if (reset) if (see the less of the life (see the less of the life (see the less of the les

Using Rotary Routers

Author: Aidan Foord

Supervisors: Assoc. Prof. Michael Liebelt

Background

The aim of the rotary router is to improve the overall throughput of Network on Chips used in multi-core processors.

Significance

The Project looks to overcome the bottleneck that is experienced in multi-core processors. Using rotary routers as a Network on Chip to transfer information from memory to computer processors.

verilog

module EightBit_Counter(output [0:1] Q, input [0:1] D, input ce, input reset, input clk);

reg [0:1] q;

always @ (posedge clk) if (reset)

q = 2'b00;else if (ce)

 $q \le D + 1;$

q = D;

assign Q = q;

endmodule

Test bench

module EighBit_Counter_tb(); reg ce, reset, clk; reg [0:1] D; wire [0:1] Q;

EightBit_Counter dut(Q, D, ce, reset, clk); initial begin

clk = 1'b0; ce = 1'b0; reset = 1'b0; D = 2'b00; #10; if (Q!= 2'b00) \$display("set up is wrong");

D = Q; ce = 1'b1; reset = 1'b0; #10;

if (Q!= 2'b01) \$display("wrong 1");

D = Q; ce = 1'b1; reset = 1'b0; #10;

if (Q!= 2'b10) \$display("wrong 2"); D = Q; ce = 1'b1; reset = 1'b1; #10;

if(Q!=2'b00) \$display("wrong reset");

always begin $\#5 \text{ clk} = \sim \text{clk};$

endmodule

Aims

The aims of the project are:

SCHOOL OF

•To design a rotary router using verilog

of ADELAIDE

- •To synthesize the rotary router onto a FPGA board
- •To test the rotary router against the crossbar switch

Outcomes

The rotary router still needs to be finished. This involves completing the signals with in the rotary router that control how it works.

Components

For the rotary router to be built it required a number of components to be designed in verilog.

These were:

- •Multiplexer and De-multiplexer
- •FIFO Buffer
 - Counter
 - •SSRAM

References

[1] Peter J. Ashenden. 2008. "Digital Design: An Embedded Systems Approach Using Verilog." Pg 232

[2] Pablo Abad, Valentin Puente, José Angel Gregorio, and Pablo Prieto. 2007. "Rotary router: an efficient architecture for CMP interconnection networks." SIGARCH Comput. Archit. News 35, 2 (June 2007), 116 -125.

[3] Sriram R. Vangal et al. 2007 "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-cm CMOS." IEEE Journal of solid-state circuits, Vol. 43, No. 1. 29-41.

[4] Vu-Duc Ngo, Huy-Nam Hguyen, Hae-Wook Cho. 2005. "Analysing the Performance of Mesh and Fat-Tree Topologies for Network on Chip Design." EUC 2005, LNCS 3824, 300-310.

[5] F.Gilabert, M.E Gómez, S. Medardoni, D Bertozzi. 2010. "Improved Utilization of NoC Channel Bandwidth by Switch Replication for Cost-Effective Multi-Processor Systems-on-chip." 2010 Fourth ACN/IEEE International Symposium on Networks-on-