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Abstract
Cardiovascular control acts over multiple time scales, which introduces a
significant amount of complexity to heart rate and blood pressure time
series. Multiscale entropy (MSE) analysis has been developed to quantify
the complexity of a time series over multiple time scales. In previous
studies, MSE analyses identified impaired cardiovascular control and increased
cardiovascular risk in various pathological conditions. Despite the increasing
acceptance of the MSE technique in clinical research, information underpinning
the involvement of the autonomic nervous system in the MSE of heart rate and
blood pressure is lacking. The objective of this study is to investigate the effect
of orthostatic challenge on the MSE of heart rate and blood pressure variability
(HRV, BPV) and the correlation between MSE (complexity measures) and
traditional linear (time and frequency domain) measures. MSE analysis of HRV
and BPV was performed in 28 healthy young subjects on 1000 consecutive
heart beats in the supine and standing positions. Sample entropy values
were assessed on scales of 1–10. We found that MSE of heart rate and
blood pressure signals is sensitive to changes in autonomic balance caused by
postural change from the supine to the standing position. The effect of
orthostatic challenge on heart rate and blood pressure complexity depended
on the time scale under investigation. Entropy values did not correlate with the
mean values of heart rate and blood pressure and showed only weak correlations
with linear HRV and BPV measures. In conclusion, the MSE analysis of heart
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rate and blood pressure provides a sensitive tool to detect changes in autonomic
balance as induced by postural change.

Keywords: complexity, heart rate variability, blood pressure variability,
orthostasis, multiscale entropy

1. Introduction

The evaluation of cardiovascular autonomic function is a cornerstone in the clinical
investigation of autonomic function (Freeman 2006). Analyses of spontaneous heart rate
and blood pressure oscillations (heart rate variability (HRV) and blood pressure variability
(BPV)) provide important information on the autonomic control of circulation in healthy
and diseased subjects (Parati et al 2006). However, the physiological interpretation of these
variables is still incompletely understood (Wessel et al 2007).

Modulations of the firing rate of cardiac pacemaker cells in the sinus node (i.e. heart
rate) as well as blood pressure (via cardiac output and peripheral resistance) are thought to
be predominantly nonlinear. Further, interactions between different control loops (e.g. the
cardiac and vascular branch of the baroreflex loop and the coupling between cardiac and
respiratory motor neurons within the medulla oblongata) introduce additional complexity.
Linear models are often insufficient to describe these complex dynamics in the cardiovascular
system adequately and nonlinear approaches are therefore used increasingly frequently (Eyal
et al 2001). The complexity of short-term HRV and BPV results predominately from neuro-
humoral autonomic control mechanisms and complexity analyses of HRV and BPV may
consequently provide information about cardiovascular regulation (Porta et al 2007).

In healthy subjects, beat-to-beat R–R interval and blood pressure time series have complex
temporal structures with correlations on multiple time scales (Costa et al 2008, Cerutti et al
2009). Thus, a comprehensive complexity analysis should take into account multiple time
scales. Costa et al (2002) introduced a method to calculate entropy over multiple scales—
multiscale entropy (MSE) analysis. MSE analysis of cardiovascular time series reveals
features that are indiscernible by traditional linear measures (Costa et al 2008). In previous
studies, MSE analyses of cardiovascular signals identified impaired cardiovascular control and
increased cardiovascular risk in various pathological conditions, including fetal distress (Cao
et al 2006, Ferrario et al 2006), chronic heart failure (Lee et al 2005), atrial fibrillation (Costa
et al 2002), phobia (Bornas et al 2006), critical post trauma state (Norris et al 2008) and type
1 diabetes mellitus (Trunkvalterova et al 2008).

Despite the increasing acceptance of the MSE in clinical research, its physiological
meaning is hardly understood, in particular the involvement of autonomic nervous system in
the MSE of heart rate and blood pressure.

The aim of this study is to investigate the effects of the autonomic nervous system on
the MSE of HRV and BPV, by means of orthostatic challenge. Orthostatic challenge is a
well-described autonomic stress paradigm that is characterized by an immediate reduction
in vagal outflow to the sinus node and an increase in skeletal-muscular sympathetic nerve
activity (Paton et al 2005). Further, we explore correlations between MSE and linear standard
measures of HRV and BPV.
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2. Materials and methods

2.1. Subjects

In this study, we included 28 healthy young subjects (21 females, 7 males) with a median
age of 20.4 years (interquartile range 19.9–21.0 years). All subjects were normotensive, non-
obese (body mass index: median 21.6, interquartile range 19.7–23.6 kg m−2) and were not
taking any medication at the time of study. All subjects gave their informed consent prior
to examination. The study was approved by the Ethics Committee of Jessenius Faculty of
Medicine, Comenius University.

Subjects were instructed not to use substances influencing cardiovascular system activity
(caffeine, alcohol, tobacco) for at least 12 h prior to examination.

2.2. Procedures

All subjects were investigated under standardized conditions in a quiet room during morning
hours (8 am to 12 am). The subjects were resting for 10 min before the actual recording started,
allowing the cardiovascular system to reach equilibrium, i.e. a quasi-stationary condition.
Recordings of R–R intervals, systolic and diastolic blood pressure (SBP, DBP, respectively)
were obtained simultaneously and continuously during an orthostatic stress test that consisted
of 20 min in the supine position followed by 15 min of active standing. Recording during
the standing position commenced after 90 s allowing the cardiovascular system to approach
a steady-state level. R–R intervals (the reciprocal value of heart rate (HR)) were obtained
from a one-lead ECG (Cardiofax ECG-9620M, Nihon Kohden, Tokyo, Japan). The SBP
and DBP recordings were obtained using a beat-to-beat blood pressure monitor (Finapres,
Ohmeda, USA). All analog signals were transmitted to a PC using an analog–digital converter
(Advantech PCL 711, Taiwan) at a sampling rate of 500 Hz.

2.3. Data analysis

HRV and systolic and diastolic BPV (SBPV and DBPV) analyses were performed on time
series of 1000 beats from each condition (supine position—L, standing—S) using a custom-
made computer software package.

2.3.1. Multiscale entropy. The MSE was computed according to the procedure published
by Costa et al (2002). From one-dimensional discrete time series, {x1, . . . ,xi, . . . ,xN}, we
constructed consecutive coarse-grained time series {y(τ )} determined by the scale factor τ ,
according to the equation

y
(τ)
j = 1/τ

jτ∑

i=(j−1)τ+1

xi,

where τ represents the scale factor and 1 � j � N/τ . The length of each coarse-grained
time series is N/τ . For scale 1, the coarse-grained time series is simply the original time
series. We calculated sample entropy (SampEn) (Richman and Moorman 2000) for each of
the coarse-grained time series as a function of the scaling factor.

SampEn quantifies the irregularity of a time series and estimates the conditional probability
that two sequences of m consecutive data points, which are similar to each other (within a
given tolerance r) will remain similar when one consecutive point is included. The SampEn
algorithm underlying the MSE computation comprises two degrees of freedom: the tolerance
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level r and the pattern length m. According to previous studies, we have chosen a tolerance
level of r = 0.15∗ standard deviation of the time series to avoid distortion of SampEn values
by changes in the signal magnitude. Because of the relatively short data (1000 beats), we
computed SampEn values for m = 1 and for scales τ up to 10. MSE analysis was performed
on HRV, SBPV and DBPV signals separately for both body postures (supine, standing).

2.3.2. Linear analysis. Linear measures were obtained in accordance with the
recommendations of Task Force (1996).

Time domain analysis. HRV analysis. For time domain HRV analysis, we computed the
three most commonly used measures: MeanNN—the mean length of the beat-to-beat interval
of normal heart beats (NN intervals), SDNN—standard deviation of NN intervals, reflecting
the overall variability magnitude and RMSSD—the root-mean-square of successive beat-to-
beat differences, reflecting the average magnitude of changes between two consecutive beats,
which is regarded to be a marker of vagal heart rate control.

BPV analysis. From SBP and DBP signals, we computed the following linear measures:

For SBP: Mean SBP—mean systolic blood pressure value, SD SBP—standard deviation of
systolic blood pressure values, RMSSD SBP—root-mean-square of successive differences
in SBP values.
For DBP: Mean DBP—mean diastolic blood pressure value, SD DBP—standard deviation
of diastolic blood pressure values, RMSSD DBP—root-mean-square of successive
differences in DBP values.

SD SBP and SD DBP measures reflect the overall magnitude of BPV, whereas RMSSD
SBP and RMSSD DBP quantify the beat-to-beat variability of the respective signals.

Frequency domain analysis. Spectral analysis of HRV, SBPV and DBPV was performed to
obtain power values in the low- and high-frequency bands. Time series were interpolated at
500 ms in order to obtain equidistant time series, using cubic splines. As we were interested
in oscillations between 0.04 and 0.5 Hz that are mediated by vagal and sympathetic efferents,
we eliminated the slower oscillations and trends using the detrending procedure of Tarvainen
et al (2002). Subsequently, the power spectrum was repeatedly estimated, using fast Fourier
transform and the Hanning window with a length of 1024 samples and a shift of ten samples.
The average power spectrum was computed and the following measures were derived for all
three analysed signals (HRV, SBPV, DBPV):

LF—low-frequency power (0.04–0.15 Hz);
HF—high-frequency power (0.15–0.4 Hz).

2.4. Statistics

Due to the non-Gaussian distribution of several variables (validated by the Lilliefors test),
nonparametric tests were used. The Wilcoxon signed-rank test was applied to test the
differences in MSE values of HRV, SBPV and DBPV between the supine and standing
positions. In addition, we generated surrogates of all HR, SBP and DBP time series by
shuffling all samples in order to destroy temporal structures. This way, we were able to test
whether MSE values of measured data were different from those of completely uncorrelated
data. Correlations between variability measures were assessed by Spearman correlation
coefficients. A p-value <0.05 (two-tailed) was considered statistically significant and the
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Figure 1. MSE analysis of heart rate (first column), systolic (second column) and diastolic blood
pressure (third column) in the supine (first row) and standing (second row) positions. Mean values
of SampEn values for scales 1–10 are presented for measured signals (full line) and randomized
surrogate data (dashed lines).

Bonferroni correction was used to address the problem of multiple comparisons. All variables
were presented as medians and interquartile ranges.

3. Results

3.1. MSE of randomized HR and BP time series

MSE analysis of randomized time series, independent of the body posture and the signal under
investigation (i.e. heart rate or blood pressure), showed the same typical pattern of decreasing
SampEn values with increasing scales (figure 1). The coarse-graining algorithm leads to a
loss of entropy on higher scales (Costa et al 2002) while relatively stable values of SampEn
were found on higher scales in real data.

3.2. MSE analysis of HR

The MSE functions of HR recorded in the supine position showed a continuous reduction in
entropy values with increasing scales except from scale 1 (figures 1 and 2). Compared to the
surrogate data, supine HR entropy values were higher than those from noise on scales >3.
On scale 1, entropy was lower than that of random data but on scales 2–3 the entropy was not
significantly different (figure 1).

In the standing position, HR entropy values initially increased and remained stable on
scales >5. Compared to the surrogate data, HR entropy values were lower on scales 1–2 and
significantly higher on scales >3 (figure 1).
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Figure 2. ME analysis of heart rate. Significant differences between supine and standing positions
were detected on all scales with the exception of scale 3. For scales 1 and 2, the entropy of heart
rate was lower in standing position, whereas for scales 4–10, entropy was higher in the standing
position. The circles/triangles represent mean values and error bars indicate the standard error of
the mean.

When comparing the MSE function obtained in the supine position with that in the
standing position (figure 2), significant differences were found on all scales with the exception
of scale 3, on which a cross-over of entropy values was observed. On smaller scales (1 and
2) significantly lower values of SampEn were found in the standing position compared to the
supine position (p = 0.000 06 and p = 0.0002 for scales 1 and 2, respectively). Conversely,
on scales >3 the complexity of HR was significantly higher in the standing position compared
to the supine position (p values ranging from 0.000 004 to 0.000 03).

Individual-specific analysis of the cross-over phenomenon showed that the ‘cross-over
scale’ was 3 in 14 subjects (50%), 2 in 6 subjects (21%), 4 in 6 subjects (21%) and 9 in
1 subject.

3.3. MSE analysis of BP

In the supine position, SampEn values of SBP as well as DBP increased with increasing scales,
where the biggest changes occur on small scales. Similar to the HR data, initial entropy values
(scales 1 and 2) of SBP and DBP were smaller than those of randomized data and entropy
values of larger scales (>4 for SBP and >3 for DBP) were higher (figure 1).

In the standing position, SampEn values initially increased with increasing scales and
showed a slight reduction on higher scales. Compared to randomized data, SBP entropy
values were significantly different on all scales, i.e. significantly lower on scales 1–2 and
significantly higher on scales >2 (figure 1).

When comparing MSE results of SBP obtained in the supine with those obtained during
the standing position (figure 3), significantly higher values of SampEn in the standing position
were found on scales 3 and 4. On the remaining scales (scales 1, 2 and 5–10) no differences
between body postures were found (figure 3).

The effect of body position on MSE analysis measures was more prominent in the DBP
signal than in the SBP signal. SampEn values of DBP for five out of ten scales (scales 3–7)
were significantly higher in the standing position (figure 4).



Multiscale cardiovascular complexity during orthostasis 1431

Figure 3. MSE analysis of systolic blood pressure. Significant differences between supine and
standing positions were observed on scales 3 and 4. The circles/triangles represent mean values
and error bars indicate the standard error of the mean.

Figure 4. MSE analysis of diastolic blood pressure. Significant differences in SampEn values
between supine and standing positions were found on scales 3–7. The circles/triangles represent
mean values and error bars indicate the standard error of the mean.

3.4. Standard linear HRV and BPV analysis (table 1)

Significant decreases were found in all time and frequency domain HRV parameters (except
the power in the LF band) in the standing position compared to the supine position. Conversely,
an increase in overall as well as beat-to-beat SBPV and DBPV was detected during standing.

3.5. Correlation analysis of the MSE versus linear measures

HRV. None of the SampEn values correlated with MeanNN (table 2(A)). While no
significant correlation between linear HRV measures and results of MSE were found
in the standing position, time and frequency domain HRV measures showed significant
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Table 1. Linear analysis of heart rate and blood pressure variability.

Supine (L) Standing (S) P

HRV

MeanNN (ms) 865 [811–984] 651 [621–790] <0.001
∗

SDNN (ms) 57 [39–88] 43 [35–56] 0.001
∗

RMSSD (ms) 53 [27–84] 19 [15–26] <0.001
∗

LF–HRV (ms2) 459 [167–1233] 570 [211–794] 0.690

HF–HRV (ms2) 851 [221–1957] 149 [87–277] <0.001
∗

SBPV

Mean SBP (mmHg) 112 [100–120] 145 [131–163] <0.001
∗

SD SBP (mmHg) 6.4 [4.7–7.9] 8.7 [7.2–10.6] <0.001
∗

RMSSD SBP (mmHg) 2.9 [2.4–3.4] 3.3 [3.0–4.3] <0.001
∗

LF–SBPV (ms2) 3.5 [2.1–4.9] 13.2 [8.5–19.5] <0.001
∗

HF–SBPV (ms2) 2.3 [1.3–3.0] 4.8 [3.2–6.8] <0.001
∗

DBPV

Mean DBP (mmHg) 47 [41–54] 83 [74–89] <0.001
∗

SD DBP (mmHg) 3.2 [2.7–4.0] 5.5 [4.6–6.5] <0.001
∗

RMSSD DBP (mmHg) 1.7 [1.5–2.5] 2.2 [1.9–2.7] 0.001
∗

LF–DBPV (ms2) 1.6 [1.2–2.5] 9.0 [6.7–11.9] <0.001
∗

HF–DBPV (ms2) 0.7 [0.4–1.4] 1.6 [0.9–2.3] <0.001
∗

Linear time and frequency domain measures computed for heart rate variability
(HRV), and systolic and diastolic blood pressure variability (SBPV and DBPV) time
series in the supine (L) and standing (S) positions. The values are presented as median
[interquartile range]. The p-values were obtained using the Wilcoxon test. Asterisks
indicate significant between-groups differences (p < 0.05). For a more detailed
description of the variables see section 2.

negative correlations with SampEn values on higher scales (scales 5–10) in the supine
position.
SBPV. None of the SampEn values correlated with Mean SBP values (table 2(B)). In the
supine position, several significant correlations between SBPV magnitude and SampEn
values on lower scales (1–3) were detected.
DBPV. None of the SampEn values correlated with Mean DBP values (table 2(C)).
Similarly, no correlations were observed between SampEn values of any scale and SD
DBP values (a measure of the overall DBPV magnitude) in either position. There were
only a few significant correlations between SampEn values and spectral indices of DBP
in the supine position.

4. Discussion

The major finding of our study is that MSE analysis of heart rate and blood pressure is sensitive
to changes in autonomic balance as induced by postural change from the supine to the standing
position. We also demonstrated that the effect of orthostatic challenge on heart rate and blood
pressure complexity depends on the time scale under investigation. Further, MSE values
do not correlate with the mean values of heart rate and blood pressure and show only weak
correlations with standard linear time and frequency measures.
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Table 2. Correlation of multiscale entropy and linear measures.

Multiscale entropy analysis: SampEn for scale

1 2 3 4 5 6 7 8 9 10

(A)
Supine position MeanNN 0.194 −0.096 −0.171 −0.203 −0.329 −0.324 −0.201 −0.343 −0.195 −0.165

SDNN 0.109 0.217 0.105 −0.128 −0.416 −0.513 −0.588
∗∗ −0.724

∗∗ −0.691
∗∗ −0.594

∗∗

RMSSD 0.300 0.246 0.070 −0.163 −0.523
∗∗ −0.622

∗∗ −0.712
∗∗ −0.765

∗∗ −0.764
∗∗ −0.693

∗∗

LF −0.038 0.162 0.232 0.075 −0.233 −0.377 −0.442 −0.616
∗∗ −0.606

∗∗ −0.532
∗∗

HF 0.318 0.372 0.207 −0.081 −0.468 −0.562
∗∗ −0.664

∗∗ −0.716
∗∗ −0.752

∗∗ −0.697
∗∗

Standing position MeanNN 0.339 0.425 0.306 0.112 0.174 0.091 0.090 −0.342 −0.123 −0.169
SDNN 0.007 0.194 0.318 0.216 0.333 0.033 0.159 −0.292 −0.112 −0.088
RMSSD 0.241 0.332 0.419 0.313 0.403 0.077 0.153 −0.236 −0.099 −0.165
LF −0.059 0.152 0.344 0.360 0.460 0.188 0.197 −0.138 0.037 −0.143
HF 0.200 0.346 0.445 0.316 0.332 0.096 0.142 −0.283 −0.210 −0.168

(B)
Supine position Mean SBP 0.240 0.192 0.206 0.080 −0.036 −0.037 0.083 0.017 −0.074 −0.041

SD SBP −0.802
∗∗ −0.585

∗∗ −0.377 −0.371 −0.312 −0.198 −0.448 −0.333 −0.120 −0.109
RMSSD SBP 0.264 0.356 0.102 −0.159 −0.228 −0.171 −0.109 −0.110 −0.204 −0.186

LF −0.640
∗∗ −0.299 0.103 0.131 0.178 0.209 −0.032 0.049 0.344 0.330

HF 0.294 0.501 0.068 −0.203 −0.243 −0.212 −0.168 −0.114 −0.166 −0.035
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Table 2. (Continued.)

Multiscale entropy analysis: SampEn for scale

1 2 3 4 5 6 7 8 9 10

Standing position Mean SBP −0.007 −0.028 0.008 −0.014 0.089 −0.007 −0.052 0.031 0.050 0.331
SD SBP −0.471 −0.340 −0.246 −0.252 −0.284 −0.471 −0.132 −0.157 −0.184 −0.102
RMSSD SBP 0.444 0.455 0.270 0.188 0.194 0.444 0.058 −0.082 0.051 0.079
LF −0.208 0.053 0.314 0.301 0.200 −0.208 0.296 −0.083 0.019 0.062
HF 0.386 0.432 0.255 0.165 0.125 0.386 0.079 −0.112 −0.032 −0.105

(C)
Supine position Mean DBP −0.347 0.112 0.233 0.372 0.349 0.147 0.147 −0.063 0.379 0.323

SD DBP 0.081 −0.214 0.036 −0.014 −0.085 −0.163 −0.086 −0.205 0.023 −0.147
RMSSD DBP 0.741 0.274 0.171 −0.063 −0.106 −0.269 −0.295 −0.143 −0.185 −0.425

LF −0.023 0.167 0.454 0.518
∗∗

0.485 0.227 0.215 −0.038 0.137 0.063

HF 0.804
∗∗

0.415 0.192 −0.086 −0.106 −0.275 −0.351 −0.160 −0.200 −0.421
Standing position Mean DBP −0.173 −0.200 −0.100 0.001 −0.141 0.295 0.165 0.059 0.005 −0.167

SD DBP −0.360 −0.227 −0.143 −0.180 −0.205 0.012 0.041 −0.060 0.296 0.107
RMSSD DBP 0.475 0.366 0.246 0.105 0.054 0.138 0.027 0.095 0.349 −0.069
LF −0.181 0.162 0.361 0.349 0.184 0.437 0.192 0.001 0.309 −0.077
HF 0.323 0.166 0.069 −0.122 −0.122 −0.181 0.033 0.082 0.396 −0.083

Values are Spearman correlation coefficients calculated between sample entropy values of scales 1–10 (columns) and linear measures of heart rate variability
(A), systolic (B) and diastolic blood pressure variability (C). Significant correlations are highlighted in bold. Single asterisks indicate correlations significant
at the 0.05 level (two-tailed). Double asterisks indicate correlations significant at the 0.01 level (two-tailed).
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Fluctuations in cardiovascular signals exhibit complex structures that have received
attention only recently (Peng et al 2009). Understanding the mechanisms leading to this
natural complexity is not only important at the basic scientific level, but also at the clinical
level to understand the degradation of dynamical complexity that is commonly observed with
disease and aging (Norris et al 2008, Peng et al 2009). In clinics, complexity measures are
not used yet, as they are often difficult to interpret. The literature on the relationship between
complexity measures, clinical correlates and standardized autonomic reflex tests is scarce
(Kuusela et al 2002, Raab et al 2006, Baumert et al 2009). This is unfortunate as studies have
repeatedly demonstrated that complexity measures provide information that is independent
of the magnitude of cardiovascular oscillations as traditionally quantified by linear measures
in the time and frequency domains (Costa et al 2008, Javorka et al 2008, 2009, Cerutti et al
2009, Voss et al 2009, Bornas et al 2006).

Cardiovascular regulation in the healthy human body is mediated by a variety of neural,
hormonal, genetic and external interactions that operate across multiple time scales ranging
from seconds to years (Costa et al 2008). Insight into the dynamics of biological control
systems can be gained by studying the complexity of cardiovascular signals over multiple time
scales (Angelini et al 2007).

In our study, we employed MSE analysis to investigate the effect of a shift in
sympathovagal balance toward sympathetic predominance on heart rate and blood pressure
complexity. In the supine as well as the standing position, we observed that entropy values
of heart rate and blood pressure change as a function of the time scale. On small scales,
the entropies of heart rate and blood pressure are lower than those of randomized data,
demonstrating that beat-to-beat fluctuations follow regular patterns. These are mostly likely
the result of regular breathing patterns and associated control mechanisms (cardio-respiratory
coupling, baroreflex, hemodynamic coupling). On larger scales, the entropies of heart rate
and blood pressure oscillations are larger than those of random data. This apparent paradox
can be explained as follows: the coarse-graining procedure reduces the information content
of random data when the scales increase. In HR and BP time series, the structure is more
complex than uncorrelated noise and therefore results in higher entropy values after coarse
graining.

In previous studies, the effect of orthostasis on HR complexity was predominantly assessed
on the beat-to-beat time scale, ignoring the multiscale nature of cardiovascular fluctuations.
In line with our MSE analysis, orthostatic challenge was reported to be accompanied by a
decrease in SampEn (scale 1) of HRV (Vuksanovic and Gal 2005, Porta et al 2007). Our
results further show that this reduction in HR entropy extends to scale 2. In contrast to that,
HR entropy values on scales above 3 were consistently higher during orthostasis than in the
supine position. A similar finding (i.e. a reduction in heart rate entropy on scales 1–2 and an
increase on scales above 4) was described during wakefulness compared to sleep (Costa et al
2005), which is characterized by a similar shift in sympathovagal balance. It is noteworthy
that the cross-over scale (below this scale, SampEn during orthostasis values were lower than
in the supine position and above this scale, SampEn values were higher) of the heart rate signal
was close to 3 in the majority of subjects. We suggest that the decrease in HR entropy on scales
below 3 primarily corresponds to a decrease in respiratory sinus arrhythmia contribution due
to parasympathetic inhibition during standing.

With regard to the complexity of blood pressure fluctuations, even less information is
available than for heart rate. Animal studies on the effect of pharmacological blockades
and acute haemorrhage showed no changes in blood pressure entropy (Beckers et al 2006,
Batchinsky et al 2007). In our study, we found that scales above 3 showed the biggest
differences in BP complexity caused by orthostasis (this difference was more expressed in
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the diastolic BP signal), suggesting that those scales are of significance for the detection of
changes in autonomic nervous system activity. Presumably, those scales reflect sympathetic
activity in the vasculature that gives rise to Traube–Mayer–Herring blood pressure waves
(Julien 2006). A similar pattern of changes in MSEs of SBP and DBP was found in patients
with chronic heart failure and might result from elevated sympathetic nerve activity (Angelini
et al 2007). This observation further stresses the importance of the multiscale approach in the
analysis of blood pressure oscillations.

In a previous study on heart rate and blood pressure complexity in diabetic patients, we
have shown that heart rate and blood pressure dysregulation was most prominent on time
scales 2–4. However, these changes were only subtle compared to those observed in this
study as a result of orthostatic challenge. This suggests that cardiovascular dysregulation in
young diabetics is not comparable to a reciprocal shift in sympathovagal balance as occurs
during orthostasis (Paton et al 2005). The assessment of MSE changes during maneuvers with
nonreciprocal changes in autonomic nervous components balance or with directly measured
sympathetic activity (Baumert et al 2009) could provide additional insight into MSE analysis.

4.1. Study limitations

We assessed MSE in the supine and standing positions. Our results might not be fully
comparable to those obtained with a standard head-up tilt test, as active standing involves
leg muscle pump action. Another limitation of our study is the relatively short duration of
recording, which limited MSE analysis to scales 1–10.

5. Conclusion

MSE analysis of heart rate and blood pressure is sensitive to changes in autonomic balance
as induced by postural change. The change in entropy depends on the time scale under
investigation, emphasizing the importance of a multiscale approach for the analysis of
cardiovascular signals analysis.
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