
REVIEW
Methods derived from nonlinear dynamics
for analysing heart rate variability

BY ANDREAS VOSS
1,*, STEFFEN SCHULZ

1, RICO SCHROEDER
1,

MATHIAS BAUMERT
2

AND PERE CAMINAL
3

1Department of Medical Engineering and Biotechnology, University of Applied
Sciences Jena, 07745 Jena, Germany

2Centre for Biomedical Engineering (CBME ), University of Adelaide, Adelaide,
5005 SA, Australia

3Biomedical Engineering Research Centre, ETSEIB, Technical University of
Catalonia, 08028 Barcelona, Spain

Methods from nonlinear dynamics (NLD) have shown new insights into heart rate (HR)
variability changes under various physiological and pathological conditions, providing
additional prognostic information and complementing traditional time- and frequency-
domain analyses. In this review, some of the most prominent indices of nonlinear and
fractal dynamics are summarized and their algorithmic implementations and
applications in clinical trials are discussed. Several of those indices have been proven
to be of diagnostic relevance or have contributed to risk stratification. In particular,
techniques based on mono- and multifractal analyses and symbolic dynamics have been
successfully applied to clinical studies. Further advances in HR variability analysis are
expected through multidimensional and multivariate assessments. Today, the question is
no longer about whether or not methods from NLD should be applied; however, it is
relevant to ask which of the methods should be selected and under which basic and
standardized conditions should they be applied.

Keywords: nonlinear dynamics; heart rate variability; fractal; chaos; cardiology
On

*A
1. Introduction

The investigation of nonlinear dynamics (NLD) and the introduction of indices to
quantify the complexity of fractal dynamics have challenged our view on
physiological networks regulating heart rate (HR) and blood pressure, thereby
enhancing our knowledge and stimulating significant and innovative research
into cardiovascular dynamics.

During the last decades, methods derived from NLD have been successfully
applied to many scientific disciplines, including physics, astrophysics, chemistry,
economics, biology and medicine. However, the impact of deterministic nonlinear
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metrics for enhanced understanding of physiology is only partly explored to
date. Some important physiological findings based on the concepts of NLD are
mentioned in §§2 and 3.

Initially the theory of NLD, developed during the late 1970s and 1980s,
generated interest among many researchers to explore chaotic behaviour in
biological systems and apply their findings to biology and medicine. Later on, the
focus of interest shifted towards explaining and accounting for nonlinearity
in the cardiovascular system, which is presumably high dimensional. Currently,
a major approach is to reveal and characterize the dynamics and complexity of
nonlinear systems.

The embedding theorem allows one to mathematically reconstruct an entire
nonlinear system from only one observed variable, since the reconstructed
dynamics are (geometrically) similar to the original dynamics (Takens 1981;
Kaplan & Glass 1995; Schumacher 2004).

Pioneering work performed by Glass et al. (Guevara et al. 1981; Glass &
Mackey 1988) introduced nonlinear approaches into heart rhythm analysis.
Period-doubling bifurcations, in which the period of a regular oscillation doubles,
were predicted theoretically and observed experimentally in the heart cells of
embryonic chickens. Form, qualitative change, oscillation, stability and other
important biological notions found inherent expression in the new mathematical
approach of NLD (Garfinkel 1983). Ritzenberg et al. (1984) were the first to
provide evidence of nonlinear behaviour in the electrocardiogram (ECG) and
arterial blood pressure traces of a dog that had been injected with noradrenaline.

Since the original reports by Wolf et al. (1978) and Kleiger et al. (1987), the
analysis of spontaneous variations of beat-to-beat intervals (BBI) has become
an important clinical tool, familiar to cardiologists (Lombardi et al. 2000).

The first approaches of the HR variability (HRV) analyses based on nonlinear
fractal dynamics were performed by Goldberger & West (1987). It was suggested
that self-similar (fractal) scaling may underlie the 1/f-like spectra (Kobayashi &
Musha 1982) seen in multiple systems (e.g. interbeat interval variability, daily
neutrophil fluctuations). They proposed that this fractal scale invariance may
provide a mechanism for the ‘constrained randomness’ underlying physiological
variability and adaptability. Later, Goldberger et al. (1988) reported that
patients prone to high risk of sudden cardiac death showed evidence of nonlinear
HR dynamics, including abrupt spectral changes and sustained low frequency
(LF) oscillations. At a later date, they suggested that a loss of complex
physiological variability could occur under certain pathological conditions such
as reduced HR dynamics before sudden death and ageing (Goldberger 1991).

Babloyantz & Destexhe (1988) performed the first multivariate nonlinear
analysis of HRV. With the help of several independent methods for quantifying
NLD, such as phase portrait, Poincaré section, correlation dimension, Lyapunov
exponent and Kolmogorov entropy, the ECGs of four normal human hearts were
studied qualitatively and quantitatively. They demonstrated that the variability
underlying interbeat intervals is not random, but exhibits short-range
correlations governed by deterministic laws.

Techniques of phase-space reconstruction and dimensional analysis were
applied to HR traces obtained from scalp electrodes in 12 normal foetuses by
Chaffin et al. (1991).
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To estimate the complexity of cardiovascular dynamics, Pincus (1991)
modified the original correlation dimension and Kolmogorov entropy notions
(Grassberger & Procaccia 1983a,b; Eckmann & Ruelle 1985), creating the app-
roximate entropy (ApEn). This technique was later improved and termed
‘sample entropy’ (SampEn) by Richman & Moorman (2000) and reduces the
superimposed bias within the original method.

As a further milestone, Novak et al. (1993) provided evidence of a close
nonlinear coupling between the respiratory and cardiovascular systems.

Peng et al. (1995) applied detrended fluctuation analysis (DFA) to quantify
the fractal structure of the HR, which was later validated in 1999 (Mäkikallio
et al. 1999). Also, Kurths et al. (1995) introduced symbolic dynamics (SDyn) to
the HRV analysis and further demonstrated its power for risk stratification of
sudden cardiac death based on the multivariate approaches (Voss et al. 1996,
1998). The method of SDyn was further developed by Porta et al. (2001) for
application on short-term HR time series (Guzzetti et al. 2005; Maestri et al.
2006). The discovery of the multifractal nature of HR dynamics by Ivanov et al.
(1999) showed that the heartbeat modulation is even more complex than
previously suspected, requiring multiple scaling exponents for its character-
ization. A very promising way to quantify complexity over multiple scales was
recently introduced by Costa et al. (2002, 2005). The apparent loss of multiscale
complexity in life-threatening conditions (Norris et al. 2008) suggests a clinical
importance of this multiscale complexity measure.

To investigate the interactions and couplings between HR and respiration
and HR and blood pressure, respectively, a variety of methods from NLD have
been developed and applied (e.g. Parati et al. 1988; Pompe et al. 1998; Baumert
et al. 2002; Schwab et al. 2006). The methodological wealth within this subarea
of research deserves a separate review and shall not be further discussed within
this contribution.

Various attempts have been made to employ nonlinear approaches to model
parts of the cardiovascular system (Vinet et al. 1990; Christini et al. 1995;
Amaral et al. 1999; Gomes et al. 2000; Lin & Hughson 2001; Tulppo et al. 2005;
Baselli et al. 2006; Khoo 2008). Again, this topic cannot be discussed in detail
within this paper.

This review focuses on the significance of NLD in cardiovascular variability
analysis, to explore dynamic and structural features of cardiovascular regulation
and its clinical relevance. Some of the most commonly used HRV indices, derived
from NLD with proven relevance to clinical research, will be summarized and
important features relating to their practical applications discussed.
2. Indices of HRV derived from NLD

During the 1980s, there was much anticipation that many of the complicated
systems observed in nature could be described by a few nonlinear coupled modes.
The properties of those systems could then be characterized by fractal
dimensions, Lyapunov exponents or Kolmogorov–Sinai entropy. However,
currently it is evident that such a low dimensionality is exhibited only by
rather coherent phenomena. Physiological data, as discussed here, have a
much more complex structure (figure 1). Considering the variety of factors
Phil. Trans. R. Soc. A (2009)
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Figure 1. A simplified model of HR regulation (adapted from Hejjel & Gál 2001). Additional factors
influencing considerably the HR are shown within the dashed boxes.
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influencing HR, e.g. respiration or mental load (within dashed boxes in figure 1),
it becomes apparent that HR regulation is one of the most complex systems
in humans.

This simplified model of HR regulation (adapted from Hejjel & Gál 2001)
shows the sinus node, generating the heartbeat as the primary physiological
pacemaker that is innervated by sympathetic and parasympathetic efferents and
affected by several humoral factors. The sinus node acts as the final summing
element of sympathetically and parasympathetically mediated stimuli and their
relation is reflected in the actual interbeat interval. The regulatory subsystems
result in a scale-invariant cardiac control across different time scales, showing
long-range correlations with a typical scaling behaviour. Therefore, to extract
the relevant properties of NLD systems, classical linear signal analysis methods
are often inadequate. Most physiological systems, such as HR generation, exhibit
a very complex behaviour, which is far from a simple periodicity. Such
Phil. Trans. R. Soc. A (2009)
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a complexity within the obtained biosignals (here, the HR time series) is
caused by different components of the intrinsic system’s dynamics and especially
by the nonlinear interplay of different physiological control loops as illustrated
in figure 1.

Possible sources proposed for the nonlinear behaviour of biological systems
and different degrees of biological complexity are as follows.

—Different subsystems (control loops) acting in a network with feedback
interactions to help constantly adapt the system to its physiological needs and
requirements.

— In the case of a pathophysiological process and ageing, the adaptation of
a subsystem to changed basic conditions/needs of the total system (e.g.
changing of the operational points).

— In the case of severe pathophysiological developments, the compensation of a
disturbed or failing subsystem by one or more other interacting subsystems.

This leads to the objective of quantifying the complexity of physiological
dynamics with the help of different indices. However, there is no general accepted
definition for complexity. In the analysis of signals from biological systems, the
term or concept of complexity is mostly used with regard to their dynamical
and/or structural expression, including important features such as nonlinearity,
time irreversibility, fractality and long-range correlations. Complex physiological
signals are typically non-stationary, but not random.

Prominent nonlinear measures, with emphasis on their main properties and
applicability, will be discussed for the families A–D (table 1).
(a ) Family A: fractal measures

Concept: to assess self-affinity of heartbeat fluctuations over multiple time scales.
(i) Power-law correlation (scaling exponent b)

Kobayashi & Musha (1982) first reported the frequency dependence of the
power spectrum of RR-interval fluctuations. The slope of the regression line
of the log(power) versus log(frequency) relation (1/f ), usually calculated in
the 10K4–10K2 Hz frequency range corresponds to the negative scaling exponent
b and provides an index for long-term scaling characteristics (Saul et al. 1987).
This broadband spectrum, characterizing mainly slow HR fluctuations indicates
a fractal-like process with a long-term dependence (Lombardi 2000). Saul et al.
(1987) found that b is similar to K1 in healthy young men. Bigger et al. (1996)
reported an altered regression line (bzK1.15) in patients after MI.

Limitations: stationarity, periodicity and the need for large datasets are
required; artefacts and patient movement influence spectral components.
(ii) Detrended fluctuation analysis (indices a1 and a2)

This method is based on a modified random walk analysis and was introduced
and applied to physiological time series by Peng et al. (1995). It quantifies
the presence or absence of fractal correlation properties in non-stationary time-
series data. DFA usually involves the estimation of a short-term fractal scaling
Phil. Trans. R. Soc. A (2009)



Table 1. Summary of some important features of the selected nonlinear indices. (F, family of
nonlinear measures; for abbreviation of indices, see §2.)

F descriptor indices
short
term

long
term correlated partly with

A power-law
correlation

scaling exponent b X frequency components:
(UVLF, VLF, LF)

A detrended
fluctuation
analysis

a1 (short term) X LFn, HFn, LF/HF, HF/P,
LF/(HFCLF), SD1/SD2

a2 (long term) X LF, VLF/(HFCLF)
A multifractal

analysis
D(h) with local

exponent h
X X not yet known

B approximate
entropy

ApEn X indexes describing vagal
modulation of heart rate
(rmssd, pNN50, HF
power)

B sample entropy SampEn X negatively with LFn and
LF/HF; natural logar-
ithm (ln) of the total
power; ln LF and ln LF/
HF

B multiscale
entropy

MSE X not yet known

B compression
entropy

CE X X sdNN, rmssd, wpsum02,
plvar, forbwords

C symbolic
dynamics

Shannon and Rényi entro-
pies, forbidden words,
wpsum02, wpsum13,
phvar, plvar, 0V, 1V,
2LV, 2UV, 0V%, 1V%,
2LV%, 2UV%

X X cvNN, sdNN, rmssd,
pNN50, SD2

D Poincaré plot SD1 (short term), SD2
(long term), SD1/SD2

X X SD1: rmssd, mainly with
HF, lesser with LF; SD2:
sdNN, LF and HF power
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exponent a1 over the range of 4%n%16 heartbeats and a long-term scaling
exponent a2 over the range of 16%n%64 heartbeats (Peng et al. 1995). DFA was
developed to quantify the fluctuations on multi-length scales. The self-similarity
occurring over a large range of time scales can be defined for a selected time scale
with this method (Mäkikallio et al. 1999). Healthy subjects revealed a scaling
exponent of approximately 1, indicating fractal-like behaviour. Patients with
cardiovascular disease showed reduced scaling exponents, suggesting a loss of
fractal-like HR dynamics (a1!0.85, Mäkikallio et al. 1999; a1!0.75, Huikuri
et al. 2000).

Limitations: at least 8000 data points should be used; monofractal method;
normal-to-normal interbeat intervals are required; dependency on editing
ectopic beats.
Phil. Trans. R. Soc. A (2009)



283Review. Nonlinear dynamics for analysing HRV
(iii) Multifractal analysis

Multifractal analysis describes signals that are more complex than those fully
characterized by a monofractal model. Ivanov et al. (1999) demonstrated that
healthy HRV is even more complex than previously suspected and requires a
multifractal representation, using a large number of local scaling exponents to
fully characterize the scaling properties. Multifractality in heartbeat dynamics
indicates the involvement of coupled cascades of feedback loops in a system
operating far from equilibrium. Ivanov et al. (1999) found a loss in HRV
multifractality in patients suffering from congestive heart failure (CHF).

Limitations: requires many local and theoretically infinite exponents to fully
characterize their scaling properties.

(b ) Family B: entropy measures

Concept: to assess the regularity/irregularity or randomness of heartbeat
fluctuations.

(i) Approximate entropy/sample entropy

The ApEn represents a simple index for the overall complexity and
predictability of time series (Pincus 1991). ApEn quantifies the likelihood that
runs of patterns, which are close, remain similar for subsequent incremental
comparisons (Ho et al. 1997). High values of ApEn indicate high irregularity and
complexity in time-series data. For healthy subjects, ApEn values range from
approximately 1.0 to 1.2 and for post-infarction patients ApEn values are
approximately 1.2 (Mäkikallio et al. 1996; Ho et al. 1997).

Limitations of ApEn: stationarity and noise-free data are required; inherent
bias exists; counting self-matches; dependency on the record length; lacks
relative consistency; evaluates regularity on one scale only; outliers (missed beat
detections, artefacts) may affect the entropy values.

SampEn, improving ApEn, quantifies the conditional probability that two
sequences of m consecutive data points that are similar to each other (within a
given tolerance r) will remain similar when one consecutive point is included.
Self-matches are not included in calculating the probability. Lake et al. (2002)
described a reduction in SampEn of neonatal HR prior to the clinical diagnosis of
sepsis and sepsis-like illness. The SampEn was found to be significantly reduced
before the onset of atrial fibrillation (Tuzcu et al. 2006).

Limitations of SampEn: stationarity is required; higher pattern length requires
an increased number of data points; evaluates regularity on one scale only;
outliers (missed beats, artefacts) may affect the entropy values.

(ii) Multiscale entropy

Biological systems are likely to present structures on multiple spatio-temporal
scales. Multiscale entropy (MSE) assesses multiple time scales to measure a
system’s complexity. The main advantage of MSE is its ability to measure
complexity according to its definition ‘a meaningful structural richness’ and being
applicable to signals of finite length (Costa et al. 2005). The MSE method
demonstrated that healthy HRV is more complex than pathological HRV. Costa
et al. (2002) found that pathological dynamics associated with either increased
Phil. Trans. R. Soc. A (2009)
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regularity/decreased variability or with increased variability are both charac-
terized by a reduction in complexity due to the loss of correlation properties. Costa
et al. (2002) reported the best discrimination between pathological (CHF) and
healthy HR signals on scale 5. MSE analysis revealed significantly lower SampEn
values in young patients with diabetes mellitus on scale 3 (Javorka et al. 2008).

Limitations: stationarity is required; outliers (missed beat detections,
artefacts) may affect the entropy values; the consistency of MSE will be
progressively lost as the number of data points decreases.

(iii) Compression entropy

The entropy of a given text is defined as the smallest algorithm that is capable
of generating the text (Li & Vitnyi 1997). Ziv & Lempel (1977) introduced a
universal algorithm for lossless data compression (CE), using string matching on
a sliding window. With some modifications, this algorithm can be applied for the
analysis of heartbeat time series (Baumert et al. 2004, 2005). Here, the
compression entropy quantifies the extent to which the data from heartbeat
time series can be compressed, i.e. repetitive sequences occur. Reduced short-
term fluctuations of HRV result in an increased compression. Entropy reduction
appears to reflect a change in sympathetic/parasympathetic HR control
(Baumert et al. 2005). Baumert et al. (2004) investigated CHF patients before
the onset of ventricular tachyarrhythmia, and showed reduced CE values
compared with patients during normal sinus rhythm. Truebner et al. (2006)
found significant differences between the high- and low-risk CHF patients and
Bär et al. (2007) found significantly reduced complexity (CE) of HR time series
in patients with acute schizophrenia in comparison with healthy controls.

Limitations: dependency on sampling rate, the window length and the
lookahead buffer size; integer numbers required.

(c ) Family C: symbolic dynamics measures

Concept: to assess the coarse-grained dynamics of HR fluctuations based
on symbolization.

(i) Symbolic dynamics (entropies and probabilities)

SDyn was introduced by Hadamard (1898) and allows a simple description of a
system’s dynamics with a limited amount of symbols. SDyn are suitable to
describe the global short-time dynamics of beat-to-beat variability (Voss et al.
1993, 1996, 1998; Kurths et al. 1995). At first, time series were transformed into a
symbol sequence of four symbols with the alphabet AZ{0, 1, 2, 3} to classify the
dynamic changes within that time series. Three successive symbols from the
alphabets were used to characterize the symbol strings whereby 64 different word
types (bins) were obtained. The resulting histogram contains the probability
distribution of each single word within a word sequence. SDyn investigates short-
term fluctuations. These short-term fluctuations are mainly caused by vagal and
baroreflex activities. We differentiate words consisting of alternating/constant/
increasing/decreasing symbol strings reflecting especially vagal/reduced vagal
(increased sympathetic)/bradycardic baroreflex/tachycardic baroreflex activity.
Porta et al. (2001) introduced a modified procedure of SDyn. Here, the amount of
Phil. Trans. R. Soc. A (2009)
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the RR intervals was limited to 300 beats. The full range of the sequences was
uniformly spread on six levels (0–5), and patterns of length LZ3 were constructed
(Guzzetti et al. 2005). All patterns with LZ3 were grouped, without any loss, into
four families. These were: (i) patterns with zero variation—0V, (ii) patterns with
one variation—1V, (iii) patterns with two like variations—2LV, and (iv) patterns
with two unlike variations—2UV. The rates of occurrence of these patterns will be
indicated as 0V, 1V, 2LV and 2UV% (Porta et al. 2007).

Limitations: detailed information will be lost; outliers (ectopic beats and
noise) influence symbol strings.
(d ) Family D: Poincaré plot representation

Concept: to assess the heartbeat dynamics based on a simplified phase-
space embedding.
(i) Poincaré plots (SD1 and SD2)

The Poincaré plot analysis (PPA) is a quantitative visual technique, whereby
the shape of the plot is categorized into functional classes (Weiss et al. 1994;
Kamen et al. 1996; Brennan et al. 2002) and provides detailed beat-to-beat
information on the behaviour of the heart. Usually, Poincaré plots are applied for
a two-dimensional graphical and quantitative representation (scatter plots),
where RRn is plotted against RRnC1. Most commonly, three indices are
calculated from Poincaré plots: the standard deviation of the short-term
RR-interval variability (minor axis of the cloud, SD1), the standard deviation
of the long-term RR-interval variability (major axis of the cloud, SD2) and the
axes ratio (SD1/SD2) (Kamen & Tonkin 1995; Brennan et al. 2002). For the
healthy heart, PPA shows a cigar-shaped cloud of points oriented along the line of
identity. These indices are correlated with linear indices. Laitio et al. (2002)
showed that an increased SD1/SD2 ratio was the most powerful predictor of post-
operative ischaemia. Mäkikallio (1998) found SD2z125 ms in healthy subjects
and SD2z85 ms in post-infarction patients with ventricular tachyarrhythmia.

Limitations: SD1, SD2 dependent on other time-domain measures.
Open source computer software versions of DFA, multifractal analysis,

correlation dimension, Lyapunov exponent, SampEn and MSE analysis are
available at www.physionet.org.
3. Application of methods from NLD for HRV analysis

(a ) HRV in healthy conditions

Healthy HR fluctuations show a complex type of variability, embedding fractal
self-similar fluctuations on time scales ranging from seconds to hours, and thus
generating long-range power-law correlations (Goldberger et al. 2002). Results
from several studies indicate that greater complexity (irregularity) appears in
healthy systems. The common hypothesis is that the organism is a highly
complex adaptive system, and that the complexity of its behaviour allows for the
broadest range of adaptive responses due to different levels of input within a
physiological range.
Phil. Trans. R. Soc. A (2009)

http://www.physionet.org


Table 2. Results of the group comparisons. (T1—young healthy males versus older healthy males
and T2—older healthy females versus older healthy males (10 subjects in every group). Significance
value: n.s., not significant; �p!0.05, ��p!0.01, ���p!0.001; TD, time-domain indices; FD,
frequency-domain indices; A, fractal measures; B, entropy measures; C, symbolic dynamics
measures; D, Poincaré plot representation. For standard HRV parameters in TD and FD, see Task
Force (1996); for parameters in A, B and D, see §2; for parameters in C, see Voss et al. (1996).
CE, compression entropy; pW110, pW021 and pW321—single word type probabilities from SDyn;
‰, per mille.)

group tests mean valueGs.d.

parameter T1 T2 young males older males
older
females

age (years) ��� n.s. 32.43G8.04 55.90G5.36 56.40G2.46
TD meanNN (ms) n.s. n.s. 819.5G120.7 894.5G127.9 899.6G129.1

sdNN (ms) n.s. n.s. 47.2G13.1 40.0G9.4 43.4G15.2
rmssd (ms) n.s. n.s. 29.4G13.8 22.2G12.3 34.0G17.1

FD LF/HF (arb. units) n.s. n.s. 3.79G2.49 3.86G2.34 2.40G1.57
LFn (arb. units) n.s. n.s. 0.74G0.13 0.71G0.21 0.64G0.17
HFn (arb. units) n.s. n.s. 0.26G0.13 0.29G0.21 0.36G0.17

A a1 (arb. units) n.s. n.s. 1.02G0.18 1.18G0.23 1.02G0.23
a2 (arb. units) n.s. n.s. 0.90G0.20 0.97G0.13 0.98G0.12

B CE (arb. units) n.s. n.s. 0.64G0.08 0.58G0.06 0.60G0.11
C Shannon (bit) � n.s. 3.12G0.32 2.73G0.38 3.10G0.49

Forbword (arb. units) n.s. � 24.63G9.52 33.80G9.53 20.60G14.83
Renyi025 (bit) n.s. � 3.57G0.27 3.30G0.26 3.63G0.32
pW110 (arb. units, ‰) � n.s. 38.5G11.1 24.0G12.0 21.0G12.5
pW021 (arb. units, ‰) n.s. �� 1.6G2.2 1.6G4.2 5.1G5.1

D SD1 (ms) n.s. n.s. 20.8G9.8 22.8G16.1 34.5G17.1
SD2 (ms) n.s. n.s. 63.3G16.4 56.3G12.3 61.0G20.4
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(i) Age effects

Cardiovascular structures and functions change with age, increasing the risk of
developing cardiovascular disease (Oxenham & Sharpe 2003). Effects of ageing
on HRV have been observed with linear as well as nonlinear complexity measures
(Kaplan et al. 1991; Ryan et al. 1994), and are apparent in short-term records of
30 min. To demonstrate this ageing effect, we compared HRV of young healthy
male subjects (32G8 years, nZ10) with that of older healthy male subjects
(56G5 years, nZ10) under resting conditions in the supine position. HRV was
quantified with indices from linear domains and NLD (see §2 for a more
detailed description). Table 2 (group test T1) shows the numerical results of
univariate statistics based on the Mann–Whitney U-test, and figure 2(i, ii) shows
the tachograms (time series of beat-to-beat intervals) and word distributions of
64 different three-letter word types (SDyn) from a young and an older healthy
male. HRV was generally reduced in the group of older subjects. In particular,
the complexity indices of SDyn revealed a loss of complexity in older subjects.
This is in accordance with the previous studies (Peng et al. 1995; Voss et al. 1996;
Goldberger et al. 2002), where larger dimensions and entropies implied a greater
Phil. Trans. R. Soc. A (2009)



850

1150

850

1150

850

1150(a) (i) (i)

(ii) (ii)

(iii) (iii)

(b) 0.2

0.1

0.2

0.1

0.2

0.1

0 30 0 021 102 123
wordstime (min)

210 231 312 333

Figure 2. Examples of (a) tachograms (30 min; BBI, beat-to-beat intervals (ms)) and (b) word
distributions of 64 different three-letter word types (probability; SDyn) from a (i) young healthy
male, (ii) older healthy male and (iii) older healthy female. The dashed arrows indicate the most
significant word distribution probability pw110 differentiating between the young and older
healthy males. The solid arrows indicate the most significant word distribution probability pw021
differentiating between the older healthy males and healthy females (table 2).
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complexity. Applying multifractal analysis, Shiogai (2007) demonstrated that
the neurogenic control of the HR becomes more significant compared with
myogenic control with ageing.

(ii) Sex effects

Under healthy conditions, sex differences in HRV have been observed across
all ages (Ryan et al. 1994; Beckers et al. 2006). It has been suggested that a
beneficial autonomic control of the heart in females aged less than 45 years
may contribute to the lower risk of coronary heart disease and serious
arrhythmias in females. We demonstrate this sex difference by comparing age-
matched healthy females with the group of older healthy males investigated in
the previous paragraph. Table 2 shows the numerical results for the sex
comparison (group test T2), and figure 2(iii) provides an example tachogram and
word distribution of 64 different three-letter word types of a representative older
female. In particular, indices of SDyn indicate a higher occurrence of word types
and a higher complexity of HR dynamics in women than in men (figure 2(ii)
versus (iii)).

(b ) HRV under pathophysiological conditions

A reduction in HR complexity was reported in patients with CHF (fractal
scaling properties; Peng et al. 1995), myocardial infarction (MI, SDyn; Voss et al.
1996, 1998) and other cardiovascular diseases. Clinical research, where measures
from NLD have been applied, focuses mainly on cardiology and internal
medicine. In particular, those techniques have been used for HRV analysis in
patients with ischaemic heart diseases (IHDs) and CHF and those threatened by
severe arrhythmias. To demonstrate the power of some HRV indices derived
from NLD for separating the healthy from pathological HRV, we compare three
different groups of patients (dilated cardiomyopathy (DCM), ischaemic heart
Phil. Trans. R. Soc. A (2009)



Table 3. Results of the group comparisons—patients with ischaemic heart failure (IHF), dilated
cardiomyopathy (DCM) and after myocardial infarction (MI) versus REF (10 subjects in every
group). (Tests: T1, IHF versus REF; T2, DCM versus REF; T3, MI versus REF; significance value:
n.s., not significant; �p!0.05, ��p!0.01, ���p!0.001; TD, time-domain indices; FD, frequency-
domain indices;A, fractalmeasures;B, entropymeasure;C, symbolic dynamicsmeasures;D,Poincaré
plot representation; CE, compression entropy; for parameter definitions and units, see table 2.)

group tests patients (mean valueGs.d.)

parameter T1 T2 T3 IHF DCM MI

age n.s. n.s. n.s. 54.20G5.25 52.60G9.14 58.25G4.98
TD meanNN n.s. n.s. n.s. 920.0G97.9 925.4G103.9 952.7G103.1

sdNN n.s. n.s. n.s. 43.3G14.0 41.4G18.3 38.2G10.5
rmssd n.s. n.s. � 20.0G7.1 25.8G15.1 17.1G4.3

FD LF/HF n.s. n.s. n.s. 4.52G2.29 2.75G2.45 3.89G1.62
LFn n.s. n.s. n.s. 0.79G0.09 0.64G0.18 0.77G0.08
HFn n.s. n.s. n.s. 0.21G0.09 0.36G0.18 0.23G0.08

A a1 n.s. n.s. n.s. 1.29G0.15 1.17G0.22 1.20G0.16
a2 n.s. n.s. n.s. 1.10G0.10 1.16G0.17 1.01G0.15

B CE � � � 0.53G0.07 0.53G0.11 0.54G0.05
C Shannon n.s. n.s. �� 2.63G0.41 2.58G0.64 2.49G0.30

Forbword n.s. n.s. �� 33.90G6.21 31.20G14.65 38.63G4.17
Renyi025 n.s. n.s. �� 3.27G0.27 3.25G0.60 3.10G0.19
pW321 ��� � �� 0.1G0.2 0.5G0.7 0.1G0.1

D SD1 ��� � ��� 14.1G5.0 18.3G10.7 12.0G3.2
SD2 n.s. n.s. n.s. 59.5G19.4 55.3G24.4 52.5G14.9
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failure (IHF) and myocardial infarction) to that of sex- and age-matched healthy
subjects (REF). The short-term indices from NLD (SDyn and compression
entropy) are significantly different in all three patient groups when compared
with healthy subjects (table 3). DFA shows only a trend for group differences.
Although Poincaré map analysis is originally a nonlinear method, the typically
extracted indices SD1 and SD2 (see §2) are more or less insensitive to nonlinear
characteristics. Surprisingly, the index SD1 was able to differentiate the healthy
subjects from all patients, partly in contrast to the time-domain index rmssd,
which is known to be highly correlated with SD1. Figure 3 shows the tachogram,
SDyn word distribution and Poincaré plot for a representative patient from each
investigated group and a healthy subject. By comparing short- versus long-term
recordings in risk stratification, we could demonstrate that in patients with
ischaemic heart failure (low risk: survivors, nZ179 and high risk: patients
who died due to a cardiac event during a follow-up period of 2 years, nZ29) a1
(DFA) differentiates both groups significantly (low risk 30 min: a1Z1.2G0.22,
low risk 24 hours: a1Z1.2G0.19, high risk 24 hours: a1Z1.07G0.25;
significances: low risk 30 min versus 24 hours, n.s.; high risk and low risk:
30 min and 24 hours, both p!0.01). There were no significant differences in
short-term versus long-term a1.

Several large clinical studies have demonstrated the potential of measures
based on NLD and fractal analysis. Some of them are discussed briefly in the
following examples. Bigger et al. (1996) was the first to report the ability of
Phil. Trans. R. Soc. A (2009)
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Figure 3. Examples of (a) tachograms (BBI (ms)), (b) SDyn word distributions of 64 different three-
letter word types (probability) and (c) Poincaré plots (BBI(nC1) (ms)) for a representative patient
from each investigated group and a healthy subject ((i) REF, healthy subject; (ii) DCM, dilated
cardiomyopathy; (iii) IHF, ischaemic heart failure; (iv) MI, myocardial infarction); BBI, beat-
to-beat intervals; SD1, standard deviation short-term variability; SD2, standard deviation long-
term variability.
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power spectrum based on long-term scaling indices to predict death after MI.
They studied 715 patients with recent MI, 274 healthy subjects and 19 patients
with heart transplants. The slope of the power-law relationship was found to be
somewhat steeper (more negative) in MI and much steeper for heart transplant
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patients. They demonstrated that a power-law regression coefficient below
K1.372 is significantly associated with total cardiac and arrhythmic mortality. A
multivariate approach (Voss et al. 1998), using all domains and especially SDyn,
revealed the best prediction for all-cause mortality as well as for sudden
arrhythmic death. In this study, 572 survivors of acute myocardial infarction
were enrolled. Within the follow-up period, 43 patients died (all-cause mortality),
of whom 13 died from ventricular tachycardia/ventricular fibrillation, 14 from
sudden arrhythmic death, 22 from sudden death and 34 from cardiac death.

A combination of four HRV parameters from all domains (time and frequency
domain, NLD) in this multivariate approach improved the diagnostic precision
more than twofold. Mäkikallio et al. (1999) examined traditional HRV indices
along with short-term fractal-like correlation properties (DFA) and power-law
scaling in 159 post-MI patients with ejection fraction (EF) less than 35 per cent
with 4-year follow-up. Among all of the analysed variables, reduced a1 (DFA)
was the strongest univariate predictor of mortality in patients with depressed left
ventricular function (EF less than 35%) after acute MI.

In the DIAMOND study, a cohort of 446 survivors of acute MI with EF less
than 35 per cent was investigated and a reduction in the short-term fractal
exponent a1 (DFA) was the most powerful predictor of all-cause mortality
(Huikuri et al. 2000). The exponent predicted both arrhythmic and non-
arrhythmic cardiac death.

Tapanainen et al. (2002) showed that several other HRV indices were also able
to predict mortality in the univariate analysis, but in a multivariate model, after
adjusting for clinical variables and left ventricular EF, a1 (DFA) was the most
significant HRV-based contributor (comprising a set of linear indices and power
spectrum 1/f power-law slope) to predict subsequent mortality. In a study by
Stein et al. (2005), abnormal nonlinear HRV (short-term fractal scaling
exponent, power-law slope and SD12 (Poincaré plot representation)) has been
associated with mortality post-MI. The results suggest that decreased long-term
HRV and increased randomness of HR are each independent risk factors for
mortality post-MI. However, as with traditional HRV parameters, this
relationship might be blurred by coronary artery bypass graft surgery post-MI
or by diabetic autonomic neuropathy.

Guzzetti et al. (2000) found significantly lower normalized LF power and lower
1/f slope in chronic heart failure patients compared with controls. Moreover, the
patients who died during the follow-up period presented further reduced LF
power and steeper 1/f slope than the survivors. They concluded that spectral and
nonlinear analyses of HRV both have prognostic relevance independent of the
time-domain measures of HRV in patients with CHF.

Another study investigating 499 patients with CHF has also shown the
predictive value of altered short- and long-term scaling properties for mortality
(Mäkikallio et al. 2001). A short-term fractal scaling exponent of a1!0.9 was the
strongest predictor of mortality (univariate and multivariate).

An interesting finding of that study was that the HRV indices were strong
predictors of mortality in patients with mild/moderate CHF, but failed to
provide independent prognostic information for severe cases of CHF.

Recently, multiscale indices of HRV have been included in clinical trials. MSE
stratified 441 patients from the intensive care unit by mortality and was an
independent predictor of death occurring days later (Norris et al. 2008).
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The paper of Hu et al. (2008) provides an example of how concepts of NLD
and fractal analysis may enhance our knowledge regarding physiological
and pathophysiological regulation of HR. The authors demonstrated that
scale-invariant cardiac control occurs across time scales varying from minutes
to approximately 24 hours. Lesioning of the mammalian circadian pacemaker
(suprachiasmatic nucleus, SCN) completely abolishes the scale-invariant pattern
at time scales greater than approximately 4 hours. At time scales less than
approximately 4 hours, the scale invariance was persistent after SCN lesions, but
with a different pattern. This study revealed the influence of the SCN on HR
fluctuations over multiple time scales, which previously could not be explained
by simple pacemaker models of 24 hours rhythmicity. It was concluded that the
SCN serves as a major node in the cardiac control network and imparts scale-
invariant cardiac control across a wide range of time scales with the strongest
effects between approximately 4 and 24 hours.
4. Summary

Methods of NLD and fractal analysis have opened up new ways to analyse HRV.
Although time- and frequency-domain methods enable the quantification of
HRV on different time scales, nonlinear methods provide additional information
regarding the dynamics and structure of beat-to-beat time series.

In summary, we can state the following.

—There are several indices derived from NLD proven to be powerful risk
stratifiers and contribute towards enhanced diagnostics of cardiovascular
diseases, e.g. DFA, MSE and SDyn.

—There is a variety of other potential indices from NLD that seem promising,
but have yet to be validated in further clinical trials (Maestri et al. 2007).

—NLD provide additional and independent information about physiological as
well as pathophysiological cardiovascular regulation.

—Temporal changes in HRV and HR dynamics often depend on the baseline
characteristics of the patient.

Altered HRV and HR dynamics have prognostic significance for the
progression of a disease (e.g. coronary artery disease) and for mortality (e.g.
after acute MI). Conversely, the HRV indices are limited in scope for
differentiating between pathophysiological states or patients. However, when
applied to the individual patient over a time period, these indices may prove to
be clinically useful, differentiating the progression of disease. Furthermore, they
might provide a valuable addition to current patient monitoring systems.
Therefore, cardiovascular variability based risk stratification might be more
powerful in longitudinal studies.

A further improvement in the diagnostics of cardiovascular diseases and risk
stratification for arrhythmic fatal events is expected, and partly proven, by
combining NLD methods of HRV analysis with additional cardiovascular signals,
i.e. blood pressure and respiration. The analysis of interactions, couplings and
synchronizations is also a powerful tool for research in cardiovascular regulation.
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Finally, coupling models accounting for a large range of time scales and
intervals are central to describing complex systems and therefore to biology
(Coveney & Fowler 2005).

There are some important points that one has to consider when applying the
methods from NLD.

(i) One parameter alone (independent from the domain) cannot sufficiently
describe complex physiological systems, such as HR control. Therefore,
multivariate approaches should be considered. NLD parameters in
combination with standard linear parameters usually improve the
performance of HRV analysis.

(ii) The type of underlying disease often determines the applicability of HRV
indices for diagnostics or risk stratification.

(iii) There are a number of factors that might affect the results obtained by
nonlinear methods and consequently have to be considered, e.g. recording
duration, degree of stationarity, superimposed noise and signal pre-
processing (filtering).

(iv) NLD indices are often introduced with special fixed presettings (e.g.
window length, number of bins) that have been proved and optimized
in various studies and have to be considered in new comparative
investigations.

In conclusion, methods derived from NLD have provided new insights into the
HRV changes under various physiological and pathophysiological conditions.
They provide additional prognostic information and complement traditional
time- and frequency-domain analyses of HRV. Today, the question is no longer
about whether or not methods from NLD should be applied; however, it is
relevant to ask which of the methods should be selected and under which basic
and standardized conditions should they be applied.
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