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Abstract—Optical pulse propagation in photonic grating struc-  optical pulses beyond the speed of light in vacuum remains a
tures can show anomalous (i.e., superluminal or negative) group rather amazing and counterintuitive phenomenon. The occur-
velocities under certain circumstances owing to the anomalous rence of anomalous group velocities has been mostly predicted

dispersive properties induced by the periodic grating structure. . . .
Such phenomena can be observed for either linear pulse propaga- and observed in the framework of two rather distinct physical

tion in passive dielectric grating structures, such as in fiber Bragg CONtexts. One is that of resonant (or near-resonant) pulse propa-
gratings (FBGs), as well as in frequency-conversion processesgation through absorbing or amplifying atomic media [6]-[10];
exploiting second-order cascading effects in quasi-phase-matchedin particular, following the theoretical work by Steinberg and
(QPM) nonlinear crystals. Engineering of the grating structure Chiao [8], recently Wangt al. [9] have successfully measured

can be exploited to observe a wide variety of anomalous pulse ti lociti f oul tion i -
transmission and reflection behaviors. In this article, we review "N€9allvé group VeIoCities or pulse propagation in cesium vapor

the main recent experimental and theoretical achievements Using stimulated Raman gain under a bichromatic pumping that
obtained by our group in this field. In particular, we report on  induces a gain doublet. In this context, the ability to control
superluminal propagation of picosecond optical pulses at the the optical properties of a medium with a laser field suggests
1.5-um wavelength of optical communications in FBGs, both in that “fast” and “slow” light propagation effects share common

transmission and reflection configurations, with the observation - - . - .
of group velocities as large as~ 5co. We also show that the physical features [5]; indeed one can change, in principle, light

phenomenon of transparent pulse propagation at a negative group Propagation from subluminal to superluminal by the applica-
velocity in a gain doublet atomic amplifier, recently observed in tion of suitable control laser fields [11]. In a completely dif-
cesium vapor by Wang and co-workers (L. J. Wang, A. Kuzmich, ferent context, superluminal group velocities have been consid-
and A. Dogariu, Nature vol. 406, pp. 277-279, 2000), can be greq for a long time in the problem of electromagnetic or matter
achieved as well in a photonic parametric amplifier by exploiting . - -

the anomalous dispersive properties of the amplifier induced by a WaVé packet t“”r!e"”g through potential barriers [1], [_2]' SU'_
suitably designed QPM grating profile. perluminal tunneling times have been measured, at either mi-
crowave or optical wavelengths, in undersized waveguides [12],
[13], periodic dielectric structures [14]—-[16], or exploiting frus-
trated total internal reflection [17]; extended earlier references
on this subject can be found, e.g., in [1], [2].

. INTRODUCTION In microwave experiments, superluminal time advancements

HE PROPAGATION of electromagnetic wave packets &CCur in the nanosecond or picosecond time scale and can be
T a superluminal group velocity has received a renewed i@sily revealed using conventional radio-frequency (RF) mea-
terest in the past few years, and a wide series of experimefgement instruments and techniques. On the contrary, in typ-
have to date clearly and unambiguously shown that the groﬁ?ﬁ' tunneling experimental arrangements using optical probing
velocity can exceed the speed of light in vacuum or become evé#iSes, such as in optical tunneling through quarter-wave mul-
negative in suitably prepared physical systems; recent revigfgelectric mirrors or side-by-side prisms, superluminal peak-
and highlights on this subject are given, e.g., in [1]-[5] and in tHlse advancements fall in the femtosecond time scale and a
present special issue. Though it has been well understood Kegplution of a few femtosecond is usually required. Such short
pointed out by several authors that the observation of anonfY€nts can be detected solely by rather indirect measurements,
lous group velocities is compatible with and even a consequerﬁ’:{;ﬂh as interferometric autocorrelation techniques [16], whereas
of causality (see, for instance, [5] and references therein), direct detection of the signal waveform in the time domain is
possibility of speeding up bell-shaped and spectrally narrdit possible. The idea of using photonic structures operating at
optical wavelengths to either accelerating or slowing down the
. . _ speed of light, and in particular the use of photonic gratings,
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observe different anomalous pulse-propagation effects with ponditions of the gain-assisted superluminal pulse propagation
cosecond pulses at the 1B wavelength of optical commu- reported by Wang and co-workers [9]. The propagation of
nications. These include tunneling time measurements acrogsical pulses in nonlinear grating structures, thus, permits to
single [23] and double [25] barrier FBGs and the superluminhatidge the two different and apparently separated contexts in
pulse reflection in specially designed grating structures [26}hich superluminal effects are usually encountered.
Though the use of FBG structures to observe superluminal efdn this paper, we provide a brief review of the main exper-
fects is conceptually similar to analogous photonic Bragg bamental and theoretical results obtained by our group in the
riers, such as multidielectric quarter-wave Bragg mirrors, tHield of superluminal pulse propagation of picosecond optical
weak Bragg scattering provided by the FBG enables the usepofises in photonic grating structures. In Section Il, we report
long barriers (up to several centimeters), leading to a huge on the experimental measurements of tunneling times of pi-
crease of superluminal peak-pulse advancements by 3—4 ora@second optical pulses at the LB wavelength of optical
of magnitude as compared with Bragg mirrors [23]. This pecommunications using FBGs as photonic barriers. In particular,
mits a direct measurement and recording of the pulse waveformms present results on tunneling time measurements for single
using a fast sampling oscilloscope when periodic (mode-lockeat)d double barrier (DB) FBGs, providing an experimental ev-
pulse trains are used. In addition, the synthesis and realizatidance in the optical context of the Hartman effect of particle
of special grating structures, which is possible today thanksttmneling in quantum mechanics [29], [30]. In Section Ill, we
the recent advances in the field of FBG writing technologgddress the issue of superluminal pulse reflection in asymmetric
enables us to tailor the dispersive properties of the structueating structures, and we demonstrate superluminal reflection
to a high degree of complexity, making it possible to obsenaf picosecond pulses using a double-Lorentzian (DL) FBG. Sec-
in photonic grating structures anomalous pulse-propagation #én IV is devoted to the analysis of the dispersive properties
fects similar to those found, e.g., in resonant pulse propagatinidden in pulse propagation through a second-order QPM non-
through atomic systems. For instance, the dispersive propertiasar optical parametric amplifier, and the issue of group ve-
of a grating structure with two closely spaced resonance modesity control in such a device is addressed. Design criteria,
have been used to observe superluminal reflection of picosecdraded on a periodically poled lithium niobate (PPLN) grating
pulses in [26]. structure, are also given for an experimental observation of neg-
As compared to superluminal effects that can be observative group velocities at 1.5m wavelength. Finally, in Sec-
when a pulse propagates through an atomic medium whdg® V the main conclusions are outlined.
dispersive (and absorptive) properties are controlled by a
laser field, the use of passive photonic grating structures
presents several limitations, that can be summarized as fol-
lows. First of all, the tunneling process of pulses through the This section is devoted to the discussion of the theoretical and
passive grating structure always leads to strong attenuat®xperimental results on superluminal propagation of picosecond
due to evanescent wave propagation, so that distortionlgsdses at 1.5xm through FBG structures. In particular, we per-
“transparent” pulse propagation is not possible using passieemed experiments on tunneling of pulses through periodic
photonic structures. Moreover, the achievement of negatifiee., uniform) FBGs and through DB structures. When the trans-
group velocities seems unlikely in such structures; indeeajssion scheme is adopted, the velocity-of-flight to cross the
previous experiments on tunneling time measurements hataicture can be estimated from measurements of the tunneling
always reported superluminal transit times but never negatitmne. After a brief introduction on the theoretical model adopted
ones. Finally, there is not an easy way to control or change ttoe light propagation in FBGs, we will present an account of the
dispersive properties of the structure once it has been desigegderimental measurements of tunneling times, both for single
and realized, using some kind of control field as in atomigeriodic barriers [23] and for DB structures [25]. Velocities as
systems with electromagnetically controlled optical propertidarge as~ 5c¢o were obtained, in particular, in the latter case,
(see, e.g., [11]). Most of these limitations can, nevertheless, Wherec, is the speed of light in vacuum.
overcome considering pulse propagation in nonlinear gratingFBGs are optical fiber devices in which the refractive index
structures, in which the dispersive properties experienced @iythe core is modulated along the longitudinal axis, with an al-
a probing optical pulse are strongly influenced by a nonlinearost sinusoidal profile of submicrometric period. This modula-
wave interaction process inside a nonlinear crystal and cion of the refractive index is induced by photorefractive effect
be changed by use of a control (pump) laser field. In fact, vexposing the fiber core to an ultraviolet beam, generated from
have recently shown that cascading second-order nonlinedrequency-doubled Ar-ion laser or from an excimer laser. The
processes may strongly influence the dispersive propertiespefriodic intensity profile of the laser beam is typically achieved
a probing optical pulse, leading to abnormal group velocitidsy the interference pattern from a phase mask. The effective
[27]. In particular, we have theoretically shown that in @&dex of a grating is defined as the spatial average of refrac-
quasi-phase-matched (QPM) optical parametric amplifier witive index on the transverse section of the fiber, weighted with
a suitably designed grating structure, the group velocity ofthe transverse intensity profile of the fiber mode. The effective
propagating optical pulse can be controlled by the pump wawelex profile along the longitudinal axis can be written as
and pushed from subluminal to superluminal and negativéz) = ng {1 + 2h(z) cos[2mz/Ag + ¢(2)]} for 0 < z < L,
values by increasing the pump power level [27], [28]. It isvhereA, is the nominal period of the gratingy is the average
remarkable that such an amplifier reproduces the experimergtibctive index, andv(z), ¢(z) describe the slow variation, as

Il. TUNNELING OF PICOSECONDPULSES THROUGH FBGs
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u(0,5) u(L,5) boundary conditions. For a forward-propagating incident beam
1(0,_5 L& z = 0 andz = L are the input and output planes, respectively,
@) IO and the boundary condition ig L, §) = 0 [see Fig. 1(b)]. The
1 spectral reflection coefficient for forward light incidence is de-
] | 10), fined by
® [T o Te(0.0) M
1 ORI |
M) | =] u(0,6) o(L,8)=0 22
© T I For a backward-propagating incident beam the light comes
5 " - from the right side of the grating and the boundary con-
dition is u(0,6) = 0. Notice that in this case input and

Fig. 1. (a) Schematic of Bragg scattering in an FBG with coqnterpropagatirQUtpUt planes a_re reverseFI’ as IHU,S'Frated, in Fig. 1(c).
waves. (b) and (c) Boundary conditions for the calculation of spectrﬁﬁWe corresponding reflection coefficient is, therefore,
coefficientsr+, r—, andt for forward and backward incidence. r=(6) = [u(L,6)/v(L, 6)]u(0,5):0 = Mjz/Mayy. The
forward reflection coefficient-+(§) is the more commonly
compared to the scale dfy, of amplitude and phase, respecused, and in the following we will indicate it by(é) for
tively, of the index modulation. The periodic modulation of théghe sake of simplicity. The spectral transmission coefficient,
refractive index along the longitudinal axis of the fiber leads teonversely, is independent of the incidence side [see Fig. 1(b)
Bragg scattering between the counterpropagating waves atane ()] and is given by(6) = [u(L,0)/u(0,0)],(L,5)=0 =
same angular frequengy provided that this frequency matchegv (0, 6)/v(L, 6)]u(,6)=0 = 1/ Mas.
the Bragg conditionv = co7/(noAg) [31]. This is the main Besides the spectral shapg(é)|, an important role
physical effect that determines the spectral response of a graigplayed by the group delay in transmissioét), also
structure. The spectral features of an FBG, such as the existecaded the phase time, equal to the first derivative of
of a frequency stopband, are thus analogous to those generﬂdt%/ phase®; of the transmission coefficient againsi:
found in other periodic photonic structures (see, for instaneé,t (w) = d®:/dw = (ng/co)d®:/dé. For an incident pulse
[31)]). with carrier frequencw, and narrow bandwidth, the tunneling
To go deeply into the subject, let us consider #me needed to cross the grating structure can be assumed equal
monochromatic field at frequency close to the Bragg to the group delay.” of the grating, evaluated at frequenay
frequency wp = com/(noAo) propagating along the (see, e.g., [33]). The superluminal or subluminal propagation
FBG. The electric field can be written a&(z,t) = for a pulse transmitted throughout the FBG, therefore, depends
u(z) exp(—iwt + ikpz) + v(z)exp(—iwt — ikpz) + C.C, on this parameter. Superluminal peak advancement in transmis-
whereu andv are the envelopes of the two counterpropagatingon, for a structure of length, occurs Whenevefét) < L/co.
waves,kp = /Ao is the Bragg wavenumber, and c.c. stand@/e stress that the group delay provides an accurate estimate
for complex conjugate. It is well known that the slowly varyingf the time delay of the peak-pulse intensity solely for a
envelopesu and v, for a weak grating dept2.(z)| < 1), spectrally narrow optical pulse with a smooth envelope [1],
satisfy the following coupled-mode equations (see, e.g., [32]}ind that superluminal phenomena may be observed only in
this case [1], [34], [35]. In fact, the properties of analyticity

dilzu(z,é) =+ 1bu(z,0) + iq(z)v(z, ) (1) of the coupled-mode equations ensure that the front of any
d discontinuous signal may not propagate through the grating at a
Eru(z, 6) = —ibv(z,0) — ig"(2)u(z, ). (2) speed higher thaa /ny, i.e., no genuine violation of Einstein
causality occurs [1], [34]—-[36]. It should also be pointed out
In (1) and (2), q(z) =  kph(z)explid(z)] repre- thatthe coupled-mode equations model [(1) and (2)] does not

sents the complex-valued scattering potential, where@glude material dispersion of the fiber; if dispersion were
6 = ko — k = no(w — wp)/co is the detuning parameteraccounted forpg — 1 andg — 0 asw — oo. The front
between the wavenumbgg = now/co of counterpropagating velocity of a discontinuous step-like signal, so, actually travels
waves and the Bragg wavenumbgs. The field envelopes, at the speed of light in vacuum.

andv at thez = 0 andz = L planes of the grating structure For optical communications purposes, FBGs are typically
[see Fig. 1(a)], because of the linearity of (1) and (2), aigsed as linear filters in reflection, because the Bragg scattering

related by the following matrix equation: mechanism provides a bandpass reflection spectrum; when
used in transmission, conversely, they act as band-stop Fourier

[“(L"S)} = M(6) {“(075)} . (3) filters. We will see that superluminal pulse propagation in

(L, 6) v(0,9) transmission can occur when the optical spectrum of the

The elements of the 2 2 transfer matrix\ satisfy the con- incoming pulse is located just in the stopband of the grating.
ditions Moy = M7, Moy = Mj,, anddetM = 1. When ) )

a single monochromatic light beam is launched into the FB@; Single Barrier

there are a reflected and a transmitted beam, whose amplitudeBhe reflection and transmission coefficients of an FBG, in
can be calculated by solving (1) and (2) with the appropriatgeneral, depend on amplitude and phase profiles of the grating.
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to Fabry-Perot

The simplest grating is the uniform or periodic FBG, in which Interferometer < 6040 |

h(z) = ho and¢(z) = ¢, are constant along the fiber and,
therefore, the scattering potentigk) = qo = kpho expligo]
is also constant. This structure represents the simplest photonic
barrier that can be used to achieve larger-thagroup veloci- ﬂ’s'“::
ties, for an incident beam with an optical frequency in the spec- é
RF

to Spectrum _
Analyzer

tral region corresponding to the band gap of the grating. In this

case, (1) and (2) can be analytically solved, yielding to Sampling
Oscilloscope
cosh(¢L) + zg sinh(£L) % sinh(¢L)
= at 5 . Fig. 2. Schematic of the experimental setup for tunneling experiments in
—i¢ sinh(£L) cosh({L) — ig sinh(£L) transmission. MZM: Mach-Zehnder waveguide modulator.

(5)
whereg = (lgof2 — 62)/2. The reflection and transmissionA larger-thane, group velocity occurs for a sufficiently opaque
=S = o : barrier such thay/Ray > tanh(nov/Rmax). FOrng = 1.452,
coefficients are, therefore which is the typical value of the average refractive index for an
iqg sinh(EL) FBG, this condition becomds,,,., > 70.4%. If the spectrum of

r(6) :Ecosh(EL) — i6sinh(EL) ®) the incoming pulse, on the contrary, is centered far away from
¢ the Bragg frequency of the grating, Bragg scattering does not
£(0) :fcosh(fL) —i§sinh(EL) (7)  occur, the pulse travels with a group velocity/n, and is not

attenuated at the output.
From (6) it follows that the power spectral reflectivily= |r|? We performed tunneling experiments of picosecond pulses
is maximum at Bragg resonance, i.e., foe= 0, and it is equal through periodic gratings of different length, i.e., barrier
t0 Rpmax = tanh?(|go|L). Note thatR,,.. approaches 1 for thickness, but designed to have the same Bragg frequency
qL > 1, i.e., for either a sufficiently long grating or for aand the same modulation depih, and so comparable band-
large modulation depth. The reflectivity bandwidth correspond#dth [23]. The chosen value of the modulation depth was
approximately to the frequency range in which the parantetef,, = 2.345 x 10~?, corresponding to an approximate grating
isreal,i.e., fof| < |go|. This means that the spectral bandwidthandwidth Av = 2howp/(27) ~ 10 GHz, for a carrier
of a grating is mainly determined by the modulation depth, néequency in the 1.%:im wavelength range. The FBGs were
by the grating length. By suitably changing the lendtfand fabricated from a deuterium-loaded fiber using a standard
the strengtth of the grating, one can achieve the desired peakiting technique, in which an ultraviolet beam generated by a
reflectivity and bandwidth. From (7), we obtain the followingrequency-doubled Ar-ion laser is focused on a phase mask and
expression for the group delay in transmission: strobed using an acoustooptic modulator. The average effective
index isng = 1.452 for all the gratings. A schematic diagram

2
70 (6) = nol - 2|q°| . of the experimental setup is shown in Fig. 2. The probing
co &%+ 6% tanh”(§L) pulses were generated using a stabilized continuous-wave
& 2 1 6 (CW) Er-Yb:glass laser, externally modulated at a repetition
* ol tanh™(6L) + éL tanh(¢L) - e ®) frequencyf,, = 1 GHz by means of a fiber-coupled LiNBO

o ) Mach—Zehnder modulator. The laser cavity, similar to that
Both the power spectral transmissidité) = [¢(6)]" and the ronaeqd in [37], is a one-folded 18-cm-long resonator, in

group delayry”(§) show a minimum at the center of the bangyhich the active disk is end-pumped at 980 nm by an InGaAs
gap, i.e., forb = 0, whereT'(0) = 1/ cosh”(|go|L) = 1= Rmax  |aser diode. An intracavity BK-7 uncoated etalon, with 18-

and 75”(0) = (noL/co)tanh(|go|L)/(lq0|L). For a fixed thickness, allows for a tuning of the emission laser wavelength
grating strengthgo|, the higher the lengtiL, the lower the py 4 few nanometers near 1533 nm. A finer tunjrg00 MHz)
power transmissiori’(0) at the gap center. Note that forof the laser frequency, when necessary, is achieved by a submi-
L — oo, ie., for an opaque barrier, the tunneling timerometric control of the laser cavity length using a piezoelectric
approachesn/(colgo|) and becomes independent of thgransducer mounted on the output laser mirror.

barrier width. This circumstance is the optical analogous of The Mach—Zehnder modulator was sinusoidally driven at a
the Hartman effect [29], known in quantum mechanics in thgequencyf,, by an RF synthesizer. For a waveguide modulator
context of tunneling of a particle through a potential barriggith chirp compensation, as the one used for our experiments,
(see also [33]). If the incoming pulse has a narrow spectrufie frequency chirping introduced by the modulator is negligible

centered ab = 0, therefore, it can cross the barrier and leavgnd the electric fieldZ at the output of the modulator is given
the grating attenuated, but without appreciable distortion gi,
its shape, with a group velocity, larger thancy,. The group
velocity, in fact, can be estimated simply as the ratio between  E(t) = Eqcos[0g + 6, sin(27 f,,.t)] exp(iwot) (20)
the barrier widthZ, and the tunneling timeg(t)(o), that is
1 where E, is the amplitude of the electric field at the input of
0, (0) = L co tanh™" /Rmax (9) Waveguide., is the carrier frequency of the lasé, is the

Tg“)(o) ~ ng V Rmax ' bias point, and,,, the modulation depth impressed to the mod-
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Fig. 3. (a) Spectral power transmission and (b) group-delay for the periodic
2-cm-long FBG used in the experiment. Solid and dashed lines refer to measured
and predicted spectral curves, respectively. Fig. 4. (a) Pulse traces corresponding @eFresonance (curve 1) and

ON-resonance (curve 2) propagation. Curve 3 is the pulse trace measured when
) ) ) ) ) the pulse spectrum is tuned close to the right-side band gap edge of the FBG.
ulator by the sinusoidal RF signal. Proper selection of bias pofi} Behavior of group velocity, (0) for barrier crossing, normalized to the

i i i peed of light in vacuum,, as a function of power reflectivity at bandgap
8o .and. modulanon deptﬁm pgrmlts the generation of a pU|Se(S:enterRmx, for a uniform FBG with average index, = 1.452. The solid
train with different DUIse durations and DUIse shapes. Inour Cagfive is obtained by the phase-time analysis [see (9)]. The dashed curve is the

the bias voltage and the RF level were typically chosen to giveoretical behavior as predicted by numerical propagation of pulse train (10).
8o ~ 0.747r/2 ands,, ~ 0.297r/2. With these parameters theTriangles refer to measured traversal velocities for three FBGs.

output beam is a pulse train with a full-width at half-maximum

(FWHM) pulse duration of-380 ps and 1-ns periodicity. Thef the carrier wavelength was monitored using the OSA, and its
chosen pulse shape and duration correspond to a spectral pgigg:t position relative to the Bragg wavelength was monitored
bandwidth of~2 GHz, that is, about one fifth as compared t@sjng the Fabry—Pérot interferometer, previously used to record
the grating bandgap. the reflectivity spectrum of the grating with a high resolution.
After propagation trough the FBG, the transmitted pulse trairhe pulse spectrum was first detuned far away from the Bragg
was sent to a low-noise erbium-doped fiber amplifier (EDFA)yavelength of the grating by:120 GHz, and the transmitted
with a saturation power of-30 uW, to keep the power of the pulse train is shown in Fig. 4(a), trace 1. In this case, the Bragg
transmitted beam at a comparable le¢ell8 mW) when the scattering inside the grating is negligible, and thus, the pulse
laser emission is tuned either inside or outside the bandgap@fels across the barrier with a velocity equalddn,. We then
the grating. The characterization of the transmitted pulse traifhed the laser spectrum close to the center of the bandgap and
was performed in the spectral domain using both a scannip@ recorded the trace of transmitted pulse, which is shown in
Fabry—Pérot interferometer (Burleigh, Mod. RC1101R) with gig. 4(a), trace 2. A temporal advancement of the transmitted
finesse o0f~90, set for a free spectral range ©27 GHz, and pulse peak of63 ps, as compared to that of trace 1, can be
an optical spectrum analyzer (OSA) with 0.07-nm resolutioglearly observed:; note that there is no appreciable pulse distor-
(Anritsu, Mod. MS9710B). In order to carry out a characterizaion. The measured pulse advancement corresponds to a velocity
tion in the time domain simultaneously, the fiber—coupled beamr barrier Crossing equa| te 1.97c¢y, very close to the theo-
was split, and a small fraction (1%) of the available power wagtical valuev, (0) ~ 1.94¢, calculated from (9) WithR . =
sent to a sampling oscilloscope (Agilent, Mod. 86 100A), trigsg.5%. We checked that the observed superluminal tunneling
gered by the same low-noise sinusoidal RF signal driving thigne is easily reproducible and persists by changing the opera-
Mach—-Zehnder modulator, thus providing a precise synchigonal conditions of the Mach—Zehnder modulator, i.e., pulse du-
nism among successive pulses in the train. The resulting segtion and modulation frequency. Finally, the carrier wavelength
sitivity of this apparatus for time-delay measurements is of thgas detuned apart from the bandgap centerByGHz, i.e.,
order of 1 ps. close to the first side peak of transmission curve at the bandgap
The first periodic FBG designed and fabricated for the turdge. In this case, the behavior of group delay, as shown in
neling experiments has a lengthlot= 2 cm, correspondingto a Fig. 3(b), indicates a peak-pulse delay, as comparegtaes-
minimum power transmission @f(0) ~ 1.5% atthe gap center, onance propagation, e£65 ps, i.e., pulse slowing down oc-
as calculated from (7) withg = 2.345 x 107°. The Bragg fre- curs for such a tuning condition. The pulse trace measured in
quency of this grating isp = 27 x 1.956 x 10'* rad/s, i.e., this case, shown in Fig. 4(a), trace 3, clearly demonstrates pulse
the central wavelength (in vacuum) of the reflectivity spectruglowing down with a pulse-peak delay 60 ps, close to the
is Ap = 1533.8 nm. Fig. 3 shows the theoretically expecteéxpected value. A slight pulse distortion can be appreciated in
(dashed lines) and measured (solid lines) curves for power trafiis case, which is ascribable to spectral pulse reshaping pro-
mission’ and group delayintransmissioﬁ‘) versus frequency duced by grating band edge effects.
detuning(w — wp)/(2m) for this grating. The group delay was We also designed and fabricated two other FBGs, with the
measured using a modulation phase-shift technique [38], [3me Bragg frequency and modulation depth, but with different
which is the more commonly used method for the characteridength, namely 1.6 and 1.3 cm. The gratings were character-
tion of FBGs. ized and then used to perform tunneling experiments at different
We recorded the trace of pulses transmitted through the FBgBoup velocities. According to (9), in fact, the group velocity at
as measured by the sampling oscilloscope, for different wawbe bandgap center is a function of the peak power reflectivity
length tuning conditions of the Er—Yb laser. The absolute value,,.. solely, which in turns depends on the barrier thicknkss
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TABLE | The analogy between tunneling of electrons and photons in su-
A'\“,C;\C/’SS'EiNEI‘DETE‘AL’EE?‘RE;gNRL'ﬁesngiig'l‘éAL perlattice structures and closed-form solutions for the tunneling
RECTANGULAR DB POTENTIAL times have been recently reported, in the general case, in [43].

The derivation here presented of photon tunneling times follows

Photons Electrons a different and simpler approach, based on the coupled-mode
Eg“amns e equations model, which is suited in particular for FBG struc-
u/dz = du + igq(z)v i’f— 4 2m (E—-V(z)]$=0 - 3
dv/dz = —ibv—ig*(z)u dz2 T R? = tures. The analogy with electron tunneling through a rectan-
DB Transmission® (ogf-resonance) ) gular double potential barrier is summarized in Table I, where
g;,(a =t.°) = (1/ff°°5h mq‘;'L) T(E =Vo/2) =1/cosh®(2xL)  the basic equations and the expressions of power transmission
. is';nimea lnot)'resfn:ilc: - r—RIm{2BOY _ o and group delay are given in the two cases [25], [44]. The elec-
- Ow - - OF - i i i =
= [no/(C0|q0%] tanh(2lgolL) 71 = [2/(xvg)] tanh(2xL) tronic potentialV(z) is assumed to b¥ (z) = V} constant for
72 = (nod/co)/ cosh(2|qo|L) 2 = (d/vg)/ cosh(2xL) 0<z< Landd+ L < z< d+2L,andV (z) = 0, otherwise.

In the electromagnetic case, the counterpropagating waves
“For electrons, calculations are made assuming a mean-energy of incidg% osciIIatory (propagative) in the regidn < z<d+ 1L,
wavepacket equal to half of the barrier height, i.= V5/2, and assuming whereas they are exponential (evanescent) inside the gratings
OFFresonance tunneling, i.eyL is an integer multiple ofr/2, wherey = When|5| < |q0|_ The spectral transmissi@fw) of the structure
vmV, [k is the wavenumber of the oscillatory wavefunction between the tW(?an be analytically determined by extending the transfer matrix
barriers.v, = hix/m is the group velocity of free wavepacket. analysis presented in Section II-A (see also [45]). As an esti-
mate of the tunneling time for a wavepacket crossing the struc-
and on the grating strengtly|. The experimental results, cor-ture, we use again the group delay, which, following a different
responding to the three FBGs with lengths of 1.3, 1.6, and 2 cBut equivalent expression to that previously adopted, is given
are shown in Fig. 4(b), together with the theoretical curves oy Tg(t> (w) = Im {d1Int/dw}. Far from the sharp Fabry—Pérot
tained either by phase-time analysis [see (9)] or by numerigakonances, the group delay is shorter than that for free propa-
propagation of the pulse train (10) through the FBG, using tigtion from input to output planes, and thus, superluminal prop-

spectral transmission function given by (7). agation occurs for a spectrally narrow incoming pulse. Near the
) Fabry—Pérot resonances, on the contrary, light slowing down
B. Double Barrier is attained, as in a usual Fabry—Pérot resonator (resonant tun-

Besides superluminal propagation and the Hartman effect di£ling). At the center of the bandgéap= 0), simple analytical
served in periodic FBGs, tunneling through DB photonic struéxpressions for the power transmission and group delay can be
tures shows even a more amazing phenomenon, namely thed@rived and read

dependence of the transit time not only of barrier width, but also 1

of barrier separation (generalized Hartman effect [30]). Here, T(0) ZW (11)
we report our results recently obtained in the measurement of . cosh™(2|go| L)

tunneling delay times in DB photonic structures based on FBG Té )(0) =71+ T2 (12)
technology [25]. Our results represent an extension at optical

wavelengths of similar experimental achievements previoudlj'€re

reported at microwaves [12], [15], [40], [41] and provide a clear ng ng
experimental evidence that, for opaque barriers, the traversal m :m tanh(2|go| L) = /1 — T(O)m (13)
time is independent of barrier distance. After a brief account nod 1 nod

on the quantum-mechanical analogy of electron tunneling and T2 :Em = T(O)Z (14)
on the basic model of tunneling in a DB rectangular FBG (see

also [25]), the main experimental results are presented. Equations (12)—(14) clearly show that two distinct contribu-

The DB designed and manufactured for the tunneling tint®ns are involved in the expression for the group delay. The
measurements at 1;6n consists of a single-mode optical fibefformer termr; is independent of the barrier separation, and co-
in which two periodic Bragg gratings, separated by a distantecides with the tunneling time of singlebarrier of width2 L.

d, are sequentially written onto it. Each grating has a lengfks we previously observed, for an opaque bar(iBr|L >

L, so that the structure shows an amplitude praofile) that 1) , becomes independent of barrier width and saturates to
simulates a symmetric rectangular DB structure, h¢z) = the valueng/(co|qo|) (Hartman effect). Conversely, the latter
ho constant for0 < z < Landd+ L < z < d+ 2L, contributionr, is always shorter than the free-propagation time
and h(z) = 0, otherwise. For such a structure, Bragg scabver a lengthd and tends to zero for an opaque barrier, im-
tering of counterpropagating waves at a frequeacglose to plying that the tunneling time becomes independent of barrier
the Bragg resonances = com/(nolg) occurs in the grating distancegeneralizedartman effect). Similar results can be ob-
regions, whereas multiple wave interference between the tteined foroFFresonance tunneling of a nonrelativistic electron
barriers leads to Fabry—Pérot resonances in the transmisdtmough a rectangular DB potentill(z) assuming that the in-
spectrum. The problem of tunneling through a DB FBG strucident wavepacket has a below-barrier mean enérggual to
ture bears a close connection to that of nonrelativistic electramalf the barrier widthl,. The corresponding expressions for
through a symmetric rectangular DB potential, which has bebarrier transmission and group delay in this case are given in
widely investigated in literature (see, for instance, [30], [42])lable I. The tunneling through a DB FBG structure can hence be
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i o Fig. 6. (a) Temporal intensity profiles corresponding to the pulses transmitted
Fig. 5. (a) Spectral power transmission and (b) group delay for a DB FBrough the DB FBG with 42-mm separation fo¥~resonance tunneling (curve

structure withL. = 8.5 mm, d = 42 mm, hy = 3.1 x 107, andno = 1) and reference pulse propagating outside the stopband of the structure (curve
1.452. Solid and dotted lines refer to measured and predicted spectral curvgs (borrresonance tunneling time versus barrier separatitor a rectangular
respectively. symmetric DB FBG structure. The solid line is the theoretical prediction based

on group delay calculations [see (12)—(14)]. Dots are the experimental points
as obtained by time-delay measurements. The dashed curve is the transit time

used as an experimental verifiable model for the quantum-nfe@m input(z = 0) to output(z = 2L + d) planes for a pulse tuned far away
chanical case. from the stopband of the FBGs.

To assess the independence of the peak-pulse transit times
with barrier distancel, we fabricated five different DB struc- with a resolution of~100 MHz. The fiber-coupled 10-mW
tures with grating spacing=18, 27, 35, 42, and 47 mm, and weoutput power emitted by the laser diode was amplified using a
performed tunneling time measurements similar to the singleigh-power EDFA (IPG, Model EAD-2-PM), and then sent to
barrier experiments described in Section II-A. In each strutiie Mach—Zehnder modulator. The average power of the pulse
ture, the two gratings have sharp fall-off edges, lenfith~ train available for the transmission experiments wa80 mWw.

8.5 mm and index modulation depthy ~ 3.1 x 1072, The The reflectivity spectrum of the DB FBG was first measured by
resulting power transmission at antiresonance for the DB stribe Fabry—Pérot interferometer, set for a free spectral range of
tures isT(0) ~ 0.8% in all cases, which is low enough to~ 50 GHz, and with a measured finesse~af80, by sending

get the opaque barrier limit but yet large enough to perfortn the DB structure, through a three-port optical circulator, the
time-delay measurements at reasonable power levels. The Bragaad-band amplified-spontaneous emission signal generated
resonance was set near 1550-nm wavelength. For such sthuycthe low-noise EDFA in absence of the input signal. The
tures, both transmission spectra and group delays were mearesponding trace was recorded on a digital oscilloscope
sured using a phase-shift technique [38], [39] with a spectrahd then used as a reference to tune the pulse spectrum at the
resolution of~ 2 pm. As an example, the measured spectraénter of theoFresonance plateau between the two central
transmission and group delay curves versus frequency detuniegonances of the DB structure.

of the DB FBG withd = 42 mm are shown in Fig. 5. Note In Fig. 6(a), curve 1 shows a typical measured trace, aver-
that the sharp Fabry—Pérot resonances are not fully resolégfbd over 64 acquisitions, of the tunnelled optical pulses under
in the experimental curves because of the resolution limit of~resonance tuning condition, for the DB FBG with 42-mm
the measurement apparatius2 pm). The expected time ad- separation. The trace measured when the laser was detuned by
vancements in the superluminal spectral regions, far from tk00 GHz, i.e., far away from the stopband of the DB FBG
Fabry—Pérot resonances, are of the order of 240-250 ps @teucture, is also shown for comparison in Fig. 6(a), curve 2. The
cording to the theoretical curve shown in the same figure. Singghnelled pulses are almost undistorted with a peak-pulse ad-
both transmission and group delay are slowly varying fungancement of- 248 ps; repeated measurements showed that the
tions of frequency far from Fabry—Pérot resonances, pulse adeasured pulse-peak advancement is accurate wiih ps,
vancements with weak pulse-shape distortion are expectedif@# main uncertainty in the measure being determined by the
OFFresonance pulse transmission. achievement of the optimal tuning condition.

Direct time-domain measurements of tunneling delay timesTime-delay measurements were repeated for the five DB
were performed in transmission experiments using a 300-MHBG structures, and the experimental results are summarized in
repetition-rate pulse train with 1.3-ns pulse duration, generateéi). 6(b) and compared with the theoretical prediction of tun-
by the Mach—Zehnder modulator, and thus, with pulse shapeling time as given by (12)—(14). The dashed line in the figure
described by (10). The repetition-rate and the pulse duratishows the theoretical transit time versus barrier separation
were chosen to obtain a spectral pulse bandwigt®00 MHz)  from input(z = 0) to output(z = 2L + d) planes, for pulses
which is lower than the frequency spacing between adjacenhed far away from the bandgap of the FBG structure. In this
Fabry—Pérot resonances-Z GHz for the case shown incase, the transittime is given simply by the time spent by a pulse
Fig. 5) for all five DB structures. The experimental setugraveling along the fiber for a distan@d. + d with a velocity
and measurement apparatus is analogous to that previouslyn,. The solid line is, in turn, the expected transit time for
described for single-barrier tunneling experiments and showrFresonance tunneling of pulses, according to (12)—(14), and
in Fig. 2, except than for the CW laser at Li&n, which shows that the transit time does not substantially increase with
in this case is a single-mode tunable semiconductor lagke barrier spacing (generalized Hartman effect). The points in
(Santec, Model ECL-200/210), equipped with both a coardlee figure were obtained by subtracting to the dashed curve the
and a fine (thermal) tuning control of frequency emissiomeasured peak-pulse advancements for the five DB FBGs, thus
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providing experimental estimates of the tunneling transit times. . 2=0
Note that, within the experimental errors, a rather satisfactory {,‘:ﬁ’s?“‘
agreement between measured and predicted transit times was —>
achieved. The measured transit times are superluminal for
all five DB structures. It is remarkable that, for the longest

barrier separation used = 47 mm), the observed transit

time corresponds to a superluminal velocity of abbu, the Rmd _1f,<o LL
largest one measured so far in tunneling experiments at optical  Pulse  _z(g)c, /n, —

wavelengths. We mention that superluminal group velocities Frequency

as large as- 10co were previously observed by G. Nimtz anq:ig. 7. Principle of superluminal pulse reflection in a DL FBG. When the

co-workers, but in microwave transmission experiments. peak of the incident pulse enters into the grating at input ptane 0, the

peak of the reflected pulse has already left the grating in advance and travelled
backward the distanc®AL| = —7{(0)co/no. For the sake of clearness,
[l. SUPERLUMINAL PULSE REFLECTION FROM peak advancement and amplitude of the reflected pulse have been exaggerated.
ASYMMETRIC FBGs Upper and lower pictures on the right-hand side show schematically the spectral
. ) power reflectivity and group delay of a DL FBG.
In the analysis of tunneling problems of photons across pho-

tonic gratings, a closely related issue is that of the temporal be- o ) ) )
havior of the reflected wave, which arises from Bragg scatteriggectral reflectivity functiom(6) that provides the desired neg-

in the structure. In particular, a major question is whether it f&ivé group delay. In particular, we recently proposed and ex-
possible for a pulse incident upon an FBG structure to be r{é_erlmentally demonstrated [22], [26] superluminal reflection of
flectedin advancewithout appreciable distortion, albeit attenuPicosecond pulses at 1/6n from a DL FBG structure. A DL
ated, from the entrance plane of the structure. This is indeed fHéG Possesses two resonance modes [32] which realize a spec-
case, and such an anomalous behavior of pulse reflection Habreflectivity profile given by the interference of two closely
been considered in few articles. In particular, we have recenfij@ced complex Lorentzian lines. The dispersion cumve-
shown in [22] and [26] thaasymmetri®ragg grating structures ercpon realized py a D_L FBG is analogous to that produced in
can be designed and fabricated to observe superluminal efféidnverted medium with a gain doublet [8], [9] where a nega-

in pulse reflection. This situation occurs whenever the grodifye group-delayin transmissioris achieved by exploiting the
delay in reflectiorré’") of the structure. for either one of the twolnterference of the two Lorentzian lines of the homogeneously

incident sides, is negative within a certain spectral region. TRE0@dened atomic transitions. o

need for a grating with an asymmetric profile for the amplitude 1he Principle of superluminal pulse reflection in a DL FBG
and/or the phase of refractive index modulation stems from tifeShOWn in Fig. 7. The peak of a pulse incident upon the FBG
analytic properties in the complex plane of transmission and #gJeflected in advance due to a negative group Bywhich
flection spectral functions of any passive loss-less grating str®&curs when the pulse spectrum is centered near the Bragg fre-
ture, ensured by the principle of causality. These properties JHENCYw 5 The explicit form of the spectral reflectivity in a DL
fact, lead to the following inequality between power spectral rEBG is

n(z)=n, (l + 2h(z)cu{2:—:)]

4

Group delay  Reflectivity

flectivity R(6) = |r(8)|> and group delay."(6) at either one ik ik
side of incidence [22], [46] () = 5 v S (16)
7(5) > ~no [ 0lny/R(¢) do (15) wheree, v, andx are positive real-valued parameters that de-
g T Ty S oo’ o — 06 termine frequency separati@iw, width A2, and strength of

the two Lorentzian lines, respectively (see Fig. 7). The quali-
where the equality occurs for an FBG with minimal phase shifiative behavior of power spectral reflectivify(w) and group
For a symmetric grating structure, one hg§' = 7,” and, delay 7" is shown in Fig. 7 as well. The minimum of group
since¢§t> is typically positive though superluminal, the reflectedielay is attained in correspondence of the minimum of spectral
peak pulse escapes from the grating after the peak of the ingiflectivity R(w), i.e., atw = wp, and is given byrg’")(O) =
dent pulse has entered into the grating region. For an asymmeifi¢y? — 2) /[yco (v2 + €2)]. Superluminal peak-pulse advance-
grating, one hasg(t) = Tg(”) + 755’"’) /2, where thet sign ment in reflection for a pulse tuned closedo= wg, therefore,
indicates the side of incidence [see Fig. 1(b) and (c)], so that opreurs fore > -, i.e., when the two Lorentzian lines are suffi-
can have, e.gz\"™ < 0 thoughr" is positive. In particular, ciently spaced
if the FBG has a local minimum of spectral reflectivily(s’) ~ The reflectivity profile given by (16) is realized by an
at the bandgap centét = 0, the integral on the right-hand Unchirped grating with an amplitude modulation profii¢z)
side in (15) turns out to be positive férranging in a neigh- which can be determined by Simple Fourier transform of (16)
borhood of zero, and heneér) is allowed to become negative.for aweak reflectivity. Since the spectral reflectivity is a rational
A simple method to achieve a minimum of SpeCtral reﬂeCtiVity 1it should be noted that in case of pulse propagation through an atomic
at the bandgap center, proposed in [22], consists in introducingdium with a gain doublet, the spectral transmission function is actually

in an otherwise uniform periodic grating a defect. such as agiven by the exponential of two closely spaced Lorentzians. Nevertheless, the
' behavior obtained assuming the Ansatz (16), which makes simpler the grating

Phase slip, 'r_] an ajs_y.mmet.r'c Pos't'on' A d'ﬁe.rent poss'b'“tﬂesign, is qualitatively the same. Note also that, adopting our Ansatz, the pulse
is to synthesizeab initio, using inverse scattering methods, advancement turns out to be independent of grating strength.
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Frequency (GHz) z (cm) Fig. 9. Schematic of the experimental setup. LD: tunable laser diode; MZM:

Mach-Zehnder waveguide modulator; OC: optical circulator.
Fig. 8. (a) Measured spectral power reflectivity of the DL FBG used in the

experiment (solid line) and corresponding theoretical curve (dashed line). T C+ T + T T
Parameter values arei, = 1.452, wg = 27 x 1.935 x 10 rad/s, _. 80
Aw = 27 x 5.4 x 109 rad/s,¢/y = 3, andx/~y = 0.92. (b) Amplitude é
profile h(z) of refractive index for the DL FBG as obtained by the o 40
Gel'fand—Levitan—Marchenko inverse scattering method. i)

S 0

g
function, an analytical expression bfz) can be derived even S -40
for a high reflectivity using the Gel'fand—Levitan—Marchenko © %0 . . : . .
inverse scattering method [22], [32], [47]. In our experiment, 30 20 -10 0 10 20 30
we fabricated a 30-cm-long DL FBG by a continuous writing Frequency (GHz)

technique with a Bragg resonance at 1550 nm and with a , _ ,
separation of the Lorentzian lines of 10.8 GHz & NeGatig, e, uning rom Braty esonance. In fre oxperimental moasuements,
group delayr,”’ ~ 62 ps and power reflectivity? ~ 5%  the group delay for the red-shiftesrresonance pulse (point A in the figure)
were obtained ab = wg. The measured and designed spectris been taken equal to zero for reference.
reflectivity profiles of the grating are shown in Fig. 8(a); the
amplitude profileh(z) of the corresponding structure is als@ulse that leaves the structure earlier than the peak of the in-
shown in Fig. 8(b). coming pulse has entered into the grating, seems unlikely. In
Group delay measurements were performed in the time dagdition, it would be of some relevance to externally control
main analyzing with the fast sampling oscilloscope the reflectéioke group velocity of tunnelled pulses using, e.g., a control laser
beam when a train of optical pulses at A& was launched into field as in pulse propagation through atomic media with electro-
the DL FBG for different tuning conditions. The experimentahagnetically controlled optical properties. In this section, we
setup for time-delay measurements, shown in Fig. 9, is similsiiow theoretically that, exploiting the dispersive properties of
to that used in transmission experiments described in Sectiomidnlinear optical interactions in second-order QPM gratings,
except that now an optical circulator is used to retrieve the pulsech goals can be achieved. In particular, we show that propaga-
train reflected from the Bragg grating (see Fig. 9). The probirt@n of a weak signal probe in a suitably designed optical para-
pulse train, generated by the external Mach—Zehnder modulatagtric amplifier under strong pumping can exactly reproduce
has a repetition frequency of 1 GHz, and each pulse has a the experimental condition of the gain-assisted transparent pulse
ration (FWHM) of~ 380 ps and a spectral extentof2 GHz, propagation experiment by Warmg al. [9]. It should be noted
narrower than the- 4 GHz FWHM of each Lorentzian line.  that, though nonlineag® QPM grating structures have been
Fig. 10 shows the measured pulse delays (points) versus &gtensively studied in connection with a great variety of pulse
guency detuning, together with the theoretical dispersion curghaping and control functions (see, e.g., [48]-[51]), many dis-
assuming therr~resonance pulse Ain the figure as a referencpersive properties hidden in second-order nonlinear optical in-
i.e.,rg(r) ~ ( for such a pulse [26]. Notice that, close to the twéeractions, especially those related to the occurrence of anoma-
resonance lines of the structure, pulse reflection is subluminals group velocities, have not been fully investigated yet. In
with a measured peak-pulse delay~dd0 ps, whereas midway [27], we recently studied at some general extent the dispersive
of the two resonances superluminal pulse reflection is attaingapperties of nondegenerate optical parametric amplifiers based
with a peak-pulse advancementof60 ps. on QPM nonlinear crystals and we derived general relations be-
tween the gain and dispersive properties of the amplifier. Here,
we briefly review the main results of our analysis on QPM non-
degenerate parametric amplifiers, however, we envisage that the
issue of group velocity control based on nonlinear frequency
conversion and wave mixing processes should be a rather gen-

The tunneling experiments described in Sections Il and gral feature and will be the subject of future investigatidbg],
that use FBGs as photonic barriers, have allowed us to obsel®&l: _ _ _ _ _
superluminal tunneling times at optical wavelengths in the pi- The dispersive properties of a QPM optical parametric ampli-
cosecond time scale with direct time-domain measuremerft8f share many common features with those of a linear Bragg
However, with such passive grating structures, the aChiever‘nemNejust mention that the occurrence of superluminal group velocities in non-
of negative transit times, corresponding to a transmitted pelakar wave mixing has been considered until now solely in very few papers.

IV. ANOMALOUS DISPERSION ANDNEGATIVE GROUP
VELOCITIES IN SECOND-ORDER NONLINEAR OPTICAL
INTERACTIONS
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(@)
Pump @,

glected group velocity dispersion and higher order material
dispersion terms; the inclusion of these terms, in fact, does
not substantially change the results of the analysis [27]. In
first-order QPM, thex(® grating is usually obtained by a
square-wavet reversal of domains in a ferroelectric crystal
with a local period (close td) and a local duty cycle that are
slowly varying along the: axis. The resultinglowly varying
z profile of the effective nonlinear terni.¢(z) comes from the
local changes of period and duty cycle in tlaidly varying
® <« a >< ! >< a > square-wave grating® (z) (see, e.g., [51]). To see the analogy
of the parametric (17) and (18) with the coupled-mode (1) and
(2), we can perform a spectral analysis of (17) and (18). By
setting Ay (z,t) = [w1/(n1ws)]Y?u(z, Q) expliQ(t — z/v,)]
and Ay(z,t) = [wa/(naws)]*?v*(z, Q) exp[—iQ(t — 2/v,)],
where () is the frequency offset from the carrier frequencies
andv, = 2v41v42/(vg1 + v42) IS @ mean group velocity, one
obtains indeed for the spectral amplitudeandwv the coupled
mode (1) and (2) of passive loss-less grating theory, provided

_l H H H H H l_ : that we set now o
Juuy - o= (3) (o5 o) 19)

Fig. 11. (a) Parametric amplification of a weak signal wave at frequend@r the detuning term, and
w; in a QPM second-order nonlinear crystal of lendttpumped by a strong

pump wave at frequenays;. QPM is accomplished for the generation of the

copropagating idler wave at frequeney = w; — w;. (b) Schematic of a q(z) = deff(z) [

Signal @
1811;1

Y

©
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double QPM grating structure showing negative transit times. Two uniform
grating sections, each of lengihare separated by a distariogith no grating ) )
structure. (c) QPM square-wave profile gf?)(z) corresponding to a phase for the scattering potential. Note that the spectral

shift & between the two square waves equatto gain coefficient of the amplifier is given by(Q) =
[u(L, ) /u(0,92)],0,0)=0 exp[—i(L/vy)Q], and it is thus
grating structure, though some basic distinctions appear in fiegated to the elements of the transfer matfix, given in
analysis which arise from the basically different physics undeg), by ¢(Q) = M, exp[—i(L/v,)Q]. The spectral power
lying the wave dispersion mechanisms in the two cases. In t@ﬁn curve of the amplifier is then given y(Q) = |g(Q)|?,
undepleted pump limit, the parametric amplification of a (weakjhereas the transit time of a signal wave packet spectrally

signal wave at carrier frequency, pumped by a (strong) pumpnarrow around the frequend, is given by the “complex”
wave at frequencys, is governed by a set of two linear equagroup delay
tions for the signal and the idler wave, at frequeagy= w3 —

w1, Which is generated in the parametric down-conversion of (9lng [ oInVG
—1i =74(Q0) — i (21)
Qo

8121y } 1/2
)

(6060n1n2n3/\1/\2

the pump photons. We assume a linearly polarized plane-wave™" ~ N
electric field F(z,t) = (1/2)[A1(2,t) exp(ikiz — dwit) +
Az (z,t)exp(ikez — iwat) + Az(z,t)exp(iksz — iwst) + C€.c]  wherer, = d¢,/09 is the usual real-valued group delay (or
propagating along the axis of a loss-less QPM(?) crystal phase time) as that appearing in (8), and<?) is the phase of
of length L [see Fig. 11(a)], wherel; (I = 1,2,3) are the ¢(Q)[27]. The imaginary term entering in (21), which accounts
slowly varying envelopes of signal, idler, and pump waves, réor pulse distortion effects at leading order, vanishes when the
spectivelyk; = k(w;) = (2r/\i)n; are their wave vectors andfrequency, is tuned in correspondence of a minimum or max-
n; the refractive indices at wavelengths The resulting cou- imum of the spectral power gain curve, and in such cases can be,
pled equations for the amplitudds andA; are (see, e.g., [27]) hence, disregarded. In what follows, it is important to have in
, mind that as a consequence of the causality of the coupled-mode
04y | 1 04y _wnden(z) 23 . (17) (1) and (2), the group delay, is uniquely determined by the

- - = 2
‘(‘)z vgr Ot nmico  (€ocony)/? spectral power gain curvé(() through a Hilbert-like trans-
942 | 1 94y _ wadest (2) 213 «(1g) form (see [27]; see also [46]), namely
0z vy Ot naco  (eocomz)t/? .
3 . L 1 [~ 0lnJG d
wherew,; o> = 1/k'(w12) are the group velocities of signal () = o + - N A —e—a—q @

and idler fields, I3 is the intensity of the pump wave,
dei(z) = (1/2)xP(2) exp(iAkz), Ak = ks — ko — k1 is  where the upper (lower) sign occursjfi < vy (v41 > vy2). It

the wave vector mismatch, and the overline denotes a spasibuld be pointed out that our analysis assumasanishing
average over the short coherence lenyth 27 /Ak (A < L). group velocity mismatch between signal and idler waves, which
For the sake of simplicity, in writing (17) and (18), we neenters in (19), and indeed the anomalous dispersive effects we
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will discuss later are stronger as the group velocity mismatch .~ 60 T ]

term s larger. The most interesting case is that corresponding to & 40[Subluminal —~ —~_ ]

Vg1 > Vg2 and to a signal wave tuned at a frequefizycorre- E‘ 20 :Superluminal ]

sponding to aninimumof the spectral gain curvg(2),i.e.,toa R0 M Neative s T N

dip of the spectral gain. Then, the integral on the right-hand side 820 :velicit;e group .

in (22) is expected to be positive at around= €y, yielding an (% 401 .
1 ] 1 1 1 I 1 ! 1 I 1

abnormal group velocity. A simple QPM grating that realizes a 60 ——L—1 1
spectral gain curve showing local minima is given, for instance, 0 20 4 60 30 000 140 160
. . p Intensity (MW/cm®)

by the sequence of twéx square-wave uniform gratings, each
of lengtha and periodA = 27/Ak, separated by a distanée Fig. 12. Behavior of group delay, of the double-grating PPLN amplifier as
[see Fig_ 11(b)]_ This structure closely resembles the two-barfunction of pump intensity at gain dip. Parameter values are given in the text.
rier structure considered in Section II-B, and hence the results
found there can be applieshutatis mutandigdo the present case
aswell. In particular, one hg$z) = o for0 < z < a,q(2) =0
fora < z < a+l,andq(z) = qo exp(i®) forl+a < z < [+2a,
Whereqo = (2/7r)d[87r2]3/(6000n1n2n3)\1)\2)]1/2, d is the el-
ement of the nonlinead-tensor of the crystal involved in the
parametric interaction, and is a phase term that depends on
the phase shift between the two square waves in the two grating : . . L
sections [see Fig. 11(c)]. % 5 o0 s 10 P s o 5 10

The case of major interest is that correspondin@te- , Frequency (THz) Frequency (THz)
for which a gain dip withG = 1 is attained af2y = 0. The _ _

Fig. 13. (a) Spectral power gad, and (b) corresponding group delay at

correspondmg group dela’Y} atQ = 0, calculated fOllOWIhg signal wavelength, for the PPLN amplifier of Fig. 11(c) and for a pump intensity
the analysis of Section II-B, is given by I, = 135 MW/cm?. Solid lines refer to the results obtained by neglecting group
velocity due to material dispersion and higher order dispersion effects, asin (17)
I l 1 1 and (18). Dashed lines are obtained by considering material dispersion at any
=" _ | — - order using Sellmeier equations. The inset in (b) shows an enlargement of the
< ) group delay close to the gain dip.

T T 17 80 T T

TV

7

-0 0 10}
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3

I
[=)

T

& ¢

-3

Group delay (ps)
[
(=]
T
Group delay (ps)

[=]
I

1
X |:COSh2(qu) + sinh?(goa) + — sinh(2qoa)| . (23)

qol a parametric gain as high as 40 dB should be reached far from

the dip of the gain curve [see Fig. 13(a)]. It is remarkable that

The conditionG(0) = 1 means that the amplifier tsansparent the occurrence of superluminal transit times persists when im-
for a signal wave packet tuned@t= 0, whereas the transit time perfections of the QPM structure from the target case, which
of the signal pulse may become superluminal and even negatiwe unavoidable in a practical QPM device, are considered. For
at sufficiently high pump intensities. From a physical viewpoininstance, a deviation @ from the ideal valuer causes a defor-
the transparency (i.e., absence of amplification) of the amplifigration of the spectral gain curve with a shift of the dip frequency
can be explained as a result o€ascading procesén the first  Q, away from zero (see Fig. 14). Despite the large deviations of
QPM grating conversion of the pump wave, leading to amplifthe spectral gain curve from target 1 [compare, e.g., the inset of
cation of signal and generation of the idler wave, occurs; in tirég. 14 with Fig. 13(a)], the group delay remains superluminal
second grating, owing to the phase reversalgf a back con- atthe dip center for a wide interval arouttd= = (see Fig. 14).
version process takes place, which makes the amplifier transThe analytical predictions based on the group delay anal-
parent for the signal field. Most important, because of the groygis have been checked by performing direct numerical simu-
velocity mismatch experienced by the copropagating fields, thagions of pulse propagation in the crystal and assuming a trans-
cascading of the down- and up-conversion processes productsim-limited Gaussian pulse, tuned@t= 0, as a weak probe
strong change of the effective group velocity of the signal waveeam. Fig. 15 shows the traces of incident pulse-at0 (dotted

To make a quantitative analysis, let us consider a PPLN ndme) and of transmitted pulses at= L (solid lines) for in-
linear crystal pumped at the wavelength = 532 nm with a creasing values of the pump intensity; we assunbee= T,
signal field atA\; = 1.55 um (\» = 810 nm,d = ds3 ~ an incident pulse duration of 250 ps, and we normalized the
27 pm/V), and assume = 3 mm andl = 2 mm. From Sellmeir pulse intensities to the peak intensity of the incoming pulse.
equations [53], one can estimate af@%,1/co = 0.45815, Note that, at the pump intensities corresponding to curves 3 and
vg2/co = 0.44220 and a QPM period\ ~ 7.39 um, which is 4, the transmitted pulse leaves the amplifieforethe peak of
easily accessible with current poling technology. Fig. 12 showe incident Gaussian pulse has entered into the amplifier. For
the behavior of the group delay at the dip center of the am- a quantitative estimation of power and energy levels involved,
plifier as a function of the pump intensity. The effective groupssuming for instance a Gaussian pump with a beam waist of
velocity becomes superluminal &t ~ 105 MW/cm? and neg- ~ 280um, curve 3in Fig. 15 corresponds to a pump peak power
ative atl; ~ 135 MW/cm?. of ~ 170 kW. Using a pulsed pump ef5 ns duration (FWHM),

The spectral behavior of power gain and group delay, i.e., twenty times longer than the probing pulses, a pump pulse
versus frequency fof; = 135 MW/cm? is shown in Fig. 13. energy of~ 0.90 mJ is required, which can be reached using
Notice that, to observe such anomalous values of group deldysguency-doubled-switched neodimium-based lasers.
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Fig. 14. Behavior of group delay (solid curve) and frequency offsebf the
principal dip in the spectral gain curve as functions of the phase &hifthe [15]
inset shows the spectral power gain curve of the amplifiedfes 7 /2.
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Fig. 15. Intensity pulse traces of a weak signal probe at the exit pland.,

transmitted through the PPLN amplifier, for a few values of the pump intensity.[zl]
Curve 1,13 = 0; curve 2,13 = 108 MW/cm?; curve 3,15 = 135 MW/cm?;
curve 4,I; = 162 MW/cm?. The dashed curve shows the incident Gaussian

probe pulse at the input plane of the amplifier. [22]

23
V. CONCLUSION 123
In this review article, we have provided an overview of recent,,
theoretical and experimental results on anomalous group veloc-
ities in optical pulse propagation through linear and nonlinear
photonic grating structures. Our analysis has been especial!yS]
focused on superluminal propagation of picosecond pulses at
1.5um in FBGs, and the measurement of tunneling times in the
) X S 361
picosecond time scale in different structures has been reported.
We also revealed that group velocity control by a pump field is
possible exploiting nonlinear interaction processes in nonlineatr
. 27
QPM grating structures.

REFERENCES [28]
[1] R.Y.ChiaoandA. M. Steinberg, “Tunneling times and superluminality,”
Prog. Opt, vol. XXXVII, pp. 345-405, 1997. [29]

[2] G. Nimtz and W. Heitmann, “Superluminal photonic tunneling and

guantum electronics,Prog. Quantum Electronvol. 21, pp. 81-108, [30]
1997.

[3] W. Heitmann, “Workshop on superluminal velocities®nn. Phys.
(Leipzig) vol. 7, pp. 591-782, 1998. [31]

[4] R.Boyd and D. Gauthier, “Slow and fast ligh®frog. Opt, vol. 43, pp. [32]
497-530, 2002.

[5] R.Y. Chiao and P. W. Milonni, “Fast light, slow lightOpt. Photon. [33]

News vol. 13, pp. 26-30, 2002.

[6] S. Chu and S. Wong, “Linear pulse propagation in an absorbing[34]
medium,”Phys. Rev. Lettvol. 48, pp. 738-741, 1982.

[7] B. Segard and B. Macke, “Observation of negative velocity pulse prop-
agation,”Phys. Lett. Avol. 109, pp. 213-216, 1985.

[8] A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal
propagation in a medium with a gain double®fiys. Rev. Avol. 49, pp.
2071-2075, 1994.

(35]

(36]

15

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal
light propagation,’Nature vol. 406, pp. 277-279, 2000.

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dis-
persion and superluminal light-pulse propagation at a negative group ve-
locity,” Phys. Rev. Avol. 63, pp. 053806 1-12, 2001.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light prop-
agation from subluminal to superluminaPhys. Rev. Avol. 60, pp.
053809 1-4, 2001.

A. Enders and G. Nimtz, “Photonic-tunneling experimenihys. Rev.

B, vol. 47, pp. 9605-9609, 1993.

A. Ranfagni, P. Fabeni, G. P. Pazzi, and D. Mugnai, “Anomalous pulse
delay in microwave propagation: A plausible connection to the tunneling
time,” Phys. Rev. Evol. 48, pp. 1453-1460, 1993.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the
single-photon tunneling time Phys. Rev. Lettvol. 71, pp. 708-711,
1993.

G. Nimtz, A. Enders, and H. Spieker, “Photonic tunneling timeks,”
Phys. | (France)vol. 4, pp. 565-570, 1994.

C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “Tunneling of op-
tical pulses through photonic band gapBiiys. Rev. Lettvol. 73, pp.
2308-2311, 1994.

P. Balcou and L. Dutriaux, “Dual optical tunneling times in frustrated
total internal reflection,’Phys. Rev. Lettvol. 78, pp. 851-854, 1997.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer,
M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P.
Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic
band edge: Large tunable group delay with minimal distortion and loss,”
Phys. Rev. Evol. 54, pp. R1078-R1081, 1996.

J. Khurgin, “Light slowing down in moire fiber gratings and its
implications for nonlinear opticsPhys. Rev. Avol. 62, pp. 013 820
1-4, 2000.

V. N. Astratov, R. M. Stevenson, |. S. Culshaw, D. M. Whittaker, M. S.
Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions
in photonic crystal waveguidesfppl. Phys. Lettvol. 77, pp. 178-180,
2000.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay
lines based on optical filters)JEEE J. Quantum Electronvol. 37, pp.
525-532, Apr. 2001.

S. Longhi, “Superluminal pulse reflection in asymmetric one-dimen-
sional photonic band gaps?hys. Rev. Bvol. 64, pp. 037 601 1-4, 2001.

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal op-
tical pulse propagation at 1/&m wavelength in periodic fiber Bragg
gratings,”Phys. Rev. Evol. 64, pp. 055 602(R) 1-4, 2001.

] S. Longhi, M. Marano, P. Laporta, O. Svelto, and M. Belmonte, “Propa-

gation, manipulation, and control of picosecond optical pulses atrh.5

in fiber Bragg gratings,J. Opt. Soc. Amer. Brol. 12, pp. 2742-2757,
2002, to be published.

S. Longhi, P. Laporta, M. Belmonte, and E. Recami, “Measurement of
superluminal optical tunneling times in double-barrier photonic band
gaps,”Phys. Rev. Evol. 65, pp. 046 610 1-6, 2002.

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Ex-
perimental observation of superluminal pulse reflection in a double-
Lorentzian photonic band gapPhys. Rev. Evol. 65, pp. 045 602(R)
1-4, 2002.

S. Longhi, M. Marano, and P. Laporta, “Dispersive properties of
guasiphase-matched optical parametric amplifiePhys. Rev. Avol.

66, pp. 033803-1-033803-10, 2002, to be published.

S. Longhi, “Negative group velocities in cascading’ nonlinear op-
tical interactions,”Europhys. Lett.vol. 60, pp. 214-219, 2002, to be
published.

T. E. Hartman, “Tunneling of a wave packed,”Appl. Phys.vol. 33, pp.
3427-3434, 1962.

V. S. Olkhovsky, E. Recami, and G. Salesi, “Superluminal tunneling
through two successive barrier&urophys. Lett.vol. 57, pp. 879-884,
2002.

P. Yeh,Optical Waves in Layered Media New York: Wiley, 1988.

L. Poladian, “Resonance mode expansions and exact solutions for
nonuniform gratings,Phys. Rev. Bvol. 54, pp. 2963-2975, 1996.

V. S. Olkhovsky and E. Recami, “Recent developments in the time anal-
ysis of tunnelling processes?hys. Rep.vol. 214, pp. 339-356, 1992.

A. P. L. Barbero, H. E. Hernandez-Figueroa, and E. Recami, “Propaga-
tion speed of evanescent modeBliys. Rev. Evol. 62, pp. 8628-8635,
2000.

M. Mojahedi, E. Schamiloglu, F. Hegeler, and K. J. Malloy, “Time-do-
main detection of superluminal group velocity for single microwave
pulses,”Phys. Rev. Evol. 62, pp. 5758-5766, 2000.

J. D. JacksorClassical Electrodynamics New York: Wiley, 1975.



16 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2003

[37] P.Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-y
terbium microlasers: optical properties and lasing characteristyst,”
Materials vol. 11, pp. 269-288, 1999.

[38] B. Costa, M. Puleo, and E. Vezzoni, “Phase-shift technique for the me
surement of chromatic dispersion in single-mode optical fibers usir
LEDSs,” Electron. Lett, vol. 19, pp. 1074-1076, 1983.

[39] S. Ryu, Y. Horiuchi, and K. Mochizuky, “Novel chromatic dispersion
measurement method over continuous gigahertz tuning radgsaght-
wave Techno).vol. 7, pp. 1177-1180, Aug. 1989. =

[40] H. M. Brodowsky, W. Heitmann, and G. Nimtz, “Comparison of experi-l

mental microwave tunneling data with calculations based on Maxwell's

equations,’Phys. Lett. Avol. 222, pp. 125-129, 1996.

Marcello Marano was born in Milan, Italy, in 1974.
He received the M.S. degree in telecommunications
engineering ¢um laudg from the Polytechnic Insti-
tute of Milan in 1999. He is pursuing the Ph.D. degree
in electronics and communications engineering at the
Polytechnic Institute of Milan.

In 2001, he joined the Physics Department of the
Polytechnic Institute of Milan as an Assistant Pro-
fessor of Physics. His current research activities are in
the fields of development of solid-state lasers for ap-
plications to optical communications, generation and

manipulation of ultrahigh repetition-rate pulse trains, frequency and amplitude

[41] G. Nimtz and A. Enders, “On superluminal barrier traversalPhys. | stabilization of solid-state lasers for metrology and atmosphere monitoring.

(France) vol. 2, pp. 1693-1698, 1992.

[42] E. MerzbacherQuantum Mechanics New York: Wiley, 1970, ch. 6
and 7.

[43] P. Pereyra, “Closed formulas for tunneling time in superlatticeby's.
Rev. Lett.vol. 84, pp. 1772-1775, 2000.

[44] T.Tsaiand G. Thomas, “Analog between optical waveguide system a
quantum-mechanical tunneling&mer. J. Phys.vol. 44, pp. 636-638,
1976.

[45] T. Erdogan, “Fiber grating spectra]’ Lightwave Technqlvol. 15, pp.
1277-1294, Aug. 1997.

[46] L. Poladian, “Group-delay reconstruction for fiber Bragg gratings inr
flection and transmissionOpt. Lett, vol. 22, pp. 15711573, 1997. g4/

[47] G.H. Song and S. Y. Shin, “Design of corrugated waveguide filters t'l
the Gel'fand-Levitan-Marchenko inverse-scattering methodsOpt.

Soc. Amer. Avol. 2, pp. 1905-1915, 1985.

[48] M. M. Fejer,Beam Shaping and Control With Nonlinear OptiEsKa-
jzar and R. Reinisch, Eds. New York: Plenum, 1998, p. 375.

[49] G.Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and
M. M. Fejer, “Engineerable femtosecond pulse shaping by second-har-
monic generation with fourier synthetic quasiphase-matching gratings
Opt. Lett, vol. 23, pp. 864—-866, 1998.

[50] G.Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermanr
and D. Harter, “Ultrashort-pulse second-harmonic generation with lol
gitudinally nonuniform quasiphase-matching gratings: Pulse compre
sion and shapingJ. Opt. Soc. Amer. Brol. 17, pp. 304-318, 2000.

[51] G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Puls
shaping by difference-frequency mixing with quasiphase-matchir
gratings,”J. Opt. Soc. Amer. Brol. 18, pp. 534-539, 2001.

[52] M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra,
and A. Lodder, “Superluminal optical phase conjugation: pulse shapin

waveguide devices.

Michele Belmontewas born in Milan, Italy, in 1971.
He received the M.S. degree in nuclear engineering
from the Polytechnic Institute of Milan.

From 1999 to 2001, he was a researcher with Pirelli
Componenti Ottici, Milan, Italy and was responsible
for the design and fabrication of fiber Bragg gratings.
Since 2001 he has been with Corning OTI, Milan.
His current research areas are in the fields of fiber
Bragg grating modeling and fabrication, lithium nio-
bate amplitude modulators for high-speed signal gen-
eration, and frequency conversion in lithium niobate

Paolo Laporta is a Professor of Optics with the
Physics Department of the Polytechnic Institute of
Milan, Italy. His research activities include laser
applications to biology and biomedicine, ultrashort
light pulse generation, advanced laser resonator for
solid-state lasers, diode-pumped solid-state lasers,
erbium lasers and amplifiers for optical communi-
cations, frequency and amplitude stabilization of
solid-state lasers for metrology, photonic waveguide
devices, and photonic crystals.

Prof. Laporta is the author of more than 100 scien-

and instability,”Phys. Rev. Avol. 57, pp. 4905-4912, 1998. ti?lc papers and his research has been the subject of 21 invited papers at interna-

[53] G.J. Edwards and M. Lawrence, “A temperature-dependent dispersi##nal conferences. He has served as Topical Session Chair at the CLEO-Europe
equation for congruently grown lithium niobateQpt. Quantum Elec- conference 2000 and as Program Co-chair at the Progress in Solid-State Lasers

tron., vol. 16, pp. 373-375, 1984, Conference, Munich, 2001. In 1992, he received the Philip Morris Prize for Sci-
[54] G.Kurizki, A. Kozhekin, and A. G. Kofman, “Tachyons and informationence and Technology.

transfer in quantized parametric amplifierEfirophys. Letf.vol. 42, pp.

499-504, 1998.

Stefano Longhiwas born in Bergamo, Italy, in 1967.
Hereceived the M.S. degree in electronic engineering
(cum laudé and the Ph.D. degree in physics from
the Polytechnic Institute of Milan, Italy, in 1992 and
1995, respectively.

He has held a postdoctoral research position with
INFM and CNR, Milan and has served a one-year
postdoctoral position at MIT, Cambridge, MA. Since
1998 he has been an Assistant Professor of General
Physics and Quantum Electronics at the Physics De-
partment, Polytechnic Institute of Milan. His research
covers a wide range of both experimental and theoretical activities in the fields
of laser physics, nonlinear optics and quantum electronics. These include de-
velopment of near-infrared solid-state lasers, ultrashort-pulse generation and
manipulation for optical communications, nonlinear dynamics and solitons in
optical systems, and optical pattern formation.

Dr. Longhi has authored and coauthored more than 80 scientific papers in
peer-referred international journals.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


