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Abstract

This study applies Auto Regressive (AR) and Auto
Regressive Moving Average (ARMA) modeling to
wavelet decomposed terahertz pulsed signals to assist
biomedical diagnosis and mail/packaging inspection.
T-ray classification systems supply a wealth of infor-
mation about test samples to make possible the dis-
crimination of heterogeneous layers within an object.
In this paper, the classification of normal human bone
(NHB) osteoblasts against human osteosarcoma (HOS)
cells and the identification of seven different powder
samples are demonstrated. A correlation method and
an improved Prony’s method are investigated in the
calculation of the AR and ARMA model parameters.
These parameters are obtained for models from second
to eighth orders and are subsequently used as feature
vectors for classification. For pre-processing, wavelet
de-noising methods including the SURE (Stein’s Unbi-
ased Estimate of Risk) and heuristic SURE soft thresh-
old shrinkage algorithms are employed to de-noise the
normalised T-ray pulsed signals. A Mahalanobis dis-
tance classifier is used to perform the final classifica-
tion. The error prediction covariance of AR/ARMA
modeling and the classification accuracy are calculated
and used as metrics for comparison.

1 T-ray imaging and inspection sys-
tems

Terahertz radiation, also called T-rays, is a collective
term to describe the part of the electromagnetic spec-
trum from 0.1 THz to 10 THz. Compared to X-rays,
T-rays are non-invasive and non-ionizing. The vibra-
tional spectra characteristics in this frequency range
make it a promising modality for clinical diagnosis.
With the rapid improvement of T-ray detectors and
sources, T-ray technology makes it possible to image
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opaque objects including the inspection of tumor cells
from normal tissues [3]. However, signal processing is
a relatively unexplored technique for T-ray systems,
despite much effort having been devoted to system im-
provement [3]. This includes progress towards wavelet
de-noising of optical terahertz pulse imaging data and
classification of T-ray signals [6].

The wavelet transform is a popular technique suited
to the analysis of very brief signals, especially sig-
nals with sudden and unpredictable changes that often
carry the most interesting information [1]. The ma-
jor foreseeable advantage of a wavelet-based approach
is the superior time-frequency localization characteris-
tics that are well-matched to the requirements for the
short-duration T-ray pulse signals.

This paper adds to the important T-ray and wavelet
application research fields by applying linear parameter
modeling to wavelet decomposition of T-ray signals for
optimum feature extraction with a goal of classifying
biomedical samples and package inspection data.

2 Approach

2.1 Wavelet de-noising of T-ray pulsed re-
sponses

Wavelet de-noising is critical in the pre-processing of
T-ray signals in order to obtain accurate classification.
Wavelet shrinkage de-noising has been well-studied,
and they have been shown to be statistically optimal
[1]. The basic steps in wavelet shrinkage are to calcu-
late the discrete wavelet packet transform (DWPT) or
discrete wavelet transform (DWT) of a signal, perform
a thresholding operation on the detail coefficients and
then apply the corresponding inverse transform (ID-
WPT or IDWT) to reconstruct the de-noised signal.

In this paper, the SURE method and the ‘heurstic’
SURE method are used separately to estimate the
soft threshold A% [1] for the cancerous and powder
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classification experiments, respectively. In evaluating
the amount of background noise removed by wavelet
shrinkage de-noising, the signal-to-noise ratio, SNR, is
used. The SNR in these experiments is calculated from
the following equation:

Yiso r(k)?
o (k) — d(k))2

where r(k) are the raw T-ray signal samples and d(k)
are the de-noised signal samples.

In this paper, the SNR for one pixel of a soda powder
sample at a thickness of 3 mm and for one pixel of
cancerous sample after de-noising are calculated to be
17 dB and 21 dB, respectively. The two results indicate
that a significant amount of noise has been removed
from the T-ray signals, which otherwise can degrade
the classification performance.

SNR(dB) = 10log;, (1)

2.2 AR model parameter estimation

The forward linear prediction auto-regressive (AR)
model is given by a linear difference equation in the
time domain:

P
Zn] = — Z a;x[n — i] + wln] (2)

where Z[n] represents the current prediction, which is
predicted by previous P observations of the sequence.
The variables a; are the coefficients of AR model. The
prediction filter is driven by an uncorrelated white
noise process, w(n).

The autocorrelation method estimates a required
correlation matrix from a data sequence of length N,
[5]. The least square form of the Yule-Walker equation
is used to estimate the parameters of the AR model:

(X*TX)a = [S40]" ®3)

where a = [ag...ap]T and S is the minimum sum of
squared errors. The data matrix X for the autocorre-
lation method is determined by the selection the end
points as ny =0 and np = Ny + P — 1.

The prediction error variance is calculated as Eq. 4.

1
2

=——86. 4
Ocp nF_nI"‘]- ()

2.3 ARMA model parameter estimation
ARMA modeling is a combination of AR and moving

average (MA) models. The MA model is developed
from the following difference equation:

Q
x[n] = Z bywn — 1] (5)
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Here, output z[n] is seen as a sum of weighted average
of the past @ input samples of a white noise process
w(n). The variables b; are the coefficients of MA model.
The full ARMA model equation can be obtained by
combining by both AR and MA models, as below:

P Q
Zaix[n—i] :z:bjw[n—j]7 ap = 1. (6)
i=0 j=0

The estimation of the AR and MA model parameters
can be derived from the least squares method men-
tioned above. The estimation of the AR part of the
ARMA with the autocorrelation method has already
been described above; the MA parameters can be esti-
mated by Durbin’s method [5]. This method is based
on the basic Prony’s procedure [5]: assume that &[n] =
z[n]ifn=0,1,..Ns—1, Ng=P+Q+1 with P = Q.
For most situations, Ny > P + @ + 1, then the Yule-
Walker matrix equation of the ARMA modeling can be
partitioned as in Eq. (7):

(X5Xa)" a=[bes]” (7)

Here, a = [ag...ap]T,b = [by..bg]T, P = Q; e4 is
the prediction error that is defined as e4 = x[n] — &[n].

An improvement of basic Prony’s method is
Durbin’s method. The related AR coefficient vec-
tor a is calculated to minimise S, = |e|?, where
es = [Xala from Eq. (7). The Yule-Walker equa-
tions for the AR model is then (X*TX4)a = [Sa0]T.
The difference lies in the calculation of MA parame-
ters (b1, b, -+ - by), which considers the existence of er-
ror term in Eq. (7) X4a = b, instead of forcing b to
match the left side of the equation. Detailed deriva-
tions can be found in [5]. The calculation of the coef-
ficient vector b is carried out in two stages:

1. The order of AR model, P, is selected to be five
times the MA model order Q. The coefficient vec-
tor a is obtained from the solution of the Yule-
Walker equation normalized by the gain, \/ag), i.e.
substitute S with unity in Eq. (3).

2. Use the coefficient vector a, derived from the first
stage, as the data to construct the data matrix for
a MA model order Q. The autocorrelation method
guarantees the stability of computations.

2.4 Feature extraction

Feature extraction is an important step in all but
the simplest classification problems. The objective of
feature extraction is to isolate the critical features from
the T-ray signals to facilitate good classification perfor-
mance.
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In the current approach, the feature extraction
process involves several steps. First, the signals are
pre-processed by wavelet shrinkage denoising. Then,
DWPT or DWT is performed, using the biorthog-
onal biorSpline wavelet of order 6.8 and orthogonal
Daubechies wavelet of order 8, respectively. The trans-
forms are repeated for depths from 2 to 4. Subse-
quently, the autocorrelation and Durbin’s methods are
used to calculate the parameters for AR and ARMA
models, respectively. These calculations are repeated
for two different AR and ARMA model orders. Fi-
nally, the average of the model coefficients for the two
different orders of AR or ARMA models are computed
for each of the three different levels of wavelet trans-
form. The model parameter averages are then joined
to produce feature vectors with a dimension of 2, 3 or
4, depending on the depth of wavelet transform chosen.

The motivation of using AR/ARMA models is to
reduce the final dimensionality of the feature vec-
tors. With these models, it is possible to compress
the information in the wavelet coefficients into a few
model parameters. Owing to the dimensional variety
of AR/ARMA parameters corresponding to the various
AR/ARMA orders, the average of AR/ARMA parame-
ters is used to further consolidate the varying dimen-
sions of AR/ARMA parameters into a fixed dimension
for the final feature vectors. The overall dimensionality
of the feature vectors depend only on the depth of the
wavelet transform chosen.

2.5 Classification

The classification is realized by a Mahalanobis dis-
tance classifier [4]. The Mahalanobis distance is defined
as the distance from the mean value of the pointed class
to a given point, where the given class is normalized by
the different training vectors along their respective di-
rections [4]. For a given class, ¢, the distance from a
point x from the class mean p;, is defined as

di(z) = \/(:r — ui)Tzil(x — u;). (8)

The minimum Mahalanobis distance is then calculated
to select the class of samples and get final classification.

3 Results and discussion

To verify the performance of the proposed approach,
it is applied to two different sets of T-ray data. One
set of data contains 50 responses from samples corre-
sponding to each class: normal human bone (NHB)
osteoblasts, human osteosarcoma (HOS) cells, and a
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empty holder. The other set of data contains 50 re-
sponses from samples corresponding to each powder
class: granulated sugar, powdered sugar, salt, talcum,
sand, baking soda, flour, and the empty holder. Dif-
ferent wavelet families (biorthogonal and orthogonal)
were chosen for the two sets of data in the experiments.

In our feature extraction scheme, the depth of
wavelet transform is a central parameter. In the course
of our experiments, it has been found that a depth of 3
generally gives the best classification performance. For
the sake of brevity, only the results based on this choice
of wavelet transform depth are presented in this paper.

3.1 Classification of NHB and HOS cells

Normal human bone (NHB) cells were obtained from
patients and cultured from small pieces of trabecular
bone for 4-6 weeks to obtain a confluent culture. Hu-
man osteosarcoma (HOS) cells were cultured from an
immortalized cell line and it took 1 week to obtain a
confluent culture. Here, 25 ml polystyrene flasks are
used as holders to culture the cells under a 5% carbon
dioxide environment and a temperature of 37°C. To ob-
tain T-ray image data, the flasks were placed on a x-y
rotation stage allowing the cell media solution to run
off. A THz image was obtained at 10 different positions
to provide spectroscopic data, with a distance interval
of 50 pum. The above procedure was performed for each
of the three flasks—normal cells, cancerous cells and
empty holders—and iterated a further 5 times until 50
pixels of the THz response were obtained for all three
flasks [2]. It should be emphasized that the rationale
for choosing bone cancer cells for this research is be-
cause techniques for culturing bone cell growth on a
Petri dish are well-established and readily accessible.
Our positive results with T-ray detection of cancer-
ous bone cells will motivate future research to explore
other classes of cancer cells. While the amount of data
obtainable was limited by practical experiment appa-
ratus, the set of available data should be sufficient for
our investigative purposes.

The averages of two different orders of AR coeffi-
cients from a depth 3 wavelet decomposition are uses
as features. The AR parameters are estimated from
all the wavelet subbands (coarse and details). The
Mahalanobis distance classifier is trained using half of
the T-ray responses (25 pixel responses) correspond-
ing to each of these classes—cancer cells, normal cells
and the empty control flask—then the remaining half
of the pixel responses were classified. Error prediction
covariance and accuracy of classification at different or-
ders of AR modeling and the different levels of wavelet
transform are calculated and employed as metrics for

IEE l-:

COMPUTER

SOCIETY



comparison.

As stated above, different combinations of AR orders
at a wavelet transform depth of 3 in better classification
performance than other depths. Of all the combina-
tions of the AR orders considered (2"? to 8t"), the 37
and the 5" order AR models produced the best classi-
fication performance with a classification accuracy 93%
and the minimum error covariance 4 x 10~'°, which is
extracted by comparison with all the different combi-
nation of AR orders.

3.2 Classification of powder samples

In this experiment, the responses are obtained from
samples of different thicknesses: 2 mm, 3 mm and 4
mm. The data from seven classes of powders at thick-
nesses of 2 mm and 4 mm are used to train the classifier,
and the data of powder samples at a thickness of 3 mm
are used to test the classifier.

It has been found that features obtained from the
ARMA model separated the different classes quite ef-
fectively. The accuracy of the classification can be im-
proved by at least 3% over either AR or MA models
alone. The squared error variance we obtained is at
most 3 x 107!, which is minimum among the vari-
ous methods for calculating AR or ARMA parameters
with the same conditions, including: correlation meth-
ods, covariance methods, modified covariance methods
and the basic Prony’s method. It was found that the
combination of the 2" and 4** orders of ARMA mod-
els of wavelet decomposed T-ray signals obtained the
best classification accuracy. The combination of the
two modeling coefficients at these two orders achieved
a classification accuracy of 98%.

4 Conclusion

In this paper, an approach yielding good classifi-
cation performance is presented. By using the same
DWPT- or DWT-based techniques, it has been found
that AR/ARMA models of wavelet coefficients from
T-ray pulsed responses is capable of achieving classi-
fication accuracies of 93% for cancerous and normal
cell samples and 98% for powder samples. The use
of Durbin’s algorithm in estimating the ARMA coef-
ficients also yielded error variances at least as low as
other methods in the powder experiment. Despite the
improved classification performance, the approach pre-
sented requires much lower computation costs when
compared to FFT-based techniques, which usually have
to be coupled with other computationally expensive al-
gorithms to achieve their optimum performance.
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The ultimate aim of the current research is to
achieve heterogenous layer classification in a volume
space based on T-ray imaging. Work is ongoing to
transfer these results to scenarios where in vivo detec-
tion will require discrimination through a number of
heterogeneous layers. A 3D tomographic classification
for the homogeneous layers have been achieved. The
paper [7] reports on more results from work on this
front.

In conclusion, T-ray pulsed signals are capable of be-
ing effectively exploited by applying computation mod-
els in the wavelet transform domain.
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