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Abstract—Optical pulse propagation in photonic grating struc-
tures can show anomalous (i.e., superluminal or negative) group
velocities under certain circumstances owing to the anomalous
dispersive properties induced by the periodic grating structure.
Such phenomena can be observed for either linear pulse propaga-
tion in passive dielectric grating structures, such as in fiber Bragg
gratings (FBGs), as well as in frequency-conversion processes
exploiting second-order cascading effects in quasi-phase-matched
(QPM) nonlinear crystals. Engineering of the grating structure
can be exploited to observe a wide variety of anomalous pulse
transmission and reflection behaviors. In this article, we review
the main recent experimental and theoretical achievements
obtained by our group in this field. In particular, we report on
superluminal propagation of picosecond optical pulses at the
1.5- m wavelength of optical communications in FBGs, both in
transmission and reflection configurations, with the observation
of group velocities as large as 5 0. We also show that the
phenomenon of transparent pulse propagation at a negative group
velocity in a gain doublet atomic amplifier, recently observed in
cesium vapor by Wang and co-workers (L. J. Wang, A. Kuzmich,
and A. Dogariu, Nature vol. 406, pp. 277–279, 2000), can be
achieved as well in a photonic parametric amplifier by exploiting
the anomalous dispersive properties of the amplifier induced by a
suitably designed QPM grating profile.

Index Terms—Anomalous group velocities, Bragg scattering,
gratings, optical propagation.

I. INTRODUCTION

T HE PROPAGATION of electromagnetic wave packets at
a superluminal group velocity has received a renewed in-

terest in the past few years, and a wide series of experiments
have to date clearly and unambiguously shown that the group
velocity can exceed the speed of light in vacuum or become even
negative in suitably prepared physical systems; recent reviews
and highlights on this subject are given, e.g., in [1]–[5] and in the
present special issue. Though it has been well understood and
pointed out by several authors that the observation of anoma-
lous group velocities is compatible with and even a consequence
of causality (see, for instance, [5] and references therein), the
possibility of speeding up bell-shaped and spectrally narrow
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optical pulses beyond the speed of light in vacuum remains a
rather amazing and counterintuitive phenomenon. The occur-
rence of anomalous group velocities has been mostly predicted
and observed in the framework of two rather distinct physical
contexts. One is that of resonant (or near-resonant) pulse propa-
gation through absorbing or amplifying atomic media [6]–[10];
in particular, following the theoretical work by Steinberg and
Chiao [8], recently Wanget al. [9] have successfully measured
negative group velocities of pulse propagation in cesium vapor
using stimulated Raman gain under a bichromatic pumping that
induces a gain doublet. In this context, the ability to control
the optical properties of a medium with a laser field suggests
that “fast” and “slow” light propagation effects share common
physical features [5]; indeed one can change, in principle, light
propagation from subluminal to superluminal by the applica-
tion of suitable control laser fields [11]. In a completely dif-
ferent context, superluminal group velocities have been consid-
ered for a long time in the problem of electromagnetic or matter
wave packet tunneling through potential barriers [1], [2]. Su-
perluminal tunneling times have been measured, at either mi-
crowave or optical wavelengths, in undersized waveguides [12],
[13], periodic dielectric structures [14]–[16], or exploiting frus-
trated total internal reflection [17]; extended earlier references
on this subject can be found, e.g., in [1], [2].

In microwave experiments, superluminal time advancements
occur in the nanosecond or picosecond time scale and can be
easily revealed using conventional radio-frequency (RF) mea-
surement instruments and techniques. On the contrary, in typ-
ical tunneling experimental arrangements using optical probing
pulses, such as in optical tunneling through quarter-wave mul-
tidielectric mirrors or side-by-side prisms, superluminal peak-
pulse advancements fall in the femtosecond time scale and a
resolution of a few femtosecond is usually required. Such short
events can be detected solely by rather indirect measurements,
such as interferometric autocorrelation techniques [16], whereas
a direct detection of the signal waveform in the time domain is
not possible. The idea of using photonic structures operating at
optical wavelengths to either accelerating or slowing down the
speed of light, and in particular the use of photonic gratings,
photonic band gaps, or high-index photonic structures, is quite
recent [18]–[23]. We recently showed that fiber Bragg gratings
(FBGs) can be successfully employed not only for pulse control
in optical communication and ultrafast optoelectronic applica-
tions (see, for instance, [24]), but also as photonic barriers to
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observe different anomalous pulse-propagation effects with pi-
cosecond pulses at the 1.5-m wavelength of optical commu-
nications. These include tunneling time measurements across
single [23] and double [25] barrier FBGs and the superluminal
pulse reflection in specially designed grating structures [26].
Though the use of FBG structures to observe superluminal ef-
fects is conceptually similar to analogous photonic Bragg bar-
riers, such as multidielectric quarter-wave Bragg mirrors, the
weak Bragg scattering provided by the FBG enables the use of
long barriers (up to several centimeters), leading to a huge in-
crease of superluminal peak-pulse advancements by 3–4 orders
of magnitude as compared with Bragg mirrors [23]. This per-
mits a direct measurement and recording of the pulse waveforms
using a fast sampling oscilloscope when periodic (mode-locked)
pulse trains are used. In addition, the synthesis and realization
of special grating structures, which is possible today thanks to
the recent advances in the field of FBG writing technology,
enables us to tailor the dispersive properties of the structure
to a high degree of complexity, making it possible to observe
in photonic grating structures anomalous pulse-propagation ef-
fects similar to those found, e.g., in resonant pulse propagation
through atomic systems. For instance, the dispersive properties
of a grating structure with two closely spaced resonance modes
have been used to observe superluminal reflection of picosecond
pulses in [26].

As compared to superluminal effects that can be observed
when a pulse propagates through an atomic medium whose
dispersive (and absorptive) properties are controlled by a
laser field, the use of passive photonic grating structures
presents several limitations, that can be summarized as fol-
lows. First of all, the tunneling process of pulses through the
passive grating structure always leads to strong attenuation
due to evanescent wave propagation, so that distortionless
“transparent” pulse propagation is not possible using passive
photonic structures. Moreover, the achievement of negative
group velocities seems unlikely in such structures; indeed,
previous experiments on tunneling time measurements have
always reported superluminal transit times but never negative
ones. Finally, there is not an easy way to control or change the
dispersive properties of the structure once it has been designed
and realized, using some kind of control field as in atomic
systems with electromagnetically controlled optical properties
(see, e.g., [11]). Most of these limitations can, nevertheless, be
overcome considering pulse propagation in nonlinear grating
structures, in which the dispersive properties experienced by
a probing optical pulse are strongly influenced by a nonlinear
wave interaction process inside a nonlinear crystal and can
be changed by use of a control (pump) laser field. In fact, we
have recently shown that cascading second-order nonlinear
processes may strongly influence the dispersive properties of
a probing optical pulse, leading to abnormal group velocities
[27]. In particular, we have theoretically shown that in a
quasi-phase-matched (QPM) optical parametric amplifier with
a suitably designed grating structure, the group velocity of a
propagating optical pulse can be controlled by the pump wave
and pushed from subluminal to superluminal and negative
values by increasing the pump power level [27], [28]. It is
remarkable that such an amplifier reproduces the experimental

conditions of the gain-assisted superluminal pulse propagation
reported by Wang and co-workers [9]. The propagation of
optical pulses in nonlinear grating structures, thus, permits to
bridge the two different and apparently separated contexts in
which superluminal effects are usually encountered.

In this paper, we provide a brief review of the main exper-
imental and theoretical results obtained by our group in the
field of superluminal pulse propagation of picosecond optical
pulses in photonic grating structures. In Section II, we report
on the experimental measurements of tunneling times of pi-
cosecond optical pulses at the 1.5-m wavelength of optical
communications using FBGs as photonic barriers. In particular,
we present results on tunneling time measurements for single
and double barrier (DB) FBGs, providing an experimental ev-
idence in the optical context of the Hartman effect of particle
tunneling in quantum mechanics [29], [30]. In Section III, we
address the issue of superluminal pulse reflection in asymmetric
grating structures, and we demonstrate superluminal reflection
of picosecond pulses using a double-Lorentzian (DL) FBG. Sec-
tion IV is devoted to the analysis of the dispersive properties
hidden in pulse propagation through a second-order QPM non-
linear optical parametric amplifier, and the issue of group ve-
locity control in such a device is addressed. Design criteria,
based on a periodically poled lithium niobate (PPLN) grating
structure, are also given for an experimental observation of neg-
ative group velocities at 1.5-m wavelength. Finally, in Sec-
tion V the main conclusions are outlined.

II. TUNNELING OF PICOSECONDPULSESTHROUGHFBGS

This section is devoted to the discussion of the theoretical and
experimental results on superluminal propagation of picosecond
pulses at 1.5 m through FBG structures. In particular, we per-
formed experiments on tunneling of pulses through periodic
(i.e., uniform) FBGs and through DB structures. When the trans-
mission scheme is adopted, the velocity-of-flight to cross the
structure can be estimated from measurements of the tunneling
time. After a brief introduction on the theoretical model adopted
for light propagation in FBGs, we will present an account of the
experimental measurements of tunneling times, both for single
periodic barriers [23] and for DB structures [25]. Velocities as
large as were obtained, in particular, in the latter case,
where is the speed of light in vacuum.

FBGs are optical fiber devices in which the refractive index
of the core is modulated along the longitudinal axis, with an al-
most sinusoidal profile of submicrometric period. This modula-
tion of the refractive index is induced by photorefractive effect
exposing the fiber core to an ultraviolet beam, generated from
a frequency-doubled Ar-ion laser or from an excimer laser. The
periodic intensity profile of the laser beam is typically achieved
by the interference pattern from a phase mask. The effective
index of a grating is defined as the spatial average of refrac-
tive index on the transverse section of the fiber, weighted with
the transverse intensity profile of the fiber mode. The effective
index profile along the longitudinal axis can be written as

for ,
where is the nominal period of the grating, is the average
effective index, and , describe the slow variation, as
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Fig. 1. (a) Schematic of Bragg scattering in an FBG with counterpropagating
waves. (b) and (c) Boundary conditions for the calculation of spectral
coefficientsr , r , andt for forward and backward incidence.

compared to the scale of , of amplitude and phase, respec-
tively, of the index modulation. The periodic modulation of the
refractive index along the longitudinal axis of the fiber leads to
Bragg scattering between the counterpropagating waves at the
same angular frequency, provided that this frequency matches
the Bragg condition [31]. This is the main
physical effect that determines the spectral response of a grating
structure. The spectral features of an FBG, such as the existence
of a frequency stopband, are thus analogous to those generally
found in other periodic photonic structures (see, for instance,
[31]).

To go deeply into the subject, let us consider a
monochromatic field at frequency close to the Bragg
frequency propagating along the
FBG. The electric field can be written as

c.c,
where and are the envelopes of the two counterpropagating
waves, is the Bragg wavenumber, and c.c. stands
for complex conjugate. It is well known that the slowly varying
envelopes and , for a weak grating depth ,
satisfy the following coupled-mode equations (see, e.g., [32]):

(1)

(2)

In (1) and (2), repre-
sents the complex-valued scattering potential, whereas

is the detuning parameter
between the wavenumber of counterpropagating
waves and the Bragg wavenumber. The field envelopes
and at the and planes of the grating structure
[see Fig. 1(a)], because of the linearity of (1) and (2), are
related by the following matrix equation:

(3)

The elements of the 2 2 transfer matrix satisfy the con-
ditions , , and . When
a single monochromatic light beam is launched into the FBG,
there are a reflected and a transmitted beam, whose amplitudes
can be calculated by solving (1) and (2) with the appropriate

boundary conditions. For a forward-propagating incident beam
and are the input and output planes, respectively,

and the boundary condition is [see Fig. 1(b)]. The
spectral reflection coefficient for forward light incidence is de-
fined by

(4)

For a backward-propagating incident beam the light comes
from the right side of the grating and the boundary con-
dition is . Notice that in this case input and
output planes are reversed, as illustrated in Fig. 1(c).
The corresponding reflection coefficient is, therefore,

. The
forward reflection coefficient is the more commonly
used, and in the following we will indicate it by for
the sake of simplicity. The spectral transmission coefficient,
conversely, is independent of the incidence side [see Fig. 1(b)
and (c)] and is given by

.
Besides the spectral shape , an important role

is played by the group delay in transmission , also
called the phase time, equal to the first derivative of
the phase of the transmission coefficient against:

. For an incident pulse
with carrier frequency and narrow bandwidth, the tunneling
time needed to cross the grating structure can be assumed equal
to the group delay of the grating, evaluated at frequency
(see, e.g., [33]). The superluminal or subluminal propagation
for a pulse transmitted throughout the FBG, therefore, depends
on this parameter. Superluminal peak advancement in transmis-
sion, for a structure of length, occurs whenever .
We stress that the group delay provides an accurate estimate
of the time delay of the peak-pulse intensity solely for a
spectrally narrow optical pulse with a smooth envelope [1],
and that superluminal phenomena may be observed only in
this case [1], [34], [35]. In fact, the properties of analyticity
of the coupled-mode equations ensure that the front of any
discontinuous signal may not propagate through the grating at a
speed higher than , i.e., no genuine violation of Einstein
causality occurs [1], [34]–[36]. It should also be pointed out
that the coupled-mode equations model [(1) and (2)] does not
include material dispersion of the fiber; if dispersion were
accounted for, and as . The front
velocity of a discontinuous step-like signal, so, actually travels
at the speed of light in vacuum.

For optical communications purposes, FBGs are typically
used as linear filters in reflection, because the Bragg scattering
mechanism provides a bandpass reflection spectrum; when
used in transmission, conversely, they act as band-stop Fourier
filters. We will see that superluminal pulse propagation in
transmission can occur when the optical spectrum of the
incoming pulse is located just in the stopband of the grating.

A. Single Barrier

The reflection and transmission coefficients of an FBG, in
general, depend on amplitude and phase profiles of the grating.
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The simplest grating is the uniform or periodic FBG, in which
and are constant along the fiber and,

therefore, the scattering potential
is also constant. This structure represents the simplest photonic
barrier that can be used to achieve larger-than-group veloci-
ties, for an incident beam with an optical frequency in the spec-
tral region corresponding to the band gap of the grating. In this
case, (1) and (2) can be analytically solved, yielding

(5)

where . The reflection and transmission
coefficients are, therefore

(6)

(7)

From (6) it follows that the power spectral reflectivity
is maximum at Bragg resonance, i.e., for , and it is equal
to . Note that approaches 1 for

, i.e., for either a sufficiently long grating or for a
large modulation depth. The reflectivity bandwidth corresponds
approximately to the frequency range in which the parameter
is real, i.e., for . This means that the spectral bandwidth
of a grating is mainly determined by the modulation depth, not
by the grating length. By suitably changing the lengthand
the strength of the grating, one can achieve the desired peak
reflectivity and bandwidth. From (7), we obtain the following
expression for the group delay in transmission:

(8)

Both the power spectral transmission and the
group delay show a minimum at the center of the band
gap, i.e., for , where
and . For a fixed
grating strength , the higher the length , the lower the
power transmission at the gap center. Note that for

, i.e., for an opaque barrier, the tunneling time
approaches and becomes independent of the
barrier width. This circumstance is the optical analogous of
the Hartman effect [29], known in quantum mechanics in the
context of tunneling of a particle through a potential barrier
(see also [33]). If the incoming pulse has a narrow spectrum
centered at , therefore, it can cross the barrier and leave
the grating attenuated, but without appreciable distortion of
its shape, with a group velocity larger than . The group
velocity, in fact, can be estimated simply as the ratio between
the barrier width and the tunneling time , that is

(9)

Fig. 2. Schematic of the experimental setup for tunneling experiments in
transmission. MZM: Mach–Zehnder waveguide modulator.

A larger-than- group velocity occurs for a sufficiently opaque
barrier such that . For ,
which is the typical value of the average refractive index for an
FBG, this condition becomes . If the spectrum of
the incoming pulse, on the contrary, is centered far away from
the Bragg frequency of the grating, Bragg scattering does not
occur, the pulse travels with a group velocity and is not
attenuated at the output.

We performed tunneling experiments of picosecond pulses
through periodic gratings of different length, i.e., barrier
thickness, but designed to have the same Bragg frequency
and the same modulation depth, and so comparable band-
width [23]. The chosen value of the modulation depth was

, corresponding to an approximate grating
bandwidth GHz, for a carrier
frequency in the 1.5-m wavelength range. The FBGs were
fabricated from a deuterium-loaded fiber using a standard
writing technique, in which an ultraviolet beam generated by a
frequency-doubled Ar-ion laser is focused on a phase mask and
strobed using an acoustooptic modulator. The average effective
index is for all the gratings. A schematic diagram
of the experimental setup is shown in Fig. 2. The probing
pulses were generated using a stabilized continuous-wave
(CW) Er–Yb:glass laser, externally modulated at a repetition
frequency GHz by means of a fiber-coupled LiNbO
Mach–Zehnder modulator. The laser cavity, similar to that
reported in [37], is a one-folded 18-cm-long resonator, in
which the active disk is end-pumped at 980 nm by an InGaAs
laser diode. An intracavity BK-7 uncoated etalon, with 100-m
thickness, allows for a tuning of the emission laser wavelength
by a few nanometers near 1533 nm. A finer tuning800 MHz
of the laser frequency, when necessary, is achieved by a submi-
crometric control of the laser cavity length using a piezoelectric
transducer mounted on the output laser mirror.

The Mach–Zehnder modulator was sinusoidally driven at a
frequency by an RF synthesizer. For a waveguide modulator
with chirp compensation, as the one used for our experiments,
the frequency chirping introduced by the modulator is negligible
and the electric field at the output of the modulator is given
by

(10)

where is the amplitude of the electric field at the input of
waveguide, is the carrier frequency of the laser, is the
bias point, and the modulation depth impressed to the mod-
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Fig. 3. (a) Spectral power transmission and (b) group-delay for the periodic
2-cm-long FBG used in the experiment. Solid and dashed lines refer to measured
and predicted spectral curves, respectively.

ulator by the sinusoidal RF signal. Proper selection of bias point
and modulation depth permits the generation of a pulse

train with different pulse durations and pulse shapes. In our case,
the bias voltage and the RF level were typically chosen to give

and . With these parameters, the
output beam is a pulse train with a full-width at half-maximum
(FWHM) pulse duration of 380 ps and 1-ns periodicity. The
chosen pulse shape and duration correspond to a spectral pulse
bandwidth of 2 GHz, that is, about one fifth as compared to
the grating bandgap.

After propagation trough the FBG, the transmitted pulse train
was sent to a low-noise erbium-doped fiber amplifier (EDFA),
with a saturation power of 30 W, to keep the power of the
transmitted beam at a comparable level18 mW when the
laser emission is tuned either inside or outside the bandgap of
the grating. The characterization of the transmitted pulse train
was performed in the spectral domain using both a scanning
Fabry–Pérot interferometer (Burleigh, Mod. RC1101R) with a
finesse of 90, set for a free spectral range of27 GHz, and
an optical spectrum analyzer (OSA) with 0.07-nm resolution
(Anritsu, Mod. MS9710B). In order to carry out a characteriza-
tion in the time domain simultaneously, the fiber-coupled beam
was split, and a small fraction (1%) of the available power was
sent to a sampling oscilloscope (Agilent, Mod. 86 100A), trig-
gered by the same low-noise sinusoidal RF signal driving the
Mach–Zehnder modulator, thus providing a precise synchro-
nism among successive pulses in the train. The resulting sen-
sitivity of this apparatus for time-delay measurements is of the
order of 1 ps.

The first periodic FBG designed and fabricated for the tun-
neling experiments has a length of , corresponding to a
minimum power transmission of at the gap center,
as calculated from (7) with . The Bragg fre-
quency of this grating is rad/s, i.e.,
the central wavelength (in vacuum) of the reflectivity spectrum
is nm. Fig. 3 shows the theoretically expected
(dashed lines) and measured (solid lines) curves for power trans-
mission and group delay in transmission versus frequency
detuning for this grating. The group delay was
measured using a modulation phase-shift technique [38], [39]
which is the more commonly used method for the characteriza-
tion of FBGs.

We recorded the trace of pulses transmitted through the FBG,
as measured by the sampling oscilloscope, for different wave-
length tuning conditions of the Er–Yb laser. The absolute value

Fig. 4. (a) Pulse traces corresponding toOFF-resonance (curve 1) and
ON-resonance (curve 2) propagation. Curve 3 is the pulse trace measured when
the pulse spectrum is tuned close to the right-side band gap edge of the FBG.
(b) Behavior of group velocityv (0) for barrier crossing, normalized to the
speed of light in vacuumc , as a function of power reflectivity at bandgap
centerR , for a uniform FBG with average indexn = 1:452. The solid
curve is obtained by the phase-time analysis [see (9)]. The dashed curve is the
theoretical behavior as predicted by numerical propagation of pulse train (10).
Triangles refer to measured traversal velocities for three FBGs.

of the carrier wavelength was monitored using the OSA, and its
exact position relative to the Bragg wavelength was monitored
using the Fabry–Pérot interferometer, previously used to record
the reflectivity spectrum of the grating with a high resolution.
The pulse spectrum was first detuned far away from the Bragg
wavelength of the grating by 120 GHz, and the transmitted
pulse train is shown in Fig. 4(a), trace 1. In this case, the Bragg
scattering inside the grating is negligible, and thus, the pulse
travels across the barrier with a velocity equal to . We then
tuned the laser spectrum close to the center of the bandgap and
we recorded the trace of transmitted pulse, which is shown in
Fig. 4(a), trace 2. A temporal advancement of the transmitted
pulse peak of 63 ps, as compared to that of trace 1, can be
clearly observed; note that there is no appreciable pulse distor-
tion. The measured pulse advancement corresponds to a velocity
for barrier crossing equal to , very close to the theo-
retical value , calculated from (9) with

. We checked that the observed superluminal tunneling
time is easily reproducible and persists by changing the opera-
tional conditions of the Mach–Zehnder modulator, i.e., pulse du-
ration and modulation frequency. Finally, the carrier wavelength
was detuned apart from the bandgap center by7 GHz, i.e.,
close to the first side peak of transmission curve at the bandgap
edge. In this case, the behavior of group delay, as shown in
Fig. 3(b), indicates a peak-pulse delay, as compared toOFF-res-
onance propagation, of 65 ps, i.e., pulse slowing down oc-
curs for such a tuning condition. The pulse trace measured in
this case, shown in Fig. 4(a), trace 3, clearly demonstrates pulse
slowing down with a pulse-peak delay of60 ps, close to the
expected value. A slight pulse distortion can be appreciated in
this case, which is ascribable to spectral pulse reshaping pro-
duced by grating band edge effects.

We also designed and fabricated two other FBGs, with the
same Bragg frequency and modulation depth, but with different
length, namely 1.6 and 1.3 cm. The gratings were character-
ized and then used to perform tunneling experiments at different
group velocities. According to (9), in fact, the group velocity at
the bandgap center is a function of the peak power reflectivity

solely, which in turns depends on the barrier thickness
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TABLE I
ANALOGIES BETWEEN TUNNELING OF OPTICAL

WAVES AND ELECTRONS IN A SYMMETRIC

RECTANGULAR DB POTENTIAL

For electrons, calculations are made assuming a mean-energy of incident

wavepacket equal to half of the barrier height, i.e.,E = V =2, and assuming

OFF-resonance tunneling, i.e.,�L is an integer multiple of�=2, where� �p
mV =�h is the wavenumber of the oscillatory wavefunction between the two

barriers.v � �h�=m is the group velocity of free wavepacket.

and on the grating strength . The experimental results, cor-
responding to the three FBGs with lengths of 1.3, 1.6, and 2 cm,
are shown in Fig. 4(b), together with the theoretical curves ob-
tained either by phase-time analysis [see (9)] or by numerical
propagation of the pulse train (10) through the FBG, using the
spectral transmission function given by (7).

B. Double Barrier

Besides superluminal propagation and the Hartman effect ob-
served in periodic FBGs, tunneling through DB photonic struc-
tures shows even a more amazing phenomenon, namely the in-
dependence of the transit time not only of barrier width, but also
of barrier separation (generalized Hartman effect [30]). Here,
we report our results recently obtained in the measurement of
tunneling delay times in DB photonic structures based on FBG
technology [25]. Our results represent an extension at optical
wavelengths of similar experimental achievements previously
reported at microwaves [12], [15], [40], [41] and provide a clear
experimental evidence that, for opaque barriers, the traversal
time is independent of barrier distance. After a brief account
on the quantum-mechanical analogy of electron tunneling and
on the basic model of tunneling in a DB rectangular FBG (see
also [25]), the main experimental results are presented.

The DB designed and manufactured for the tunneling time
measurements at 1.5m consists of a single-mode optical fiber
in which two periodic Bragg gratings, separated by a distance
, are sequentially written onto it. Each grating has a length
, so that the structure shows an amplitude profile that

simulates a symmetric rectangular DB structure, i.e.,
constant for and ,

and , otherwise. For such a structure, Bragg scat-
tering of counterpropagating waves at a frequencyclose to
the Bragg resonance occurs in the grating
regions, whereas multiple wave interference between the two
barriers leads to Fabry–Pérot resonances in the transmission
spectrum. The problem of tunneling through a DB FBG struc-
ture bears a close connection to that of nonrelativistic electrons
through a symmetric rectangular DB potential, which has been
widely investigated in literature (see, for instance, [30], [42]).

The analogy between tunneling of electrons and photons in su-
perlattice structures and closed-form solutions for the tunneling
times have been recently reported, in the general case, in [43].
The derivation here presented of photon tunneling times follows
a different and simpler approach, based on the coupled-mode
equations model, which is suited in particular for FBG struc-
tures. The analogy with electron tunneling through a rectan-
gular double potential barrier is summarized in Table I, where
the basic equations and the expressions of power transmission
and group delay are given in the two cases [25], [44]. The elec-
tronic potential is assumed to be constant for

and , and , otherwise.
In the electromagnetic case, the counterpropagating waves

are oscillatory (propagative) in the region ,
whereas they are exponential (evanescent) inside the gratings
when . The spectral transmission of the structure
can be analytically determined by extending the transfer matrix
analysis presented in Section II-A (see also [45]). As an esti-
mate of the tunneling time for a wavepacket crossing the struc-
ture, we use again the group delay, which, following a different
but equivalent expression to that previously adopted, is given
by . Far from the sharp Fabry–Pérot
resonances, the group delay is shorter than that for free propa-
gation from input to output planes, and thus, superluminal prop-
agation occurs for a spectrally narrow incoming pulse. Near the
Fabry–Pérot resonances, on the contrary, light slowing down
is attained, as in a usual Fabry–Pérot resonator (resonant tun-
neling). At the center of the bandgap , simple analytical
expressions for the power transmission and group delay can be
derived and read

(11)

(12)

where

(13)

(14)

Equations (12)–(14) clearly show that two distinct contribu-
tions are involved in the expression for the group delay. The
former term is independent of the barrier separation, and co-
incides with the tunneling time of asinglebarrier of width .
As we previously observed, for an opaque barrier

becomes independent of barrier width and saturates to
the value (Hartman effect). Conversely, the latter
contribution is always shorter than the free-propagation time
over a length and tends to zero for an opaque barrier, im-
plying that the tunneling time becomes independent of barrier
distance (generalizedHartman effect). Similar results can be ob-
tained forOFF-resonance tunneling of a nonrelativistic electron
through a rectangular DB potential assuming that the in-
cident wavepacket has a below-barrier mean energyequal to
half the barrier width . The corresponding expressions for
barrier transmission and group delay in this case are given in
Table I. The tunneling through a DB FBG structure can hence be
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Fig. 5. (a) Spectral power transmission and (b) group delay for a DB FBG
structure withL = 8:5 mm, d = 42 mm, h = 3:1 � 10 , andn =
1:452. Solid and dotted lines refer to measured and predicted spectral curves,
respectively.

used as an experimental verifiable model for the quantum-me-
chanical case.

To assess the independence of the peak-pulse transit times
with barrier distance , we fabricated five different DB struc-
tures with grating spacing 18, 27, 35, 42, and 47 mm, and we
performed tunneling time measurements similar to the single-
barrier experiments described in Section II-A. In each struc-
ture, the two gratings have sharp fall-off edges, length

and index modulation depth . The
resulting power transmission at antiresonance for the DB struc-
tures is in all cases, which is low enough to
get the opaque barrier limit but yet large enough to perform
time-delay measurements at reasonable power levels. The Bragg
resonance was set near 1550-nm wavelength. For such struc-
tures, both transmission spectra and group delays were mea-
sured using a phase-shift technique [38], [39] with a spectral
resolution of 2 pm. As an example, the measured spectral
transmission and group delay curves versus frequency detuning
of the DB FBG with are shown in Fig. 5. Note
that the sharp Fabry–Pérot resonances are not fully resolved
in the experimental curves because of the resolution limit of
the measurement apparatus2 pm . The expected time ad-
vancements in the superluminal spectral regions, far from the
Fabry–Pérot resonances, are of the order of 240–250 ps ac-
cording to the theoretical curve shown in the same figure. Since
both transmission and group delay are slowly varying func-
tions of frequency far from Fabry–Pérot resonances, pulse ad-
vancements with weak pulse-shape distortion are expected for
OFF-resonance pulse transmission.

Direct time-domain measurements of tunneling delay times
were performed in transmission experiments using a 300-MHz
repetition-rate pulse train with 1.3-ns pulse duration, generated
by the Mach–Zehnder modulator, and thus, with pulse shape
described by (10). The repetition-rate and the pulse duration
were chosen to obtain a spectral pulse bandwidth600 MHz
which is lower than the frequency spacing between adjacent
Fabry–Pérot resonances (2 GHz for the case shown in
Fig. 5) for all five DB structures. The experimental setup
and measurement apparatus is analogous to that previously
described for single-barrier tunneling experiments and shown
in Fig. 2, except than for the CW laser at 1.5m, which
in this case is a single-mode tunable semiconductor laser
(Santec, Model ECL-200/210), equipped with both a coarse
and a fine (thermal) tuning control of frequency emission

Fig. 6. (a) Temporal intensity profiles corresponding to the pulses transmitted
through the DB FBG with 42-mm separation forOFF-resonance tunneling (curve
1) and reference pulse propagating outside the stopband of the structure (curve
2). (b)OFF-resonance tunneling time versus barrier separationL for a rectangular
symmetric DB FBG structure. The solid line is the theoretical prediction based
on group delay calculations [see (12)–(14)]. Dots are the experimental points
as obtained by time-delay measurements. The dashed curve is the transit time
from input(z = 0) to output(z = 2L+ d) planes for a pulse tuned far away
from the stopband of the FBGs.

with a resolution of 100 MHz. The fiber-coupled 10-mW
output power emitted by the laser diode was amplified using a
high-power EDFA (IPG, Model EAD-2-PM), and then sent to
the Mach–Zehnder modulator. The average power of the pulse
train available for the transmission experiments was130 mW.
The reflectivity spectrum of the DB FBG was first measured by
the Fabry–Pérot interferometer, set for a free spectral range of

50 GHz, and with a measured finesse of180, by sending
to the DB structure, through a three-port optical circulator, the
broad-band amplified-spontaneous emission signal generated
by the low-noise EDFA in absence of the input signal. The
corresponding trace was recorded on a digital oscilloscope
and then used as a reference to tune the pulse spectrum at the
center of theOFF-resonance plateau between the two central
resonances of the DB structure.

In Fig. 6(a), curve 1 shows a typical measured trace, aver-
aged over 64 acquisitions, of the tunnelled optical pulses under
OFF-resonance tuning condition, for the DB FBG with 42-mm
separation. The trace measured when the laser was detuned by

200 GHz, i.e., far away from the stopband of the DB FBG
structure, is also shown for comparison in Fig. 6(a), curve 2. The
tunnelled pulses are almost undistorted with a peak-pulse ad-
vancement of 248 ps; repeated measurements showed that the
measured pulse-peak advancement is accurate within15 ps,
the main uncertainty in the measure being determined by the
achievement of the optimal tuning condition.

Time-delay measurements were repeated for the five DB
FBG structures, and the experimental results are summarized in
Fig. 6(b) and compared with the theoretical prediction of tun-
neling time as given by (12)–(14). The dashed line in the figure
shows the theoretical transit time versus barrier separation,
from input to output planes, for pulses
tuned far away from the bandgap of the FBG structure. In this
case, the transit time is given simply by the time spent by a pulse
traveling along the fiber for a distance with a velocity

. The solid line is, in turn, the expected transit time for
OFF-resonance tunneling of pulses, according to (12)–(14), and
shows that the transit time does not substantially increase with
the barrier spacing (generalized Hartman effect). The points in
the figure were obtained by subtracting to the dashed curve the
measured peak-pulse advancements for the five DB FBGs, thus
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providing experimental estimates of the tunneling transit times.
Note that, within the experimental errors, a rather satisfactory
agreement between measured and predicted transit times was
achieved. The measured transit times are superluminal for
all five DB structures. It is remarkable that, for the longest
barrier separation used , the observed transit
time corresponds to a superluminal velocity of about, the
largest one measured so far in tunneling experiments at optical
wavelengths. We mention that superluminal group velocities
as large as were previously observed by G. Nimtz and
co-workers, but in microwave transmission experiments.

III. SUPERLUMINAL PULSE REFLECTION FROM

ASYMMETRIC FBGS

In the analysis of tunneling problems of photons across pho-
tonic gratings, a closely related issue is that of the temporal be-
havior of the reflected wave, which arises from Bragg scattering
in the structure. In particular, a major question is whether it is
possible for a pulse incident upon an FBG structure to be re-
flectedin advancewithout appreciable distortion, albeit attenu-
ated, from the entrance plane of the structure. This is indeed the
case, and such an anomalous behavior of pulse reflection has
been considered in few articles. In particular, we have recently
shown in [22] and [26] thatasymmetricBragg grating structures
can be designed and fabricated to observe superluminal effects
in pulse reflection. This situation occurs whenever the group
delay in reflection of the structure, for either one of the two
incident sides, is negative within a certain spectral region. The
need for a grating with an asymmetric profile for the amplitude
and/or the phase of refractive index modulation stems from the
analytic properties in the complex plane of transmission and re-
flection spectral functions of any passive loss-less grating struc-
ture, ensured by the principle of causality. These properties, in
fact, lead to the following inequality between power spectral re-
flectivity and group delay at either one
side of incidence [22], [46]

(15)

where the equality occurs for an FBG with minimal phase shift.
For a symmetric grating structure, one has and,
since is typically positive though superluminal, the reflected
peak pulse escapes from the grating after the peak of the inci-
dent pulse has entered into the grating region. For an asymmetric
grating, one has , where the sign
indicates the side of incidence [see Fig. 1(b) and (c)], so that one
can have, e.g., though is positive. In particular,
if the FBG has a local minimum of spectral reflectivity
at the bandgap center , the integral on the right-hand
side in (15) turns out to be positive forranging in a neigh-
borhood of zero, and hence is allowed to become negative.
A simple method to achieve a minimum of spectral reflectivity
at the bandgap center, proposed in [22], consists in introducing
in an otherwise uniform periodic grating a defect, such as a
phase slip, in an asymmetric position. A different possibility
is to synthesizeab initio, using inverse scattering methods, a

Fig. 7. Principle of superluminal pulse reflection in a DL FBG. When the
peak of the incident pulse enters into the grating at input planez = 0, the
peak of the reflected pulse has already left the grating in advance and travelled
backward the distance2j�Lj = �� (0)c =n . For the sake of clearness,
peak advancement and amplitude of the reflected pulse have been exaggerated.
Upper and lower pictures on the right-hand side show schematically the spectral
power reflectivity and group delay of a DL FBG.

spectral reflectivity function that provides the desired neg-
ative group delay. In particular, we recently proposed and ex-
perimentally demonstrated [22], [26] superluminal reflection of
picosecond pulses at 1.5m from a DL FBG structure. A DL
FBG possesses two resonance modes [32] which realize a spec-
tral reflectivity profile given by the interference of two closely
spaced complex Lorentzian lines. The dispersion curvein re-
flectionrealized by a DL FBG is analogous to that produced in
an inverted medium with a gain doublet [8], [9] where a nega-
tive group-delayin transmissionis achieved by exploiting the
interference of the two Lorentzian lines of the homogeneously
broadened atomic transitions.

The principle of superluminal pulse reflection in a DL FBG
is shown in Fig. 7. The peak of a pulse incident upon the FBG
is reflected in advance due to a negative group delaywhich
occurs when the pulse spectrum is centered near the Bragg fre-
quency . The explicit form of the spectral reflectivity in a DL
FBG is

(16)

where , , and are positive real-valued parameters that de-
termine frequency separation , width , and strength of
the two Lorentzian lines, respectively (see Fig. 7). The quali-
tative behavior of power spectral reflectivity and group
delay is shown in Fig. 7 as well. The minimum of group
delay is attained in correspondence of the minimum of spectral
reflectivity , i.e., at , and is given by

. Superluminal peak-pulse advance-
ment in reflection for a pulse tuned close to , therefore,
occurs for , i.e., when the two Lorentzian lines are suffi-
ciently spaced1 .

The reflectivity profile given by (16) is realized by an
unchirped grating with an amplitude modulation profile
which can be determined by simple Fourier transform of (16)
for a weak reflectivity. Since the spectral reflectivity is a rational

1It should be noted that in case of pulse propagation through an atomic
medium with a gain doublet, the spectral transmission function is actually
given by the exponential of two closely spaced Lorentzians. Nevertheless, the
behavior obtained assuming the Ansatz (16), which makes simpler the grating
design, is qualitatively the same. Note also that, adopting our Ansatz, the pulse
advancement turns out to be independent of grating strength.
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Fig. 8. (a) Measured spectral power reflectivity of the DL FBG used in the
experiment (solid line) and corresponding theoretical curve (dashed line).
Parameter values are:n = 1:452, ! = 2� � 1:935 � 10 rad/s,
�! = 2� � 5:4 � 10 rad/s,�=
 = 3, and�=
 = 0:92. (b) Amplitude
profile h(z) of refractive index for the DL FBG as obtained by the
Gel’fand–Levitan–Marchenko inverse scattering method.

function, an analytical expression of can be derived even
for a high reflectivity using the Gel’fand–Levitan–Marchenko
inverse scattering method [22], [32], [47]. In our experiment,
we fabricated a 30-cm-long DL FBG by a continuous writing
technique with a Bragg resonance at 1550 nm and with a
separation of the Lorentzian lines of 10.8 GHz; a negative
group delay ps and power reflectivity
were obtained at . The measured and designed spectral
reflectivity profiles of the grating are shown in Fig. 8(a); the
amplitude profile of the corresponding structure is also
shown in Fig. 8(b).

Group delay measurements were performed in the time do-
main analyzing with the fast sampling oscilloscope the reflected
beam when a train of optical pulses at 1.5m was launched into
the DL FBG for different tuning conditions. The experimental
setup for time-delay measurements, shown in Fig. 9, is similar
to that used in transmission experiments described in Section II,
except that now an optical circulator is used to retrieve the pulse
train reflected from the Bragg grating (see Fig. 9). The probing
pulse train, generated by the external Mach–Zehnder modulator,
has a repetition frequency of 1 GHz, and each pulse has a du-
ration (FWHM) of 380 ps and a spectral extent of2 GHz,
narrower than the 4 GHz FWHM of each Lorentzian line.

Fig. 10 shows the measured pulse delays (points) versus fre-
quency detuning, together with the theoretical dispersion curve,
assuming theOFF-resonance pulse A in the figure as a reference,
i.e., for such a pulse [26]. Notice that, close to the two
resonance lines of the structure, pulse reflection is subluminal,
with a measured peak-pulse delay of90 ps, whereas midway
of the two resonances superluminal pulse reflection is attained,
with a peak-pulse advancement of60 ps.

IV. A NOMALOUS DISPERSION ANDNEGATIVE GROUP

VELOCITIES IN SECOND-ORDER NONLINEAR OPTICAL

INTERACTIONS

The tunneling experiments described in Sections II and III
that use FBGs as photonic barriers, have allowed us to observe
superluminal tunneling times at optical wavelengths in the pi-
cosecond time scale with direct time-domain measurements.
However, with such passive grating structures, the achievement
of negative transit times, corresponding to a transmitted peak

Fig. 9. Schematic of the experimental setup. LD: tunable laser diode; MZM:
Mach–Zehnder waveguide modulator; OC: optical circulator.

Fig. 10. Measured (circles) and predicted (solid curve) group delay versus
frequency detuning from Bragg resonance. In the experimental measurements,
the group delay for the red-shiftedOFF-resonance pulse (point A in the figure)
has been taken equal to zero for reference.

pulse that leaves the structure earlier than the peak of the in-
coming pulse has entered into the grating, seems unlikely. In
addition, it would be of some relevance to externally control
the group velocity of tunnelled pulses using, e.g., a control laser
field as in pulse propagation through atomic media with electro-
magnetically controlled optical properties. In this section, we
show theoretically that, exploiting the dispersive properties of
nonlinear optical interactions in second-order QPM gratings,
such goals can be achieved. In particular, we show that propaga-
tion of a weak signal probe in a suitably designed optical para-
metric amplifier under strong pumping can exactly reproduce
the experimental condition of the gain-assisted transparent pulse
propagation experiment by Wanget al. [9]. It should be noted
that, though nonlinear QPM grating structures have been
extensively studied in connection with a great variety of pulse
shaping and control functions (see, e.g., [48]–[51]), many dis-
persive properties hidden in second-order nonlinear optical in-
teractions, especially those related to the occurrence of anoma-
lous group velocities, have not been fully investigated yet. In
[27], we recently studied at some general extent the dispersive
properties of nondegenerate optical parametric amplifiers based
on QPM nonlinear crystals and we derived general relations be-
tween the gain and dispersive properties of the amplifier. Here,
we briefly review the main results of our analysis on QPM non-
degenerate parametric amplifiers, however, we envisage that the
issue of group velocity control based on nonlinear frequency
conversion and wave mixing processes should be a rather gen-
eral feature and will be the subject of future investigations2 [52],
[54].

The dispersive properties of a QPM optical parametric ampli-
fier share many common features with those of a linear Bragg

2We just mention that the occurrence of superluminal group velocities in non-
linear wave mixing has been considered until now solely in very few papers.
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Fig. 11. (a) Parametric amplification of a weak signal wave at frequency
! in a QPM second-order nonlinear crystal of lengthL pumped by a strong
pump wave at frequency! . QPM is accomplished for the generation of the
copropagating idler wave at frequency! = ! � ! . (b) Schematic of a
double QPM grating structure showing negative transit times. Two uniform
grating sections, each of lengtha, are separated by a distancel with no grating
structure. (c) QPM square-wave profile of� (z) corresponding to a phase
shift� between the two square waves equal to�.

grating structure, though some basic distinctions appear in the
analysis which arise from the basically different physics under-
lying the wave dispersion mechanisms in the two cases. In the
undepleted pump limit, the parametric amplification of a (weak)
signal wave at carrier frequency, pumped by a (strong) pump
wave at frequency , is governed by a set of two linear equa-
tions for the signal and the idler wave, at frequency

, which is generated in the parametric down-conversion of
the pump photons. We assume a linearly polarized plane-wave
electric field

c.c.
propagating along the axis of a loss-less QPM crystal
of length [see Fig. 11(a)], where are the
slowly varying envelopes of signal, idler, and pump waves, re-
spectively, are their wave vectors and

the refractive indices at wavelengths. The resulting cou-
pled equations for the amplitudes and are (see, e.g., [27])

(17)

(18)

where are the group velocities of signal
and idler fields, is the intensity of the pump wave,

, is
the wave vector mismatch, and the overline denotes a spatial
average over the short coherence length .
For the sake of simplicity, in writing (17) and (18), we ne-

glected group velocity dispersion and higher order material
dispersion terms; the inclusion of these terms, in fact, does
not substantially change the results of the analysis [27]. In
first-order QPM, the grating is usually obtained by a
square-wave reversal of domains in a ferroelectric crystal
with a local period (close to ) and a local duty cycle that are
slowly varying along the axis. The resultingslowly varying
profile of the effective nonlinear term comes from the
local changes of period and duty cycle in therapidly varying
square-wave grating (see, e.g., [51]). To see the analogy
of the parametric (17) and (18) with the coupled-mode (1) and
(2), we can perform a spectral analysis of (17) and (18). By
setting
and ,
where is the frequency offset from the carrier frequencies
and is a mean group velocity, one
obtains indeed for the spectral amplitudesand the coupled
mode (1) and (2) of passive loss-less grating theory, provided
that we set now

(19)

for the detuning term, and

(20)

for the scattering potential. Note that the spectral
gain coefficient of the amplifier is given by

, and it is thus
related to the elements of the transfer matrix, given in
(3), by . The spectral power
gain curve of the amplifier is then given by ,
whereas the transit time of a signal wave packet spectrally
narrow around the frequency is given by the “complex”
group delay

(21)

where is the usual real-valued group delay (or
phase time) as that appearing in (8), and is the phase of

[27]. The imaginary term entering in (21), which accounts
for pulse distortion effects at leading order, vanishes when the
frequency , is tuned in correspondence of a minimum or max-
imum of the spectral power gain curve, and in such cases can be,
hence, disregarded. In what follows, it is important to have in
mind that as a consequence of the causality of the coupled-mode
(1) and (2), the group delay is uniquely determined by the
spectral power gain curve through a Hilbert-like trans-
form (see [27]; see also [46]), namely

(22)

where the upper (lower) sign occurs if . It
should be pointed out that our analysis assumes anonvanishing
group velocity mismatch between signal and idler waves, which
enters in (19), and indeed the anomalous dispersive effects we
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will discuss later are stronger as the group velocity mismatch
term is larger. The most interesting case is that corresponding to

and to a signal wave tuned at a frequencycorre-
sponding to aminimumof the spectral gain curve , i.e., to a
dip of the spectral gain. Then, the integral on the right-hand side
in (22) is expected to be positive at around , yielding an
abnormal group velocity. A simple QPM grating that realizes a
spectral gain curve showing local minima is given, for instance,
by the sequence of two square-wave uniform gratings, each
of length and period , separated by a distance
[see Fig. 11(b)]. This structure closely resembles the two-bar-
rier structure considered in Section II-B, and hence the results
found there can be applied,mutatis mutandis, to the present case
as well. In particular, one has for ,
for , and for ,
where , is the el-
ement of the nonlinear-tensor of the crystal involved in the
parametric interaction, and is a phase term that depends on
the phase shift between the two square waves in the two grating
sections [see Fig. 11(c)].

The case of major interest is that corresponding to ,
for which a gain dip with is attained at . The
corresponding group delay at , calculated following
the analysis of Section II-B, is given by

(23)

The condition means that the amplifier istransparent
for a signal wave packet tuned at , whereas the transit time
of the signal pulse may become superluminal and even negative
at sufficiently high pump intensities. From a physical viewpoint,
the transparency (i.e., absence of amplification) of the amplifier
can be explained as a result of acascading process: in the first
QPM grating conversion of the pump wave, leading to amplifi-
cation of signal and generation of the idler wave, occurs; in the
second grating, owing to the phase reversal of, a back con-
version process takes place, which makes the amplifier trans-
parent for the signal field. Most important, because of the group
velocity mismatch experienced by the copropagating fields, the
cascading of the down- and up-conversion processes produces a
strong change of the effective group velocity of the signal wave.

To make a quantitative analysis, let us consider a PPLN non-
linear crystal pumped at the wavelength nm with a
signal field at m ( nm,

pm/V), and assume and . From Sellmeir
equations [53], one can estimate at 25C ,

and a QPM period m, which is
easily accessible with current poling technology. Fig. 12 shows
the behavior of the group delay at the dip center of the am-
plifier as a function of the pump intensity. The effective group
velocity becomes superluminal at MW/cm and neg-
ative at MW/cm .

The spectral behavior of power gain and group delay
versus frequency for MW/cm is shown in Fig. 13.
Notice that, to observe such anomalous values of group delays,

Fig. 12. Behavior of group delay� of the double-grating PPLN amplifier as
a function of pump intensity at gain dip. Parameter values are given in the text.

Fig. 13. (a) Spectral power gainG, and (b) corresponding group delay� at
signal wavelength, for the PPLN amplifier of Fig. 11(c) and for a pump intensity
I = 135MW/cm . Solid lines refer to the results obtained by neglecting group
velocity due to material dispersion and higher order dispersion effects, as in (17)
and (18). Dashed lines are obtained by considering material dispersion at any
order using Sellmeier equations. The inset in (b) shows an enlargement of the
group delay close to the gain dip.

a parametric gain as high as 40 dB should be reached far from
the dip of the gain curve [see Fig. 13(a)]. It is remarkable that
the occurrence of superluminal transit times persists when im-
perfections of the QPM structure from the target case, which
are unavoidable in a practical QPM device, are considered. For
instance, a deviation of from the ideal value causes a defor-
mation of the spectral gain curve with a shift of the dip frequency

away from zero (see Fig. 14). Despite the large deviations of
the spectral gain curve from target 1 [compare, e.g., the inset of
Fig. 14 with Fig. 13(a)], the group delay remains superluminal
at the dip center for a wide interval around (see Fig. 14).

The analytical predictions based on the group delay anal-
ysis have been checked by performing direct numerical simu-
lations of pulse propagation in the crystal and assuming a trans-
form-limited Gaussian pulse, tuned at , as a weak probe
beam. Fig. 15 shows the traces of incident pulse at (dotted
line) and of transmitted pulses at (solid lines) for in-
creasing values of the pump intensity; we assumed ,
an incident pulse duration of 250 ps, and we normalized the
pulse intensities to the peak intensity of the incoming pulse.
Note that, at the pump intensities corresponding to curves 3 and
4, the transmitted pulse leaves the amplifierbeforethe peak of
the incident Gaussian pulse has entered into the amplifier. For
a quantitative estimation of power and energy levels involved,
assuming for instance a Gaussian pump with a beam waist of

280 m, curve 3 in Fig. 15 corresponds to a pump peak power
of 170 kW. Using a pulsed pump of5 ns duration (FWHM),
i.e., twenty times longer than the probing pulses, a pump pulse
energy of 0.90 mJ is required, which can be reached using
frequency-doubled -switched neodimium-based lasers.



LONGHI et al.: SUPERLUMINAL PULSE PROPAGATION IN LINEAR AND NONLINEAR PHOTONIC GRATING STRUCTURES 15

Fig. 14. Behavior of group delay (solid curve) and frequency offset
 of the
principal dip in the spectral gain curve as functions of the phase shift�. The
inset shows the spectral power gain curve of the amplifier for� = �=2.

Fig. 15. Intensity pulse traces of a weak signal probe at the exit planez = L,
transmitted through the PPLN amplifier, for a few values of the pump intensity.
Curve 1,I = 0; curve 2,I = 108 MW/cm ; curve 3,I = 135 MW/cm ;
curve 4,I = 162 MW/cm . The dashed curve shows the incident Gaussian
probe pulse at the input plane of the amplifier.

V. CONCLUSION

In this review article, we have provided an overview of recent
theoretical and experimental results on anomalous group veloc-
ities in optical pulse propagation through linear and nonlinear
photonic grating structures. Our analysis has been especially
focused on superluminal propagation of picosecond pulses at
1.5 m in FBGs, and the measurement of tunneling times in the
picosecond time scale in different structures has been reported.
We also revealed that group velocity control by a pump field is
possible exploiting nonlinear interaction processes in nonlinear
QPM grating structures.
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