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 ABSTRACT

Recently, a real-time imaging system based on terahertz (THz) time-domain spectroscopy has been developed.  This
technique offers a range of unique imaging modaliti es due to the broad bandwidth, sub-picosecond duration, and phase-
sensitive detection of the THz pulses.  This paper provides a brief introduction of the state-of-the art in THz imaging.  It also
focuses on expanding the potential of this new and exciting field through two major efforts.  The first concentrates on
improving the experimental sensitivity of the system.  We are exploring an interferometric arrangement to provide a
background-free reflection imaging geometry.  The second applies novel digital signal processing algorithms to extract useful
information from the THz pulses.  The possibili ty exists to combine spectroscopic characterization and/or identification with
pixel-by-pixel imaging.  We describe a new parameterization algorithm for both high and low refractive index materials.

Keywords: Terahertz, time-domain spectroscopy, interferometry, parameterization, estimation, refractive index,
tomography, spectroscopic imaging

1. INTRODUCTION

Until the 1980's, the use of electromagnetic waves in the far-infrared, or terahertz (THz), region of the spectrum was limited
due to the low intensity of thermal sources and the poor sensitivity of most detectors.  Many of these difficulties were
overcome by the introduction of THz time-domain spectroscopy (THz-TDS).1-3  This system uses femtosecond pulses of
near-visible laser light to opto-electronically generate a coherent THz wave.  The resulting electromagnetic pulse is
broadband and spans from below 100 GHz to more than 2 THz.  The receiver structure requires the simultaneous arrival of a
delayed femtosecond laser pulse and the generated THz wave.  Through this arrangement, the laser pulse acts as a gating
signal to control sampling.  The result is a system that provides extremely bright, coherent emissions onto a gated receiver
with sensitivity several orders of magnitude higher than most bolometric (thermal) counterparts.

The first real-time THz imaging system was introduced in 1995.4  In Hu et al. and others that followed, a broad range of
applications were demonstrated.  The images, created from 'T-rays', included moisture analysis in a leaf, thermal analysis of a
flame, and leadframe imaging of a plastic encapsulated integrated circuit, just to name a few.4-7  While a broad range of
possible applications were presented, the signal processing techniques were often limited in scope.  Average received power
or arrival time shifts were often used to determine a false color image.  This paper focuses on improving the THz system
sensitivity through interferometry and generating spectroscopic estimations using digital signal processing.

2. TERAHERTZ TIME-DOMAIN SPECTROSCOPY

The heart of the THz system relies on two key components: the Auston switch and a visible laser capable of generating
femtosecond (10-15 seconds) pulse trains.1  The Auston switch is composed of a li thographed dipole antenna patterned on a
photoconductive substrate (see Fig. 1).  When the dipole antennas are DC biased, a photo-induced current can be generated
by the laser pulses.  This current rises from zero in a time determined by the duration of each laser pulse, which is typically
0.1 picoseconds.  This rapid change in current produces an electromagnetic wave in the THz spectral range.

The receiver optics and switch are similar to the transmitter arrangement just described.  The receiver switch, however, is not
DC biased.  Instead, a current meter is connected across the dipole.  Current will only flow when a laser pulse arrives at the
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switch at the same time as the coherent THz wave.  Since the laser pulse is narrow in comparison to the time duration of the
T-ray pulse, the laser acts as a gated sampling signal.  The optical arrangement between the transmitter and receiver can be
tailored depending on the experimental goals.

3. TERAHERTZ INTERFEROMETRY

THz imaging is an emerging technology that permits three-dimensional tomographic imaging of non-metalli c objects.
Numerous applications have been demonstrated where THz imaging could be a valuable complement to existing technologies
for non-invasive testing, including the detection of faults or delaminations in packaged integrated circuits and the location of
air bubbles or cracks within polymer or ceramic parts.5,6  In many of these applications, the feature we wish to detect is
subtle, in the sense that its interaction with the single-cycle THz pulse imposes only a small additional distortion on the
waveform.  A good example is detecting delamination or disbonding between two surfaces.  In many practical cases, the gap
which opens between the two surfaces is narrower than the coherence length of the THz pulse, and the waveform is littl e
changed as a result.

Here we report on the use of interferometry in combination with THz tomography, for improving the detectabili ty of such
subtle features.  This idea has analogies to optical coherence tomography, in which the signal pulse, reflected off of the
sample, is interfered with a reference wave to provide enhanced sensitivity.8  The experimental layout is shown in Fig. 2.
The colli mated THz beam is directed into a Michelson interferometer, in which one arm (signal) contains a 10 cm
polyethylene lens.  Thus, the THz beam is focused onto the sample at normal incidence.  The second arm (reference) contains
a planar mirror, mounted on a translation stage for variable delay.  The measured signal is the coherent superposition of the
electric fields from these two arms.  Due to the Gouy phase shift acquired by the signal beam as it passes through a focus, it
is 180° out of phase from the reference beam.9  If the sample reflects the THz pulse without distortion, the delay of the
reference arm can be adjusted so that the two pulses destructively interfere at the detector.  As a result, we detect almost no
signal.  Figure 3(a) depicts a waveform in which the sample and reference pulses are separated in time by a few picoseconds.
Figure 3(b) shows the waveform when the two pulses are overlapped in time, producing a near cancellation of the measured
signal.

Cancellation relies sensitively on the delay and distortions acquired by the signal pulse as it interacts with the sample.  Any
small change in this waveform produces a large fractional change in the measured signal.  We demonstrate the effect of
adhesive tape stuck on the cancelled surface.  The thickness of this “defect” is approximately 45 µm, or 1/7 of the coherence
length of the pulse.  The tape is composed of a transparent, low-index polymer, which has only a weak effect on the THz
pulse.  The waveform in Fig. 3(c) shows the effect of the tape compared to Fig. 3(b).  Figure 3(d) shows the minute phase
shift between waveforms using conventional (i.e., non-interferometric) imaging.  Interferometry enhances the contrast.
Figure 4 shows processed images of the tape comparing both an interferometric and non-interferometric arrangement.  The

Fig. 1. A THz pulse is generated using an Auston switch.  By directing a femtosecond laser pulse onto a DC biased dipole antenna on a
semiconductor substrate, a small photo-induced current is created.  This current rises from zero in a time determined by the
duration of each laser pulse, which is typically 0.1 picoseconds.  The rapid change in current produces an electromagnetic wave in
the THz spectral range.
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non-interferometric image is barely able to resolve the edges of the tape, while the interferometric image clearly shows the
tape and trapped air bubbles under the tape.

4. SPECTROSCOPIC ESTIMATION

One goal in using the THz-TDS system is real-time spectroscopy and imaging.  Images are formed by the collection and
processing of signals in a pixel-by-pixel fashion as the sample is translated.  Issues of particular interest for our purposes are
the characterization of the THz waveforms, and the model that describes the interactions between the waveforms and a
homogenous, planar solid.

Spectroscopic measurements require an analysis method for THz waveforms.  Typically, one measures the transmitted, time-
domain waveform both with and without a sample present and then performs a Fourier deconvolution in order to extract
material parameters.  The success of this method requires precise knowledge of the thickness of the sample, as both the
absorption and the phase delay vary exponentially with sample thickness.  Indeed, in many of these measurements, the
dominant error in the optical constants arises from uncertainty in the thickness measurement.  Also, analytical solutions do
not exist to derive these constants from the measured electric fields, and we must employ numerical methods.10  Duvillaret et
al. recently described one example of a numerical inversion algorithm for this purpose.11  As with most spectroscopic
methods, this algorithm also relies on an accurate knowledge of the sample thickness.  Very recently, Duvillaret et al.
extended their work to also extract the thickness, but they only considered high index materials.12

In this work, a new technique is proposed to determine simultaneously the thickness and the complex index of refraction of
an unknown material.12  The THz-TDS system provides a time-domain signal that contains not only the initial pulse
transmitted through the material but also several subsequent pulses, resulting from internal reflections, which arrive at
delayed times.  Our method is a model-based approach in which the extraction of material parameters arises from the analysis
of the multiple internal reflections described by the Fabry-Perot effect.11  A gradient search minimizes the difference between
the model and the measured signals over a range of thicknesses.  At each guessed thickness, we iteratively update the
complex index of refraction function to minimize the total error.  Once the complex index of refraction is identified for a
particular thickness, a total variation metric measures the smoothness of the refractive index function.  The total variation
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Fig. 2. Schematic of terahertz imaging with interferometry.  The
reference arm creates an inverted pulse that nearly
cancels the main pulse at a known sample depth.  Any
sample that affects the THz signal disturbs the
cancellation with the reference arm.  Subtle changes are
more easily detected using an interferometric
arrangement compared to a non-interferometric setup.

Fig. 3. THz waveforms with (a) a delay between the signal and
reference reflections, (b) the near cancellation of the two
pulses, (c) the effect on the interferometric signal of the
tape, and (d) the effect on the non-interferometric signal
of 45µm thick adhesive tape.
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metric does not use any simpli fying assumptions as in Duvillaret et al.12  The deepest local minimum of the total variation
metric as a function of thickness identifies the predicted material thickness and the complex refractive index.  We investigate
the limits of our method with respect to the minimum measurable refractive index and compare our results to literature data
for several different materials.

For each pixel, the system receives a single waveform that is the result of the interactions between the THz pulse and the
sample.  One may also record a reference waveform without the sample in situ.  Figure 5 shows a typical THz waveform
without sample Eref(t) characterized by a single-cycle pulse of approximately 1 ps in duration.  We also show a waveform
measured with a planar sample in the THz path.  This waveform Esample(t) (see Fig. 5 right) shows a similar initial pulse due
to the first transmission through the material, but it also contains two smaller pulses caused by multiple internal reflections.
The time-domain analog of the Fabry-Perot effect describes these two additional pulses.13  We note that all of the pulses in
the waveform Esample(t) are time shifted, attenuated, and reshaped compared to the reference waveform Eref(t).  These changes,
both in the time and frequency domains, form the basis for the information we wish to extract.  (These experiments were
performed in a dry air environment to eliminate the spectral absorption lines due to water vapor.14)

The Fresnel equations describe the transmission and reflection of the THz wave at each interface.13  These are based on the
material's complex index of refraction in the frequency domain, ñ(ω)  = n(ω)  − jκ(ω) , where n(ω)  represents the real
refractive index, κ(ω)  is proportional to the absorption coeff icient, and ω is angular frequency.  The Fresnel equations at an
interface between two layers are:
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where tab(ω)  is the transmission coeff icient of a wave at normal incidence from region a to region b, and rab(ω)  is the normal
reflection in region a at the a-b interface.  As the wave moves though a material of thickness l, its propagation is governed
by:
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Fig. 4. Images comparing maximum peak-to-peak amplitude of
(a) non-interferometric imaging, and (b) interferometric
imaging.  The sample consists of two ~45µm thick
pieces of adhesive tape on a flat metal surface.  The tape
strip on the right has two air bubbles trapped under the
tape.  Images made from phase variations showed lit tle
information for both arrangements.
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Fig. 5. A terahertz pulse transmitted through a homogeneous,
planar material results in the initial pulse, and several
subsequent pulses due to multiple internal reflections.
These changes, both in the time and frequency domains,
form the basis for the information we wish to extract.



We neglect scattering (e.g., interface roughness) in our model and consider the THz path both with and without a sample in
place.  For the free air path, we have:

),()()( airinitialref xpEE ωωω = ,          000027.1)(~
air jn −=ω (4)

with x the distance between the transmitter and receiver.  This includes the small but measurable contribution of the refractive
index from air at standard pressure and room temperature.15  We examine a planar, homogenous material placed in the
pathway of the THz radiation.  Our iterative approach requires that the primary transmission and at least two multiples be
present in the measured waveforms to solve for the free variables.  The equations for the primary received signal and two
multiples with the sample in situ are:
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To make our system of equations more tractable, we first add (5) through (7).  This models the measured waveform that
contains all three temporal signals:
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We are now able to clearly discern the multiples FP(ω)  described by the Fabry-Perot effect.  Dividing (8) by (4), we obtain:
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Equation (9) provides the transfer function for our model.  The complex function ñsample(ω)  and l are the only free variables.

The deconvolution in frequency of our measured temporal signals is:
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We wish to compare the deconvolution of the measured signals H(ω)  (Eq. 10) with the modeled transfer function Ĥ (ω)
(Eq. 9).  Unfortunately, the real and imaginary parts of H(ω)  are oscill ating functions that produce many global minima for
any error measure.  Instead, using the magnitude and unwrapped phase information provides a unique solution.11  The
algorithm must unwrap the phase for both the modeled and measured deconvolution similarly in order to make a valid
comparison.  In unwrapping, we require that the phase must extrapolate to zero at zero frequency.  Our algorithm resets the 0
Hz phase value to zero, and monotonicall y unwraps all subsequent phases assuming that no two adjacent values have a
difference greater than 2π.

We define the error by taking the absolute difference between the magnitude and unwrapped phase of the measured data
versus the model:
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The total error over all frequencies of interest is:
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Duvill aret et al. used a somewhat different error calculation by taking the squared error of the natural log of the magnitude,
and the unwrapped phase.11  Since we do not apply a parabolic fit method to match the model to the measured signals, we do
not use the same error measure.
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Our procedure uses a three step process.  First, we make an initial guess at the thickness.  Second, our algorithm calculates
the beginning functions for the complex index of refraction.  The initial guess assumes a non-dispersive material.  Third, a
gradient descent algorithm iterates the complex index of refraction function in frequency until the total error no longer
monotonically decreases.  Our algorithm records the final complex refractive index function, and repeats these steps for a
range of thicknesses.  We review each of these steps in detail below.

First, the algorithm bounds the upper and lower limits of thickness guesses by:
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where ∆t is the time delay between the pulse in Eref(t) and the first pulse in Esample(t) of the measured signals.  The parameters
n1 and n2 limit the range of refractive indices considered.  Values of n1 = 1.2 and n2 = 8 cover nearly all practical cases.

Second, the best initial starting function for the complex refractive index occurs when the first peak location of the temporal
model's deconvolution is the same as the first peak location of the measured deconvolution.  The real refractive index and the
thickness of a material control where the first peak exists in the temporal deconvolution.  The imaginary index of refraction
and the thickness affect the ampli tude of the first peak.  Assuming a non-dispersive material (flat frequency response) for the
estimated n(ω ) , the following equation governs the relationship between the thickness and real refractive index based on the
location of the pulse in the measured signal's temporal deconvolution:
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where l is the estimated thickness of the material selected in the first step and argmax(|h(t)|) is the time index of the absolute
maximum of the measured temporal deconvolution.  This assumes that the input signal begins at t = 0.  We do not expect a
constant real refractive index in most real materials, but this provides a good way to generate an initial estimate.  The initial
value for κ(ω)  begins at zero and increments until the absolute maximum of the modeled temporal deconvolution is less than
or equal the absolute maximum of the measured temporal deconvolution.

Third, after the initialization of n(ω)  and κ(ω), they are updated using a gradient descent algorithm:16

nnew(ω )  = nold(ω )  + ε  pER(ω ) ,               κnew(ω )  = κold(ω )  + ε  mER(ω ) (15)

where ε is the update step size.  It determines how much of an effect the magnitude and phase error has on the new values for
the complex refractive index.  (A reasonable value is ε = 0.01.)  The algorithm updates the complex index of refraction
functions until the total error in (12) is no longer monotonically decreasing.  Unlike Duvill aret et al., we do not place any
assumptions on κ(ω )  for the model.12

Our algorithm applies the three steps outlined above to generate a complex index of refraction function for a variety of
guessed thicknesses.  Figure 5 shows the final error obtained from our gradient descent algorithm at a variety of different
guessed thicknesses for a sample of sili con.  The shape of the plot is typical.  The decaying exponential trend for small
thicknesses is due to the exponential bias created by (9) for the model.  The growing exponential trend for large thicknesses is
an artifact of the update step size in the gradient descent algorithm.  A smaller update coefficient (ε )  would maintain the error
curve near zero but dramatically increase the computational load.  Under simulation, a global minimum is observed;
however, experimentally obtained data, at best, provides a deepest local minimum.  If the material under investigation has a
relatively small real index of refraction, the concave error surface surrounding this minimum is extremely narrow.  Typical
step sizes for thickness easil y skip this local minimum; therefore, selection of the deepest local minimum for some samples is
problematic.  We require a metric to identify which thickness and complex refractive index pair are the predicted properties
for our sample.  Instead of using total error, we introduce the total variation of degree one:17,18
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where the complex index of refraction is ñ(ω)  = n(ω)  − jκ(ω)  and the sum ranges over the useful data, between 250 GHz
and 2 THz.

Total variation measures the smoothness of the refractive index at the minimum identified by the gradient descent algorithm
for each thickness.  The deepest local minimum for TV is more easily determined than the deepest local minimum for total



error because the TV error surface provides a very broad concave region around the deepest local minimum.  For most
samples, we do not expect that the recorded complex index of refraction varies dramatically from one frequency sample to
the next, since the sampled frequency step size is relatively small .  (Our temporal window width is approximately 50 ps with
a sample rate of 5 fs, which gives a frequency sampling of ∆f = 20 GHz.)  Though the index may have strong variations with
frequency, the majority of solid materials do not have sharp spectral features compared to ∆f.3,19  Note that this method fails
for samples with sharp spectral features (e.g., gases).

At each thickness, we use the recorded complex index of refraction at the final total error to calculate the total variation.  As
shown in Fig. 6, the complex index of refraction shows a marked reduction in oscill ations at the proper thickness.  We
observe, however, that the amount of ripple in n(ω )  and κ(ω )  also decreases as l increases.  By identifying the thickness at
which the deepest local minimum for total variation occurs, our algorithm identifies the proper thickness.

Due to the large range of thicknesses to be considered, we apply the three steps outlined above on three different thickness
ranges and stepping distances.  The first pass uses a coarse stepping distance over the full range of thicknesses identified in
(13).  The next two passes use finer stepping distances over a limited range identified from the previous pass.  The deepest
local minimum of the total variation on each pass determines the center point for the next finer pass.  In a limited number of
simulations, the final pass did not contain a minimum; therefore, we modified the total variation metric:

∑ +−= ]1[][2 mDmDTV . (17)

This modified total variation takes the absolute difference between adjacent points of (16).  Using (17), we are able to
amplify the variations in the smoothness measure.

5. RESULT S FOR HIGH REFRACTIVE INDEX MATERIALS

We examine several high index materials and investigate the general l imits of this method.  Our method requires that the
primary transmission pulse and two multiples are identified in the signal.  Materials with low refractive indices may not have
enough multiples above the signal-to-noise (SNR) floor.  We present the sili con wafer data that was already introduced, and
look at two other high index materials, GaAs and LiNbO3 (ordinary axis).

We first consider the data for the silicon wafer sample.  Previous THz-TDS studies used sili con as a sample material since it
has essentially zero absorption and a flat spectral response (i.e., ñ(ω)  = 3.42 – j 0).11,12,19  Figure 5 shows the total error
plotted over the initial coarse sampling of thicknesses for a high resistivity sili con wafer sample (ρ > 104 Ω cm).

Fig. 6. Final real index of refraction obtained from our
algorithm at various guessed thicknesses.  As we
approach the appropriate thickness, the oscill ations in
the complex index of refraction decrease.  The
general trend as the guessed thickness increases,
however, is the decrease in amplitude for the
complex refractive index.  This leads us to use the
deepest local minimum and the total variation of
degree one metric in (16) and (17).
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Fig. 5. The total error between the model and measured signals
for a 0.51 mm thick sample of sili con plotted over a
wide range of thicknesses.
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Measurements made with calipers put the expected thickness at approximately 0.51±0.01 mm.  The deepest local minimum
identified in Fig. 5 is approximately 30 µm from the measured value.  The predicted thickness error is ten times less than the
coherence length of the terahertz pulse.  Figure 7 contains the real and imaginary index of refraction results at the thickness
(0.54 mm) identified from the TV2 metric in (17).  The solid lines indicate the predicted values.  The dashed line at 3.42 is the
expected real refractive index from the literature.19  The predicted and expected values for the imaginary component are
superimposed.  The real index is slightly low, since the predicted thickness is slightly high; however, both the real and
imaginary predicted values are independent of frequency as expected.  The primary source of error occurs due to alignment
since it is difficult to guarantee that the sample is normal to the propagation direction of the THz beam.

A second sample, semi-insulating GaAs, has the following expected complex index of refraction:20
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where υ  is frequency in THz.  Due to greater manufacturing variations, the complex index of refraction of GaAs varies more
from sample to sample, so (18) is at best an approximate expression.  Figure 8 shows the total variation over a range of
thicknesses.  The predicted thickness for GaAs is 0.38 mm compared to the measured thicknesses of 0.41±0.01 mm.  The
initial stepping distance used to identify a local minimum is 0.01 mm.  In Fig. 9, we show the real index of refraction at the
predicted and measured thicknesses for GaAs.  The dashed line represents the expected values from the literature.20  We also
plot the real index of refraction at the measured thickness for comparison.  A small variation in the predicted thickness
corresponds to a slight difference in the real index.  Third, we examine LiNbO3 (ordinary axis).  The predicted thickness is
0.44 mm, and the measured thickness is 0.50±0.02 mm.  We show the real index of refraction in Fig. 10.  The dashed line in
Fig. 10 represents the literature data for LiNbO3.

20  The range of the real indices between these three samples is dramatic.

Since the technique requires that the primary and two multiples be present in the measured waveforms, it is difficult to obtain
the parameters from materials with low indices of refraction.  To explore this limit, we turn to simulation.  To validate our
approach at low values of refractive index, we create a simulated system to produce both the input and output time domain
waveforms.  A Rayleigh distribution models the faster current rise and slower current fall i n a photoconductive switch.  We
modify the distribution to smooth the region around the origin so that it is differentiable.  The derivative of the modified
Rayleigh distribution is used as the model for a single-cycle THz pulse.

From SNR measurements of the THz system, we reasonably expect a ratio of 1,500:1 using a relatively large number of
averaged waveforms (>500).  Using simulations and a captured noise signature, we determine the minimum real index
resolved by our algorithm.  Figure 11 shows the range of parameters for which the method is applicable.  The circles indicate
test cases that passed using the thicknesses indicated by the vertical dashed lines and using a constant frequency, real index
of refraction.  The imaginary index is assumed zero in these simulations.  The shaded area represents the region where the
test cases passed.  Below this region, the method is limited by SNR.  Above this region, we expected the simulations to pass.
The initial step size, however, was too large to produce a local minimum, or the analysis window size (25 ps in this
simulation) limited the number of multiples.  Obviously, both the thickness stepping size and analysis window can be
changed depending on the material under investigation.  For example in Fig. 10, the thickness stepping size was modified to
account

Fig. 7. The real and imaginary index of refraction for the
predicted thickness identified in Fig. 5.  Literature data
puts the complex index of refraction of sili con at 3.418–
j0.
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account for the larger index.  Consequently, the region of applicabili ty in Fig. 11 is only bounded below.  For a given SNR
ratio, there is a corresponding limit to the minimum real refractive index that can be studied.  The next section addresses this
issue.

6. LOW INDEX MATERIAL PARAMETERIZATION

In the previous section, the signal-to-noise ratio limited the abili ty to investigate low real index of refraction materials.  We
require the primary and two multiple reflections to use the method above; however, sufficient information is obtained through
an alternative methodology.  By collecting at least three or more transmission waveforms with the sample at different angles
of incidence, the different optical pathways provide sufficient information.  Obviously, this method also works with high
index materials.

In Fig. 12, a terahertz pulse is incident on the sample at an angle α.  Since the angle is not necessaril y perpendicular to the
sample, we redefine Fresnel's transmission coefficient from (1) with (19):

( )
αωβω
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where α is known and β is defined by Snell's law:13
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The propagation coefficient through the sample is no longer dependent on the thickness l, but instead, it is dependent on r:

βcos

l
r = . (21)

We must also determine the propagation distance of the terahertz pulse in air with the sample in situ.  This distance between
the transmitter and receiver, minus the path through the material, depends on the rotation angle of the sample and how much
the incident pulse is refracted.  The amount subtracted from the distance between the emitter and detector is defined as the
following:

( )βα −= cosrm , where α ≥ β. (22)

Using a similar set of arguments as in Section 4, we rewrite (5) as (23):
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The deconvolution is obtained by dividing (23) by (4):
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Fig. 10. The predicted real refractive index and the real index
from the literature are displayed for a sample of LiNbO3

(ordinary axis).

Fig. 9. The real refractive index for the predicted and measured
thickness, and the real index from the literature are
displayed for a sample of GaAs.  Manufacturing
variations are more common for GaAs compared to
sili con.
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Equation (24) provides the transfer function for our model, and the complex function ñsample(ω)  and l are the only free
variables.

To determine the proper solutions for the free variables, we follow the same process outlined for the high index materials.  To
recap, the following five steps are used:

1. Guess a thickness.
2. Generate an initial estimate for the complex refractive index assuming a non-dispersive material.
3. Use a gradient descent algorithm to adjust the complex refractive index to minimize the absolute difference error.
4. Record the total variation of the 1st degree.
5. Repeat steps 1-4 for a range of thicknesses.

The final step is different from the previously described procedure in Section 4.  Instead of the deepest local minimum, a
global minimum determines the solution.  This follows the traditional procedure used in tomography.

7. RESULT S FOR LOW INDEX MATERIALS

Due to the ease of use and precision provided by an electro-mechanical rotational stage, we recorded eleven terahertz
waveforms and one reference for a sample.  The incidence angles ranged from 0° to 50° in 5° increments.  Even though the
range and spacing of the angles were highly controlled, the initial angle, normal to the sample, was subject to error.

Unfortunately, the recorded waveforms are dependent on the initial angle; therefore, this information can not be determined
using only the data.  An initial angle error causes the phase delay to be increased for all of the results.  In turn, the material
thickness appears larger than the actual, and subsequently, the real index is lower than expected.  We, therefore, use a known
sample to calibrate the experiments.  As before, sili con provides a good starting point for our investigation.  Since the
complex index of refraction is known, we used sili con to iteratively determine an offset angle that is incorporated into the
algorithm for all other materials.  The offset is fixed when the mean of the real refractive index approximates 3.42, regardless
of the predicted thickness.  In this work, an offset of –1.15° was determined.

Fig. 11. The limits of our method displayed for a simulated
material at a signal-to-noise of 1500:1.  The circles
indicate the test cases that passed for the thickness
indicated by the vertical dashed lines.  At each point, the
real refractive index was constant across frequency
while the imaginary component was zero.  The solid
area represents the passing region.  The area below the
passing region is signal-to-noise limited.  The light gray
area at the top indicates a region that should pass;
however, the initial stepping distance for thickness
needs to be smaller and/or the data record needs to be
longer.  At larger thicknesses or higher real index, the
multiple reflections might exceed the data record limits.

Fig. 12. The method to parameterize high real index materials is
dependent on a primary transmission pulse and two
multiple reflections.  Low real index materials do not
produce multiples above the signal-to-noise ratio.  To
compensate, we use different optical path lengths,
obtained by rotating the sample through different
angles, to provide suff icient information to estimate the
material's parameters.
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A sample of teflon was used for this investigation.  The measured thickness was approximately 2.466±0.03 mm.  The
predicted thickness was 2.458 mm.  Figure 13 shows the total variation error curve.  Again note that we search for the global
minimum and not the deepest local minimum in the case.  Figure 14 displays the resulting real index of refraction.
Interestingly, the mean of the predicted real refractive index is 1.438.  This is the value quoted in the li terature.21

8. SUMM ARY

We have briefly explained the opto-electronic mechanisms that allow THz emission and detection.  By introducing an
interferometric arrangement, the sensitivity of the system is improved.  We demonstrate qualitative assessment with an image
of tape that has a thickness 1/7 of the coherence length of the terahertz pulse.  A non-interferometric arrangement barely
resolves the tape, whereas the interferometric method clearly shows the tape and trapped air bubbles.  Next, we introduced a
spectroscopic imaging method that simultaneously and independently determines the complex index of refraction and
thickness of a sample.  We extend this method to allow the same parameters to be obtained from low index material by using
multiple waveforms.  Results from both methods are provided which demonstrate very good performance.  Thickness
measurements have an error much smaller than the coherence length of our THz source.  The index of refraction results
match both the value and dispersion characteristics recorded in the literature.
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