90 nm CMOS process with a supply voltage of 0.6 V.

h
h
h
h
h

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

Plasticity Circuit

Comparison Measure
Transistor No. Capacitor No. Energy per spike** NMSE*

PSTDP (Bamford et al. 2012b) with weight dependence 15 5 0.3 pJ >10

PSTDP (Cruz-Albrecht et al. 2012)*** >100 4 0.37 pJ >10

PSTDP (Tanaka et al. 2009) 18 3 42 pJ >10

Voltage-based BCM (Mayr et al. 2010) >100 2 NA NA

Iono-neuromorphic (Meng et al. 2011) >100 2 NA NA

Iono-neuromorphic (Rachmuth et al. 2011) >100 2 NA NA

PSTDP (Bofill-I-Petit and Murray 2004) without weight dependency part 15 3 1.5 pJ 10.76

PSTDP (Indiveri et al. 2006) 12 1 3 pJ 11.3

TSTDP (Azghadi et al. 2011c) 26 1 0.03 pJ 3.46

TSTDP (Azghadi et al. 2012b) 44 7 1.5 pJ 2.25

TSTDP (Azghadi et al. 2013a) 37 5 60 pJ 1.74

Proposed minimal TSTDP 18 1 0.02 pJ 2.04
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biological plausibility available in TSTDP circuits including the low power TSTDP de-

sign presented in this chapter. Although two of these designs are low power and con-

sumes very low energy per spike, they require a high number of transistors/capacitors

that require large silicon area. Note that in the best case, the NMSE of these designs that

implement the same STDP rule as the design presented and simulated in Azghadi et al.

(2011c) and Azghadi et al. (2012b), will be >10, which is not acceptable as a fitting error.

In addition, there is no energy consumption information available for the other three

designs shown in the fourth to sixth rows of the table. Two of these designs are

biophysically-based synaptic plasticity circuits, which are bulky detailed VLSI circuits

implemented with more than 100 transistors, and the other one that implements the

voltage-based BCM rule, imposes an inevitable interference with the neuron circuit

and also needs more than 100 transistors for the design (Mayr et al. 2010, Mayr and

Partzsch 2010).

Considering both area and power consumption, under similar conditions to other

synaptic plasticity circuits, Table 8.3 suggests that the proposed design outperforms

all other designs in terms of energy consumption, silicon real estate, and biological

accuracy.

In addition to operating the transistors in the subthreshold region of operation, which

makes the proposed circuit low-power, the accelerated time scale is another factor that

results in a lower energy consumption, compared to other designs, which are imple-

mented on real time scales. This is due to the fact that the static current, which is usu-

ally the dominant power consumption cause, is reduced (Wijekoon and Dudek 2012).

This allows the proposed design to be a suitable learning and computational compo-

nent for large scale and low power neuromorphic circuits with high biological capabil-

ity. However, one should keep in mind that, any analog VLSI design will be affected

by the mismatch due to fabrication imperfections. Therefore, besides area and energy

consumption, mismatch may also be taken into account when considering design of

an analog synaptic plasticity circuit for learning and computational purposes.

8.5.3 Process Variation and Transistor Mismatch

As already mentioned in Chapter 5, apart from power consumption and silicon area,

transistor mismatch is another challenge that is always associated with all analog VLSI

Page 217



8.5 Synaptic Plasticity Circuit Comparison

designs, especially designs for synaptic plasticity circuits (see Section 5.4.2). The func-

tionality of these circuits are dependent on the synaptic parameters and changes in

the values of these parameters, which can occur due to process variations, result in

deviations from the synaptic circuit expected behaviour. These deviations can bring

about degradation of synaptic plasticity capability. The mismatch may be taken into

account from two different design perspectives. First, is a mismatch that occurs be-

tween the targeted design and the implemented design, and results in the physically

implemented transistor to be different from the designed one. Second, is a mismatch

that occurs among the transistors all over the fabricated design. These transistors sup-

pose to have similar behaviour and functionality inter- or intra-chip. The design of

large neuromorphic circuits become challenging due to these mismatches.

Transistor mismatch becomes more challenging when the transistor works in its sub-

threshold region of operation. This is due to the changes to the threshold of the tran-

sistor, which affect its subthreshold current characteristics. Due to the exponential be-

haviour and also low power consumption of transistors in their subthreshold regime,

many spiking neural circuits, including neurons and synaptic weight change compo-

nents are implemented in this region. In addition, many neuromorphic VLSI designs

employ mismatch susceptible components such as current mirrors and differential

pairs in their current- or voltage-mode structures. Therefore, these neural systems are

seriously susceptible to device mismatch (Azghadi et al. 2012b, Azghadi et al. 2013a,

Mayr et al. 2010, Poon and Zhou 2011).

A variety of mismatch minimisation techniques and approaches were introduced and

discussed in Section 5.4.2. Each of the discussed approaches has its own advantages

and limitations. For instance the approach used in Meng et al. (2011) and Rachmuth et al.

(2011) requires especially designed process tolerant circuits with negative feedbacks

and source degeneration features, which lead to higher design complexity. In addi-

tion, the fine-tuning approach, which has been successfully utilised in Azghadi et al.

(2013a), is not applicable for large-scale neuromorphic circuits. Nonetheless, this ap-

proach could be used for a set of circuits with shared synaptic parameters across the

chip, or even inter-chips, in order to reach the required functionality (Gao et al. 2012).

Apart from the techniques to reduce the mismatch and/or alleviate its effect, in order to

have a process tolerant design, it is essential to use less components susceptible to mis-

match including current mirrors (Azghadi et al. 2012b, Azghadi et al. 2013a), differen-

tial pairs (Douglas et al. 1995), and OTAs (Cruz-Albrecht et al. 2012, Koickal et al. 2007).
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The low energy and compact design proposed in this chapter does not use any of these

components. Hence, it is less susceptible to process variations than many previous

designs.

Fig. 8.11 shows the variation in NMSE for the first (Hippocampal) data set, if a rigorous

case mismatch scenario occurs in the fabrication. In the applied scenario, all transis-

tors in the design independently go under a 1000 Monte Carlo (MC) threshold voltage

variation, with three standard deviations from their typical process technology thresh-

old voltage. This may cause deviations in the threshold voltage of any transistors up

to 30 mV. This level of variation in the thresholds of transistors is very unlikely to oc-

cur. This variation scenario was used in a previous design proposed in Azghadi et al.

(2013a), where under the same protocol the worst case NMSE can go up to 306 (See

Fig. 7.12). Therefore, the proposed design is much more robust compared to the pre-

vious designs and that is because of not using of process variation susceptible circuit

modules, such as current mirrors, which are extensively used in the previous designs

(See Fig. 7.1, as well as Fig. 6.5). Note that the circuit bias parameters for all 1000 MC

runs are fixed and correspond to the parameters for Hippocampal experiments shown

in Table 8.1. However, as the results presented in Azghadi et al. (2013a) show, the

bias parameters can be justified again and bring the circuit back to a significantly low

NMSE.

Identical to the mismatch analysis performed in Fig. 8.11, the proposed TSTDP cir-

cuit is subjected to another variation analysis, this time using the second minimal

TSTDP circuit and while stimulated under the frequency-dependent pairing proto-

col (see Fig. 8.8), in order to measure the variation effect. Fig. 8.12 represents 1000

MC runs, and the NMSE deviation, for the mismatch scenario explained earlier. The

NMSE obtained using the new proposed circuit is significantly smaller than that of the

designs presented in Azghadi et al. (2012b) and Azghadi et al. (2013a) and shown in

Chapters 6 and 7.

According to Figs. 8.11 and 8.12, in both cases of mismatch analysis, more than 60% of

NMSEs are very close to the best reached NMSEs in simulations. In addition, even the

worst NMSEs shown in these figures that are due to severe unlikely mismatch, are still

better than PSTDP circuit NMSEs even without considering variation in them.

Furthermore, it should be noted that, the applied variation scenario considers inde-

pendent changes in the design. This means that the threshold voltage of every sin-

gle transistor in the design changes independently, which is not likely in the case of
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Figure 8.11. Transistor mismatch effects on the first minimal design. This figure shows 1000

Monte Carlo (MC) runs. In each run, the threshold voltage of all transistors are in-

dependently varied, based on a three-sigma deviation. The NMSE in each MC run

shows the fitting error of the design, which is affected by transistors threshold devia-

tions. Simulation results are produced under pairing, triplet and quadruplet protocols

and using the first minimal TSTDP circuit. The circuit bias parameters correspond to

those for the hippocampal region shown in Table 8.1.

closely positioned transistors in the proposed compact design. Considering this fact, a

mismatch tolerant synaptic circuit design is expected after fabrication. However, these

independent changes can happen globally and in the replicates of the proposed plastic-

ity circuit across the chip, in the case of a large scale neuromorphic design. This means

that shared fine-tuning for various sets of synaptic circuits, which are positioned in a

close neighbourhood on the chip, could be an effective way of tackling the mismatch

problem (Gao et al. 2012).

In general, Figs. 8.11 and 8.12, suggest that the proposed circuit is not heavily affected

by process variation, and an acceptable synaptic behaviour compatible with several

synaptic plasticity protocols is expected after fabrication. This feature along with low

power consumption, small area requirement, and high biological accuracy, make the

proposed circuit an ideal synaptic plasticity component that can be utilised in large-

scale neuromorphic systems. These systems will have higher capability to mimic more

biological experiments, while enjoying a compact structure, which consumes little
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Figure 8.12. Transistor mismatch effects on the second minimal design. This figure shows

1000 Monte Carlo (MC) runs. In each run, the threshold voltage of all transistors are

independently varied, based on a three-sigma deviation. The NMSE in each MC run

shows the fitting error of the design, which is affected by that run deviated transis-

tors thresholds. Similar to Fig. 8.8, simulation results are produced under frequency-

dependent pairing protocol and using the second minimal TSTDP circuit. The circuit

bias parameters correspond to those for the visual cortex region shown in Table 8.1.

power. This is significant progress toward developing biologically plausible systems

on scales approaching that of the brain.

8.6 Discussion

Despite the performance advantages that the proposed circuit presents, it has a number

of limitations that need to be considered when integrating it within a network config-

uration. As Fig. 8.1 demonstrates, in order to induce weight changes using the triplet

circuit, current pre- or post-synaptic spike, i.e. Vpre(n) or Vpost(n), as well as the imme-

diate previous pre- or post-synaptic spike, i.e. Vpre(n−1) or Vpost(n−1), are needed. This

results in the need for introducing a delay into the design that provides the circuit with

a delayed version of pre- and post-synaptic spike trains. Note that this is a limitation

that all previous TSTDP circuits also have.
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In our simulation setup, we have delayed the input pre- and post-synaptic spike trains,

generated in software, for one spike width of 1 µs, and produced the required delayed

spike trains, i.e. Vpre(n−1) and Vpost(n−1). However, in the physical implementation of

TSTDP circuits, the mentioned delay element should be combined with either neuron

or synapse circuit, in order to produce the required delayed spike trains. Since the

density of neurons is significantly lower than that of synapses in a neuromorphic sys-

tem, it is therefore preferred to integrate the required delay element into the neuron

design, hence saving precious silicon real estate and power. Another viable method

for implementing a delay into the system is to delay the spike while transmitting it

via an Address Event Representation (AER) protocol in the system. Since in the AER,

only spike time stamps are transferred, the spike time for any specified value, can be

easily delayed. Because the AER is an unavoidable part of any neuromorphic system,

it is beneficial to use AER instead of any extra circuitry (whether part of the neuron or

synapse) for introducing the required delay times into the system.

Another limitation in the proposed circuit is the use of a large weight capacitor, in order

to retain the synaptic weight for required period of times, needed for adopted exper-

imental protocols. Although this capacitor is much smaller than the weight capacitor

used in the design proposed in Chapter 7, considering a large-scale neuromorphic sys-

tem, there is a need to further minimise the size of capacitor. The utilised capacitor can

be implemented using Metal Oxide Semiconductor Capacitors (MOSCAPs), which ap-

proximately consumes up 20 × 20 µm2 of silicon real estate. Therefore, compared to

the full TSTDP circuit body that is composed of 18 transistors all with 1.05 µm width

and 0.35 µm length, the capacitor takes up about 90 % of the whole area required for

the TSTDP circuit.

In a recent study we have shown that a similar version of the proposed low energy

and compact circuit can use a 50 fF capacitor instead of the large 1 pF one, while re-

taining its ability to reproduce the STDP learning window, and the triplet and quadru-

plet experimental data (Azghadi et al. 2013c). This becomes possible if a modified

version of the experimental protocols is used. This modified protocol considers only

one pair, triplet or quadruplet of spikes, instead of the original protocols that use 60

spike sets with a frequency of 1 Hz (Pfister and Gerstner 2006). The design presented

in Azghadi et al. (2013c), cannot account for the frequency-dependent pairing exper-

iments, or other complicated experiments shown in this chapter, and is suitable only

for experiments with high spike frequencies.
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On the contrary, the utilised experimental protocols in this chapter introduce 60 pairs,

triplet, or quadruplet of spikes with frequency of 1 Hz, into the TSTDP circuit, and the

resulting weight change is the summation of the weight changes of all these 60 spike

sets. Therefore, the synaptic weight change after each of these spike sets should be

strongly preserved during the rest period before the arrival of the next spike set, or

for longer times when there is no spike. As already discussed in Section 5.4.8, due to

the capacitor leakage, the synaptic weight stored on the capacitor, will leak away re-

sulting in the learnt weight will be eventually altered/lost. This is the reason why a

1 pF capacitor in the design in this chapter is employed to minimise this loss. Similarly,

many of the previous designs (Indiveri et al. 2006, Bofill-I-Petit and Murray 2004, Bam-

ford et al. 2012b), which only able to produce synaptic weight changes for the STDP

protocol, with only one spike pair, also utilised large capacitors, for the same reason.

However, with large capacitors, and even accelerated time, the leakage current still

has a significant effect on the stored synaptic weight value. In the performed simula-

tions throughout this thesis, the voltage difference between the synaptic weight values

stored on the capacitor, at the start of the experiments and just after the experiment

is finished, is reported. During the experiment, the leakage is not significant and can

be compensated for, using the parameter tuning performed for the STDP circuit under

test. However, after the experiment is finished, namely when there is no spike com-

ing, the updated weight stored on the capacitor will leak away in less than a second.

For an example, see the STDP measurement results from a similar accelerated-time

neuromorphic chip reported in Wijekoon and Dudek (2012).

One of the possible approaches that can be employed beside any STDP circuit, in-

cluding the proposed TSTDP circuits in this thesis is the use of a bistability circuit as

discussed in Section 5.4.8. However, even with the use of a bistable mechanism, the

final synaptic weight ought to be in a nonvolatile storage element for later use. There-

fore, there is always need for long-term synaptic weight storage. There exist a number

of nonvolatile weight storage methods in neuromorphic engineering such as (i) mem-

ory cells (Azghadi et al. 2013d), (ii) floating gate (Ramakrishnan et al. 2011), and (iii)

memristive devices (Zamarreño-Ramos et al. 2011, Azghadi et al. 2013d), which could

be utilised for this task. For further details see Section 5.4.8.
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8.7 Chapter Summary

A low-power, compact, and tunable neuromorphic circuit with high synaptic plastic-

ity capabilities was proposed in this chapter. Experimental results demonstrated how

the proposed circuit can mimic the outcomes of various biological synaptic plasticity

experiments. The presented design was compared with many previous synaptic plas-

ticity circuits, including those proposed in previous chapters, in terms of power and

area consumption, learning ability, and tolerance to transistor mismatch and process

variation. The comparison shows that the proposed circuit possesses significant synap-

tic plasticity capabilities, which may potentially lead to neuromorphic systems with

higher learning and computational performance. Besides, the comparison suggests

that, this new design is low power and occupies small area, which are essential features

in neuromorphic circuits. Furthermore, according to the performed comparisons, the

new design shows better performance against the inevitable process variation in the

VLSI fabrication process, compared to its counterparts. Because of all these features,

this design can substitute previous synaptic plasticity circuit modules, e.g. the PSTDP

device presented in Seo et al. (2011), and therefore can significantly improve the learn-

ing power, as well as the performance of previously developed neuromorphic systems

in terms of power consumption, silicon real estate, and variation tolerance. The po-

tential applications, future research directions, as well as the outlook of the learning

circuits presented in this thesis are discussed in the next concluding chapter.
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Chapter 9

Conclusion, Future Work,
and Outlook

T
HIS chapter summarises the presented study and gives conclud-

ing remarks on the research carried out in this thesis. It highlights

the original contributions the proposed research makes to the field

of neuromorphic engineering, and discusses how the research conducted in

this thesis extends the state of the art to elevate the ongoing research for re-

alising a large-scale neuromorphic system with capabilities close to that of

the brain. The chapter also provides ideas for future research to further

boost neuromorphic engineering. It also states the author’s outlook of the

filed of neuromorphic engineering and learning in spiking neural networks.
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9.1 Introduction

Neuromorphic engineering is concerned with the use of inherent properties of sili-

con devices to build low power and extremely compact systems for real-world engi-

neering tasks, with similar performance to that of the biological systems (Mead 1989,

Mead 1990). In a typical neuromorphic system, silicon neurons and synapses form

a spiking neural network that can mimic the behaviour of biological spiking neural

networks (Indiveri and Horiuchi 2011, Indiveri et al. 2011, Azghadi et al. 2014c). It is

widely believed that synapses are the main apparatus for learning and computation

in spiking neural networks (Sjöström et al. 2008). Synapses through their specific ef-

ficacy alteration rules, so-called synaptic plasticity process, control the way neurons

behave (fire spikes). There exist a variety of neuron, synapse, and synaptic plasticity

models, which have been successfully implemented in VLSI (Indiveri et al. 2011, Indi-

veri et al. 2006, Giulioni et al. 2009, Rachmuth et al. 2011, Mayr et al. 2010) and utilised

in various applications (Arthur and Boahen 2006, Koickal et al. 2007, Mitra et al. 2009,

Giulioni et al. 2009, Seo et al. 2011). The simulation of a number of synaptic plas-

ticity rules have shown that these rules are efficient and powerful in mimicking bi-

ology and performing specific applications (Pfister and Gerstner 2006, Clopath and

Gerstner 2010, Graupner and Brunel 2012). However, the implementation of such rules

into the neuromorphic engineering field has yet to be fully explored. This thesis is

aimed at exploring various unexplored synaptic plasticity rules and their applications

in engineering tasks, when implemented in silicon.

This thesis discusses the design, implementation, application, and challenges of vari-

ous spike-based synaptic plasticity rules in silicon, especially those that have not been

explored yet (Azghadi et al. 2014c). It provides the reader with an insight on the pre-

vious and current states of VLSI synaptic plasticity circuits that have been utilised

in different applications and proposes new VLSI designs and implementations for a

novel STDP learning rule, that has not been presented in previous studies. The thesis

also shows how this timing-based rule is able to give rise to a rate-based learning be-

haviour observed in previous studies (Pfister and Gerstner 2006). Furthermore, for the

first time this timing-based rule is utilised to carry out a pattern classification task in

a neuromorphic system (Azghadi et al. 2014b). The original contributions presented in

different chapters of this thesis, which extend the state-of-the-art neuromorphic engi-

neering research for implementing a high performance VLSI spiking neural network,

capable of performing engineering tasks, are discussed in the following sections.
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9.2 Implementing Spike Timing- and Rate-Based Synap-

tic Plasticity Rules on the IFMEM Device for Pattern

Classification

As part of this thesis, a programmable hybrid analog/digital neuromorphic circuit,

called IFMEM, that can be used to build compact low-power neural processing sys-

tems, was calibrated and programmed to operate correctly over a wide range of input

frequencies; a feature that is essential for many applications, where interfacing to real-

world sensors and systems is required (Liu and Delbrück 2010), or even when higher

processing speed is required (Schemmel et al. 2006, Mayr et al. 2010, Azghadi et al.

2013a). The chip programmability is also essential for implementing various synaptic

plasticity rules that is one of the main targets of this thesis.

9.2.1 Original Contributions

• Several novel experiments and measurements were performed on the IFMEM

device to showcase the biological plausibility of the silicon neurons, as well as

neuron-synapse combinations available on the device through specific software

programs developed for these purposes. The conducted measurements demon-

strate how specific behaviours can be generated by programming the chip and

optimising neural parameters of the silicon neurons and synapses (Azghadi et al.

2013d). This feature is needed to utilise the chip to carry out various synaptic

plasticity experiments as well as several other applications including a classifi-

cation task using the TSTDP learning algorithm. The results related to this part

that describe how the chip is programmed, as well as a description of the IFMEM

device are presented in Azghadi et al. (2013d).

• Pair-based STDP rule was successfully implemented using silicon neurons and

programmable synapses on the IFMEM chip. In order to test the correct func-

tionality of the implemented STDP learning rule, the spiking neural network on

the IFMEM chip was utilised to generate the well-known STDP learning window

presented in both biological experiments (Bi and Poo 1998, Wang et al. 2005) as

well as in computational studies (Song et al. 2000, Pfister and Gerstner 2006). The

produced window correctly follows both experimental and computational data.
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• Additionally, in order to further verify the functionality of the implemented STDP

rule in a spiking neural network, a simple network comprised of several input

synapses and one post-synaptic neuron were set in the same way they have been

used in a computational experiment performed in Song et al. (2000). The results

demonstrate that the implemented hardware neural network, can reproduce a

competitive Hebbian learning behaviour similar to the one observed in compu-

tational STDP experiments (Song et al. 2000, Azghadi et al. 2014b).

• The triplet-based STDP learning algorithm was implemented on the IFMEM neu-

romorphic hardware. Following computational experiments presented in Izhike-

vich (2003) and Pfister and Gerstner (2006), a rate-based BCM learning behaviour

was produced using the TSTDP learning rule, implemented on the IFMEM de-

vice (Azghadi et al. 2014b). The results show the excellent agreement between the

implemented neural network outputs and the outcomes of BCM computational

experiments (Pfister and Gerstner 2006).

• A perceptron like neural network was set up on the IFMEM device and the

synapses and neurons were programmed and tuned in a way that the device acts

as a pattern classification tool. The utilised learning algorithm for the performed

pattern classification task was the triplet-based STDP learning rule, which is

shown to be useful for learning and classification (Gjorgjieva et al. 2011) of rate-

based patterns. Obtained results show the high performance of the TSTDP rule in

real-time classification of complex correlated rate-based patterns (Azghadi et al.

2014b).

The preformed research in this part provides good view of the STDP and TSTDP

rules and their properties and features, which are essential when designing VLSI

STDP synapses. The above mentioned original contributions were described in

detail in Azghadi et al. (2014c).

9.2.2 Future Work

• The use of the AER representation for receiving inputs, computing with spikes,

and transmitting signals in output, makes the IFMEM device an ideal compu-

tational platform for building embedded neuromorphic event-based computa-

tional systems that process events generated by neuromorphic sensory systems

(Liu and Delbrück 2010). Therefore, in a future work the programmed IFMEM
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chip that has been already adapted with the TSTDP (or can be adapted to any

other learning rule), can be interfaced to a neuromorphic sensory system such as

the Dynamic Vision Sensor (DVS) presented in Lichtsteiner et al. (2008).

• In the performed experiments, only PSTDP, TSTDP and BCM learning rules were

implemented and tested using the IFMEM device. However, in future stud-

ies, any synaptic plasticity rule of choice including complex and detailed bio-

physically grounded rules (Shouval 2011) as well as other simple or complicated

phenomenological rules (Clopath and Gerstner 2010, Graupner and Brunel 2012,

Uramoto and Torikai 2013) can be implemented and tested on the IFMEM de-

vice. This will provide us with a good comparison of various synaptic plastic-

ity rules performance in carrying out different applications while they are in-

terfaced to silicon neurons and have been utilised in a network configuration.

However, a current limitation of the IFMEM device is its limited number of neu-

rons and synapses (32 neurons and 1K synapses), which restricts the extension

of the required neural network size. To address this limitation, currently new

programmable neuromorphic devices are being developed in the NCS group of

INI. For example see the characteristics of the newly developed MNR256R1 chip

briefly described in Chapter 7.

9.3 Spike-based Synaptic Plasticity in Silicon: Design,

Implementation, Application and Challenges

This thesis provides insight into opportunities and challenges of the implementation

of various synaptic plasticity rules in silicon. It reviews, describes, discusses and pro-

poses various analog VLSI designs for different spike timing- and rate-based synaptic

plasticity rules and highlights their limitations and benefits (Azghadi et al. 2014c). Be-

low is a summary of several original contributions made on this aspect.

9.3.1 PSTDP VLSI Learning Circuits

The PSTDP learning algorithm has been implemented by various groups and under

different design strategies (Bofill-I-Petit and Murray 2004, Cameron et al. 2005, In-

diveri et al. 2006, Koickal et al. 2007, Tanaka et al. 2009, Bamford et al. 2012b). In
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this thesis, for the first time a number of these PSTDP designs were tested if they

are able to generate several synaptic plasticity experiments including the pairing ex-

periment for generating STDP learning window (Bi and Poo 1998, Wang et al. 2005),

triplet (Wang et al. 2005), quadruplet (Wang et al. 2005) and frequency-dependent pair-

ing experiments (Sjöström et al. 2001). In addition, two various PSTDP learning cir-

cuits, as representative for the class of PSTDP circuits, are also tested for their abil-

ities to mimic a rate-based BCM learning behaviour with sliding threshold feature

(Bienenstock et al. 1982, Cooper et al. 2004).

Original Contributions

• Various synaptic plasticity experimental results presented in Azghadi et al. (2011c)

and Azghadi et al. (2012b) show that the two sample PSTDP designs presented

in Bofill-I-Petit and Murray (2004) and Indiveri et al. (2006) are not able to ac-

count for triplet, quadruplet and frequency-dependent pairing experiments, but

they can successfully generate the STDP learning window (Song et al. 2000), as

reported in relevant papers (Bofill-I-Petit and Murray 2004, Indiveri et al. 2006).

• The previous VLSI implementation of the PSTDP rule presented in Indiveri et al.

(2006) was simplified to reduce area and power consumption. The result of this

study is presented in Azghadi et al. (2011b). This design is unable to account

for the mentioned triplet, quadruplet, and frequency-dependent pairing experi-

ments, since it also implements the PSTDP rule, which according to the compu-

tational studies cannot account for these experiments (Pfister and Gerstner 2006).

• For the first time a PSTDP learning circuit was utilised to generate a rate-based

BCM learning behaviour under a Poissonian protocol described in Section 2.5.6.

The results presented in Azghadi et al. (2012a) demonstrate that the PSTDP learn-

ing circuit, similar to the PSTDP learning computational model (Izhikevich and

Desai 2003), can generate a rate-based BCM learning behaviour.

Future Work

• The mentioned higher order spike experimental protocols, i.e. triplet, quadruplet

and frequency-dependent pairing protocols, were all used to stimulate the previ-

ous and current PSTDP VLSI circuits (Azghadi et al. 2011c, Azghadi et al. 2012b)

and show that these circuits are unable to account for several biological exper-

iments, due to their weakness in processing higher order spike combinations.
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However, in future studies, one might investigate the ability of some other spike-

based synaptic plasticity models/VLSI designs in reproducing the outcomes of

various timing-based (Wang et al. 2005, Pfister and Gerstner 2006) as well as hy-

brid rate/timing-based biological experiments (Sjöström et al. 2001). One of the

main synaptic plasticity rules discussed and reviewed in this thesis is the SDSP

learning model (Fusi et al. 2000, Brader et al. 2007), which has two various VLSI

implementations presented in Fusi et al. (2000) and Mitra et al. (2009). A future

research direction is to investigate the ability of this rule and its variant VLSI im-

plementations for mimicking the outcome of complicated timing- and rate-based

experiments.

9.3.2 TSTDP VLSI Learning Circuits

The first VLSI designs for the triplet-based STDP learning circuit were proposed in this

thesis. These circuits were devised to overcome the deficiencies of PSTDP circuits in

synaptic plasticity experiments. Below sections provide a summary of original contri-

butions made in this relation.

Original Contributions

• The first VLSI design for the TSTDP learning rule was proposed. The new pro-

posed voltage-mode circuit presented in Azghadi et al. (2011d), is able to account

for many biological experiments, where the previous PSTDP circuits clearly fail.

It was first shown that this circuit is able to mimic the outcomes of a wide range

of synaptic plasticity experiments including timing-based, hybrid rate/timing-

based, and rate-based synaptic plasticity experiments (Azghadi et al. 2011d).

• In another study (Azghadi et al. 2011c), the proposed voltage-mode TSTDP and

a previous voltage-mode PSTDP VLSI design proposed by Indiveri et al. (2006)

were optimised and simulated under same experimental protocols and condi-

tions, to reproduce the outcome of various synaptic plasticity experiments. The

comparison of the results show that the TSTDP design significantly outperforms

the PSTDP design in closely mimicking the experimental data (Azghadi et al.

2011c).
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• Furthermore, the proposed voltage-mode TSTDP circuit was used (Azghadi et al.

2011a) to mimic a similar behaviour to the outcomes of a rate-based BCM exper-

iment (Izhikevich and Desai 2003, Pfister and Gerstner 2006). The achieved re-

sults demonstrate that this circuit closely mimics the sliding threshold behaviour

of the BCM rule (Azghadi et al. 2011a). In addition, the performance of the previ-

ous voltage-based PSTDP circuit presented in Indiveri et al. (2006) in reproducing

the BCM-like behaviour was also compared to the proposed TSTDP circuit. The

comparison shows that the TSTDP circuit has higher ability in mimicking the

required BCM-like behaviour (Azghadi et al. 2012a).

• Further investigations on the proposed voltage-mode TSTDP circuit showed that

this circuit, similar to its PSTDP counterpart, cannot account for the observed

exponential-like weight changes in the original PSTDP experiments (Bi and Poo

1998) or in the computational modelling of PSTDP rule (Song et al. 2000). There-

fore, a new current-mode synaptic plasticity circuit was proposed that built upon

the PSTDP design proposed by Bofill-I-Petit and Murray (2004) and can effi-

ciently account for the required exponential behaviour (Azghadi et al. 2012b).

Similar to the first TSTDP circuit design, this circuit was also verified for its ability

in reproducing the outcomes of various experiments such as triplet, quadruplet,

pair-based, frequency-dependent pair-based and BCM-like experiments. The

simulation results presented in Azghadi et al. (2012b) testify to the ability of this

new design in efficiently reproducing the outcomes of all these experiments. In

Azghadi et al. (2012b), we also compared the performance of the previous PSTDP

and the proposed voltage- and current-mode TSTDP circuits in reproducing the

experimental data, and highlighted the higher ability of the new TSTDP design.

• Extra investigations and simulations on both proposed TSTDP circuits presented

in Azghadi et al. (2011d) and Azghadi et al. (2012b) show that none of these cir-

cuits are able to closely replicate the outcomes of some other synaptic plasticity

experiments performed on all possible combinations of spike triplets Froemke

and Dan (2002). In addition, these designs cannot account for BCM experimental

data presented in Kirkwood et al. (1996), which drives the TSTDP circuit pre- and

not post-synaptically. Therefore, a new high performance design for the TSTDP

rule was proposed (Azghadi et al. 2013a), which not only accounts for all the

previous experiments, but is also able to reproduce the outcomes of these more
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complicated new experiments. The new proposed TSTDP circuit has a signifi-

cantly better performance in mimicking the various experiments in comparison

to the two previously developed TSTDP circuits, and shows lower data fitting

error (i.e. NMSE) as discussed in Chapter 7. It is shown how the new TSTDP

circuit is able to account for all previously mentioned experiments with higher

performance compared to the previous PSTDP and TSTDP designs, and also can

closely mimic the experimental data in new experiments such as experiments in-

volved with various spike triplet combinations, as well as pre-synaptic and post-

synaptic driven rate-based BCM-like experiments (Azghadi et al. 2013a), where

the previous TSTDP and PSTDP designs do not show suitable performance and

cannot mimic the experiments effectively.

• The new TSTDP circuit uses subthreshold transistors to reach the required ex-

ponential behaviour that is needed in the TSTDP computational model (Pfister

and Gerstner 2006). Therefore, the circuit is inherently prone to process varia-

tions and device mismatch due to the imperfect fabrication processes (Poon and

Zhou 2011, Azghadi et al. 2014c). In order to investigate the susceptibility of the

proposed design against device mismatch, the design underwent a severe de-

vice mismatch verification in 1000 MC simulation runs. The presented results

in Azghadi et al. (2013a) show that although the circuit is susceptible to process

variation, the effect of variations can be mitigated through a post-fabrication cal-

ibration technique to bring the circuit back to its desired behaviour even in the

presence of severe variations (Azghadi et al. 2013a).

• Since this new design enjoys a high-performance structure and is able to effi-

ciently reproduce all the required synaptic plasticity experimental data, it was

chosen to be fabricated in silicon. A proof of concept TSTDP circuit device was

successfully fabricated and tested as part of this thesis. The chip measurement

results presented in Section 7.6, show the correct functionality of the circuit that

was fabricated in an AMS 0.18 µm CMOS technology.

• The presented simulation results for the high-performance TSTDP circuit are per-

formed with the circuit including a 10 pF weight capacitor, which occupies a very

large portion of the proposed circuit. This large capacitor is needed to maintain

the synaptic weight value for long period of time, required to replicate the ex-

perimental data, under the same circumstances as those utilised in the original
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biological experiments (Pfister and Gerstner 2006). In order to address the prob-

lem of the very large capacitor, a new compact TSTDP circuit that uses a small

50 fF weight capacitor was proposed (Azghadi et al. 2013c). Due to the small ca-

pacitor used in this design, it is quite suitable for short term plasticity or when

processing inputs with high frequency. However, for lower spike frequencies

and long term plasticity, the latest updated value across the capacitor will be lost

during the circuit operation. In addition, this design is not able to account for the

hybrid rate/timing-based experiments presented in Sjöström et al. (2001), due to

its limited capacitor size (Azghadi et al. 2013c).

• The mentioned limitations in the design presented in Azghadi et al. (2013c) re-

sulted in utilising a large capacitor of 1 pF size. This design only uses a 1 pF

capacitor and 18 transistors, and in comparison with the previous TSTDP design

presented in Azghadi et al. (2013a), which uses 37 transistors, a 10 pF weight

capacitor, as well as four 100 fF time constant capacitors, needs a significantly

smaller silicon area. The presented results in Azghadi et al. (2013c) show that the

new compact circuit can account for the hybrid rate/timing-based experiments

presented in Sjöström et al. (2001).

• Further investigations on this new compact circuit show that a 14-transistor min-

imal version of this TSTDP circuit is able to account for the full set of experi-

ments reviewed in Section 2.5. This minimal circuit which is developed based

on the minimal TSTDP rule (Pfister and Gerstner 2006) has only two transis-

tors more than its smallest PSTDP counterpart presented in Indiveri et al. (2006).

The proposed design is not only more compact than all other previous TSTDP

(Azghadi et al. 2011c, Azghadi et al. 2012b, Azghadi et al. 2013a) and many of

the previous PSTDP designs (Bofill-I-Petit and Murray 2004, Cameron et al. 2005,

Koickal et al. 2007, Tanaka et al. 2009, Bamford et al. 2012b) in the literature, but

also it consumes lesser power than all these designs (Azghadi et al. 2014a). For

further details please refer to Table 8.3.

• The proposed compact circuit is also investigated and compared to other designs

in terms of tolerance to mismatch and process variation (Azghadi et al. 2014a).

Monte Carlo simulation results show that the proposed design, due to its cir-

cuit structure, is much more stable than its previous counterparts (Azghadi et al.
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2011d, Azghadi et al. 2012b, Azghadi et al. 2012b) in terms of vulnerability to tran-

sistor mismatch, which is a significant challenge in analog neuromorphic design

(Azghadi et al. 2014a).

Future Work

• Presented variation analysis on the proposed TSTDP designs in Azghadi et al.

(2012b), Azghadi et al. (2013a), Azghadi et al. (2013c), and Azghadi et al. (2014a)

suggest that similar to all other neuromorphic subthreshold analog VLSI designs,

the performance of these designs can also significantly degrade due to the in-

evitable device mismatch and fabrication imperfections (Poon and Zhou 2011).

Although it was shown in Azghadi et al. (2013a) that the designs can be fine-

tuned after fabrications to reach their initial targeted performance, this approach

is not applicable in large-scale neuromorphic systems with millions of synapses

(Poon and Zhou 2011). Therefore, working toward implementing synaptic plas-

ticity circuits including TSTDP circuits that are prone to device mismatch is an

essential direction for future research.

As discussed in Section 5.4.2, various approaches have been proposed to tackle

the process variation and mismatch problems in neuromorphic systems. Among

these approaches the mismatch minimisation technique utilising wide-dynamic

range devices (Rachmuth and Poon 2008, Rachmuth et al. 2011), as well as the

off-chip event-based compensation strategies (Choudhary et al. 2012) such as the

use of AER mappers and routers (e.g., probabilistic) to re-distribute events in a

way to compensate for mismatch effects, are the viable methods for reducing the

effect of mismatch in large-scale neuromorphic systems.

In a future work, wide dynamic range devices can be utilised to implement the

circuit and therefore minimise the mismatch effect (Rachmuth et al. 2011). In ad-

dition, off-chip event-based mismatch compensation strategies (Choudhary et al.

2012) are other viable methods useful for utilising the proposed synaptic plastic-

ity element in a large-scale neuromorphic system.

• Synaptic weight storage is another significant challenge in the design of vari-

ous synaptic plasticity circuits. It was discussed in Section 5.4.8 that a variety

of approaches are available to be utilised in synaptic circuits for synaptic weight
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storage. However, each of these approaches has its own limitations and advan-

tages. The proposed synaptic circuits employed the accelerated time design strat-

egy to minimise the effect of leakage on the synaptic weight capacitor. This ap-

proach has been utilised in many previous neuromorphic designs such as the

design presented in Schemmel et al. (2006), Tanaka et al. (2009), Schemmel et al.

(2010), Mayr et al. (2010), and Wijekoon and Dudek (2012). Although this ap-

proach can be useful in applications were high synaptic plasticity update speed

is required, it has the limitation of requiring higher bandwidth for spike com-

munication (Schemmel et al. 2010). In addition, a neuromorphic system utilising

this technique cannot simply be interfaced to sensory systems with biologically

plausible time constants.

A future research direction is to implement the proposed TSTDP circuits in the

biological time scale and employ a bistable circuitry for stabilising the synap-

tic weight (Indiveri et al. 2006, Mitra et al. 2009). However, one must keep in

mind that the bistable circuit is a volatile weight storage technique and the final

synaptic weight needs to be stored in a non-volatile memory for future references

before the system is powered down (Azghadi et al. 2014c).

• The synaptic weight in the proposed circuit is updated with the arrival of each

spike which leads to charging/discharging the weight capacitor, according to the

TSTDP rule. However, if there is no spike coming, or when the learning phase has

finished, the final synaptic weight must be stored for later use. Therefore, there is

an essential need for a non-volatile memory element to store the latest weight.

Many neuromorphic systems utilise memory cells and DACs to store and re-

store the synaptic weight when required (Arthur and Boahen 2006, Seo et al. 2011,

Pfeil et al. 2012, Azghadi et al. 2014b). In addition, Ramakrishnan et al. (2011) have

used a floating gate device to store the synaptic weight in a non-volatile fashion

on their single transistor synaptic device. Furthermore, in a recent study we have

used the non-volatile characteristic of memristor to implement a programmable

DAC (Azghadi et al. 2013d).

In future research, the TSTDP learning algorithm can be investigated using simi-

lar techniques for storing the synaptic weight. Therefore, one may utilise SRAM

cells along with ADC circuits and record the latest weight in the memory once

there is no more input spikes or after the learning phase finished or need to be
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stopped (Mitra et al. 2009). Also, one might utilise memristor features to imple-

ment the TSTDP rule, in a similar way to that utilised in Zamarreño-Ramos et al.

(2011), for implementing PSTDP. Furthermore, the TSTDP rule can be imple-

mented using two instances of the single transistor floating gate synaptic device

presented in Ramakrishnan et al. (2011).

• The developed knowledge gained through the course of the presented project

resulted in a reliable VLSI chip including a prototype TSTDP circuit that has been

tested and shown desired behaviour while being stimulated with artificial input

spikes. This circuit is now ready to be interfaced to silicon neurons and other

spike-based devices including neuromorphic sensory systems (Lichtsteiner et al.

2008, Liu and Delbrück 2010), for engineering applications such as the pattern

classification task carried out in the IFMEM device (Azghadi et al. 2014b).

9.4 Outlook

As already mentioned, synaptic plasticity is believed to be responsible for acquiring

computational capabilities, learning and memory in the brain. It is critical to under-

stand the underlying mechanisms of the plasticity rules and their computational role

before utilising them for learning and processing in real-world applications. Recent

advances in VLSI technology, combined with progress in experimental neuroscience

and neuromorphic circuit design techniques, have led to useful implementations of

these rules in hardware. However, most of these implementations can only be applied

to demonstrate proofs of principles. To successfully apply neuromorphic circuits in

real-world applications, potentially replacing or enhancing some of the conventional

technology and approaches being used today, requires the development of large-scale

neuromorphic systems that go beyond single chip, or single core solutions (Hasler

and Marr 2013). One of the most challenging tasks that needs to be addressed to

achieve this is therefore the inter-chip, or inter-module communication. Currently,

both single-wafer and multi-core or multi-chip solutions based on asynchronous logic

are being investigated (Scholze et al. 2011, Imam et al. 2012, Merolla et al. 2013). In ad-

dition promising emerging technologies such as 3D VLSI and memristors (Zamarreño-

Ramos et al. 2011, Eshraghian et al. 2012, Sheridan and Lu 2014) may provide efficient

solutions to this problem.
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Another open challenge that is hindering progress in the design of large scale neuro-

morphic systems is the lack of appropriate EDA tools to assists neuromorphic design-

ers in the design, verification, and testing phases. As already mentioned in Chap-

ter 5, currently there are several promising design automation tools for generating

asynchronous logic circuits that are helpful for designing interconnecting circuits in

large-scale neuromorphic systems, but further developments for mixed analog/digital

design tools is needed. The area requirement for synaptic weight storage is another

challenge for large-scale neuromorphic systems. This can be addressed with the use of

newly developed resistive memory elements, which are integrable with CMOS tech-

nology, occupy small area, and consume little power (Indiveri et al. 2013). However,

these resistive elements are susceptible to variations and suffer from low yields, which

should be effectively addressed before utilising them in large-sale systems.

All these and other mentioned challenges are currently being addressed by an active

and enthusiastic research community. The small group of neuromorphic engineers that

was once limited to a dozen research laboratories around the world in the mid 90s is

now flourishing, with many more groups spread around the whole globe, and with

increasing support from both research funding organisations and strong industrial mi-

croelectronic groups.

In general, with the many efforts and initiatives that are being started in the field of

neuromorphic engineering, the future of this field is very promising, and the ongo-

ing research on implementations of learning mechanisms in neuromorphic systems is

likely to lead to systems that can be used in real-world applications in the near future.
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Extra Investigations on the
Ability of the Proposed

High-performance TSTDP
Circuit for Producing
BCM-like Behaviour

T
HE influence of high and low pre-synaptic rates on the BCM-

like behaviour produced using the proposed high-performance

TSTDP circuit that was presented in Chapter 7, is investigated.

It is also verified if the desired BCM-like behaviour is possible when a neu-

ron is integrated with the TSTDP synapse. The Izhikevich neuron model as

well as a linear Poisson neuron model are simulated along with a TSTDP

synapse and the resulting weight changes under the Poissonian protocol

mentioned in Section 2.5.6 are recorded. The simulation results show that,

in all cases, a well-shaped BCM-like behaviour with distinguishable sliding

thresholds can be achieved.
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A.1 Introduction

According to the literature, STDP and BCM rules are related and a BCM-like weight

modification behaviour with sliding threshold that depends on the rate of the pre- or

post-synaptic spike trains, is an emergent property of the STDP rules such as PSTDP

(Izhikevich 2003) and TSTDP (Pfister and Gerstner 2006, Gjorgjieva et al. 2011). In

both cases of these timing-based plasticity rules, a BCM-like behaviour emerges when

synaptic weight modification changes are reported against changes in the post-synaptic

spike train rates. In this case, the sliding threshold of the BCM rule depends on the pa-

rameters of the utilised STDP model and can be modified accordingly as described

in Section 7.4.6 for TSTDP and in Izhikevich (2003) for PSTDP. The BCM protocol in

this case, which involves in sweeping the post-synaptic rate and recording the changes

in the synaptic weight accordingly, is mainly used in computational modelling of the

synaptic plasticity rules (Izhikevich 2003, Pfister and Gerstner 2006, Gjorgjieva et al.

2011). However, in the original BCM experiments performed by Kirkwood et al. (1996),

the pre-synaptic spike train rate is swept, while the post-synaptic firing rate is deter-

mined by the current synaptic weight and the dynamics of the neuron. Hence, in order

to test the response of the proposed circuit that implements a TSTDP model, while it is

pre-synaptically driven, a neuron model is required. Here, it is shown that using two

different neuron models, a BCM-like behaviour is achievable, when the TSTDP model

(circuit) is pre-synaptically (in contrary to the post-synaptically) driven.

In addition, in the performed post-synaptically driven simulations in this thesis (see

Figs. 7.8 and 8.9), the pre-synaptic firing rate was always kept fixed at 10 Hz, while

the post-synaptic rate swept over a range of frequency. One might wonder, if an in-

crease or a decrease in the pre-synaptic firing rate has any effect on the BCM-like be-

haviour of the proposed TSTDP rule. Therefore, here we investigated how the changes

in the pre-synaptic firing rate in a post-synaptically driven TSTDP synapse affects the

desired BCM-like behaviour. These extra investigations gives us deeper insight into

these emerging properties of the proposed TSTDP circuits and is useful in utilising

these circuits in various tasks such as pattern selection (Gjorgjieva et al. 2011).

A.2 Post-synaptically Driven BCM-like Behaviour

Fig. A.1 illustrates the outcome of our circuit simulations when subject to the same

Poissonian protocol as used by Pfister and Gerstner (2006) and described in 7.4.6. In
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this figure, each data point at each post-synaptic frequency (ρpost), is the average value

of the weight changes for ten different realisations of post-synaptic and pre-synaptic

Poissonian spike trains, where the error bar indicates the standard deviation.

Figure A.1. The proposed high-performance TSTDP circuit can generate BCM-like be-

haviour for various pre-synaptic spike rates. The three different curves show the

synaptic weight changes according to three different synaptic modification thresholds.

The thresholds that are controlled by the current Ipot2, demonstrate the points where

LTD changes to LTP. The rate of pre-synaptic spike trains, ρpre, used in (a) and (b)

was 5 and 15 Hz, respectively. Each data point shows the mean value of the weight

changes for 10 different trials and the error bars depict the standard deviations of the

weight changes for each value of ρpost.

The demonstrated results were produced using the bias currents that correspond to the

visual cortex data set (see Table 7.1 for these values). The three different curves pre-

sented in Fig. A.1(a-b) display three different weight modification thresholds. These

curves are in the results of three different values for Ipot2 currents that correspond to
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three different values of A+
3 . These thresholds are related to the post-synaptic firing

rate, ρpost, for the rates up to 50 Hz, akin to previously reported results in Pfister and

Gerstner (2006). The simulation results show that if the mean pre-synaptic firing rate

decreases to 5 or increases to 15 Hz (in comparison to 10 Hz in the original experi-

ments), the post-synaptically driven BCM-like behaviour can be still preserved.

Figure A.2. Pre-synaptically driven BCM-like behaviour from Matlab simulations for the lin-

ear Poisson neuron model. This figure shows the synaptic weight changes produced

by the minimal TSTDP model (shown in Eq. 2.5), when integrated with a linear Pois-

sonian neuron. The three different curves represent three different BCM thresholds,

which are controlled by A+
3 parameter of the TSTDP rule.

Figure A.3. Pre-synaptically driven BCM-like behaviour from Matlab simulations for the

Izhikevich’s neuron model. This figure shows the synaptic weight changes produced

by the minimal TSTDP model (shown in Eq. 2.5), when integrated with an Izhikevich

neuron. The three different curves represent three different BCM thresholds, which are

controlled by A+
3 parameter of the TSTDP rule.
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A.3 Pre-synaptically Driven BCM-like Behaviour

Additional Matlab simulations were performed to assess if pre-synaptically driven

minimal TSTDP model leads to BCM-like synaptic weight changes using both the lin-

ear Poisson neuron model and the Izhikevich neuron model. We found that in the

case of increasing the pre-synaptic activity, the resulting synaptic weight changes fol-

lowed a BCM-like profile, regardless of which neuron model was used. Such a pre-

synaptically driven BCM-like profile of synaptic change occurs for each above stated

neuron model and the results of these simulations are presented in Figs. A.2 and A.3.

Note that the three different curves in these figures correspond to different thresholds

controlled by the A+
3 parameter.
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R., AND INDIVERI-G. (2007). A multi-chip pulse-based neuromorphic infrastructure and its ap-

plication to a model of orientation selectivity, IEEE Transactions on Circuits and Systems I, 5(54),

pp. 981–993.

CHOI-T. Y. W., SHI-B. E., AND BOAHEN-K. A. (2004). An on-off orientation selective address event rep-

resentation image transceiver chip, IEEE Transactions on Circuits and Systems I: Regular Papers,

51(2), pp. 342–353.

CHOUDHARY-S., SLOAN-S., FOK-S., NECKAR-A., TRAUTMANN-E., GAO-P., STEWART-T., ELIASMITH-

C., AND BOAHEN-K. (2012). Silicon neurons that compute, in A. Villa., W. Duch., P. Érdi., F. Ma-
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DAVISON-A. P., AND FRÉGNAC-Y. (2006). Learning cross-modal spatial transformations through spike

timing-dependent plasticity, The Journal of Neuroscience, 26(21), pp. 5604–5615.

DAYAN-P., AND ABBOTT-L. (2001). Theoretical Neuroscience: Computational and Mathematical Mod-

eling of Neural Systems, Taylor & Francis.
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