
Background

The aim of the rotary router is to improve

the overall throughput of Network on

Chips used in multi-core processors.

References
[1] Peter J. Ashenden. 2008. “Digital Design: An Embedded Systems Approach Using

Verilog.” Pg 232

[2] Pablo Abad, Valentin Puente, José Angel Gregorio, and Pablo Prieto. 2007. “Rotary

router: an efficient architecture for CMP interconnection networks.” SIGARCH Comput.

Archit. News 35, 2 (June 2007), 116 -125.

[3] Sriram R. Vangal et al. 2007 “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-cm

CMOS.” IEEE Journal of solid-state circuits, Vol. 43, No, 1. 29-41.

[4] Vu-Duc Ngo, Huy-Nam Hguyen, Hae-Wook Cho. 2005. “Analysing the Performance

of Mesh and Fat-Tree Topologies for Network on Chip Design.” EUC 2005, LNCS 3824,

300-310.

[5] F.Gilabert, M.E Gómez, S. Medardoni, D Bertozzi. 2010. “Improved Utilization of

NoC Channel Bandwidth by Switch Replication for Cost-Effective Multi-Processor

Systems-on-chip.” 2010 Fourth ACN/IEEE International Symposium on Networks-on-

chip.

Significance

The Project looks to overcome the

bottleneck that is experienced in multi-core

processors. Using rotary routers as a

Network on Chip to transfer information

from memory to computer processors.

Aims

The aims of the project are:

•To design a rotary router using

verilog

•To synthesize the rotary router

onto a FPGA board

•To test the rotary router against

the crossbar switch

Test bench
module EighBit_Counter_tb();

 reg ce, reset, clk;

reg [0:1] D;

wire [0:1] Q;

EightBit_Counter dut(Q, D, ce, reset, clk);

 initial begin

clk = 1'b0; ce = 1'b0; reset = 1'b0; D = 2'b00; #10;

if (Q!= 2'b00) $display("set up is wrong");

D = Q; ce = 1'b1; reset = 1'b0; #10;

if (Q!= 2'b01) $display("wrong 1");

D = Q; ce = 1'b1; reset = 1'b0; #10;

if (Q!= 2'b10) $display("wrong 2");

D = Q; ce = 1'b1; reset = 1'b1; #10;

if (Q!= 2'b00) $display("wrong reset");

end

always begin

#5 clk = ~clk;

end

 endmodule

reg [0:1] q;

always @ (posedge clk)

if (reset)

q = 2'b00;

else if (ce)

q <= D + 1;

else

q = D;

assign Q = q;

endmodule

verilog
module EightBit_Counter(

output [0:1] Q,

input [0:1] D,

input ce,

input reset,

input clk);

reg [0:1] q;

always @ (posedge clk)

if (reset)

q = 2'b00;

else if (ce)

q <= D + 1;

else

q = D;

assign Q = q;

endmodule

Components

For the rotary router to be built it

required a number of components to

be designed in verilog.

These were:

•Multiplexer and De-multiplexer

•FIFO Buffer

•Counter

•SSRAM

Outcomes

The rotary router still needs to be

finished. This involves completing

the signals with in the rotary router

that control how it works.

