The information channel capacity of neurons is calculated in the stochastic resonance region using Shannon’s formula. This quantity is an effective measure of the quality of signal transfer, unlike the information theoretic calculations previously used, which only characterize the entropy of the output and not the rate of information transfer. The Shannon channel capacity shows a well pronounced maximum versus input noise intensity. The location of the maximum is at a higher input noise level than has been observed for classical measures, such as signal-to-noise ratio.

Keywords: Information transfer; Stochastic resonance; Signal to noise ratio; Neural signals; Neurons; Nervous system.

1. Introduction

Stochastic resonance (SR) is a noise assisted signal propagation phenomenon which has recently attracted much attention due to its relevance in biology and sensing [1–19]. A stochastic resonator (STR) is a special nonlinear system (Fig. 1), which requires an optimal intensity of noise to be added to the input signal for the best signal transfer. Originally, the SR phenomenon was characterized by the signal-to-noise ratio (SNR) at the output of the STR by

\[
\text{SNR}_{\text{out}}(f) \equiv \frac{P_{s,\text{out}}(f)}{S_{n,\text{out}}(f)}
\]
where $P_{s,\text{out}}(f)$ is the mean-square (MS) signal amplitude of the periodic component of the output at the signal frequency f, and $S_{n,\text{out}}(f)$ is the power spectral density (PSD) of the output noise at the same frequency. The noise power is described by its PSD because it is dependent on its bandwidth, whereas a sinusoidal signal (or component of) is not. The spectrum of the signal cannot be used since it is periodic and would result with a Dirac delta function, which means the height of the spike depends on the frequency resolution of the FFT during measurement. Conversely, we can not use the power measure for noise as this would include frequencies far from the signal frequency of interest. This mixed method is valuable because it gives information about the actual SNR at the signal frequency.

![Stochastic Resonator Diagram](image)

Fig 1. Stochastic resonator. The box represents a nonlinear system combining the signal and noise, usually involving a threshold. The notion is described in the text.

2. Comparison of metrics

It had been assumed that the SNR_{out} is a sufficiently good way of characterizing the quality of the output signal and that the best coherence between it and the input signal is achieved when the ratio of the SNR at the output versus the input is maximized. That is, the most information about the input signal is transferred through the system to the output, hence we have maximal information transfer. More recently, several new methods of characterization, which are similar in nature, have been proposed using entropy [16–19]. As an example, we discuss Stock’s most recent method [16] that uses entropy difference,

$$I = H_{\text{output}} - H_{\text{lost}} \ [\text{bits}],$$

where H_{output} is the entropy of the noisy output signal and H_{lost} is the entropy lost during the transfer of the signal through the STR. This quantity has the same efficiency of output signal characterization as the SNR_{out} and I has a similar potential for characterization as the ratio of $\text{SNR}_{\text{out}}/\text{SNR}_{\text{in}}$ at the output versus the input.

However, according to Shannon, and Nyquist, [20,21] neither the $\text{SNR}_{\text{out}}/\text{SNR}_{\text{in}}$ nor I are sufficient measures of the effectiveness of channel capacity. They only provide information about the entropy of the signal versus the noise, and the degradation of this entropy during transfer. This is directly related to the potential information content of the output. However, it does not say anything about the channel capacity. Simply speaking, these quantities talk about the amount of information but they do not say anything about how frequently this information is refreshed. This fact is immediately obvious if we look at the dimension of I which is the bit. However, the proper dimension of the information transfer rate is bits/second. This
is obvious from Shannon’s formula (and the similar Nyquist formula), which was one of the most important milestones in information theory,

\[C = B_s \log_2 (1 + \frac{P_s}{P_n}) \text{ [bits/second]}, \]

(3)

where \(C \) is the channel capacity, \(B_s \) is the maximal bandwidth of the signal, \(P_s \) is the maximal mean-square signal amplitude (called “signal power”) and \(P_n \) is the mean-square noise amplitude (called “noise power”). According to Shannon, Eq. (3) can be interpreted as follows: half of the logarithmic term is the information entropy and \(2B_s \) is the frequency of refreshing this information. For the validity of Eq. (3) in practical cases, any noise outside the frequency bandwidth of the signal is removed by a linear filter. The bandwidth \(B_s \) in the Shannon formula is the key parameter which refers to the rate of refreshing the information and the logarithmic term refers to the potential amount of information available at each refreshment time. As a low value of the information can be compensated by a high refresh rate, that is by a large bandwidth, the amount of information alone is meaningless for the characterization of the quality of signal transfer. It is noted in [19], without using either the Shannon channel capacity or the signal-to-noise ratio, that the information refresh rate is important.

For example, the elements of Morse code can be described by two bits (short beep, long beep, short pause, long pause), so two bits are enough to communicate via this method. The two bits corresponds to the base of the logarithmic term in Shannon’s formula. The information transfer rate will be determined by the mean frequency of beeps and pauses, which corresponds to the bandwidth \(B_s \) in the Shannon formula.

The aim of this Letter is to estimate the information transfer rate of neurons in the stochastic resonance region by using Shannon’s formula. In this region, the input signal amplitude is less than the value of the threshold potential of the neuron. Moreover, the linear response approach will be used, which means that the input signal amplitude is less than the root-mean-square (RMS) noise amplitude. Thus, the signal response remains linear while that of the noise does not. A further assumption needed to ensure a linear response is that the firing rate of the neuron is much lower than the reciprocal of the refractory time.

For the calculations, Kiss’ threshold crossing theory [5, 22] is used. This theory describes the SNR and bandwidth of the output voltage of a simple neuron model. The details of the calculations are presented in the Appendix. The main result of this Letter is the derivation of the channel capacity as follows,

\[C = \frac{B_{n, \text{in}}}{2\sqrt{3}} \exp \left(\frac{-U_t^2}{2B_{n, \text{in}}S_{n, \text{in}}} \right) \log_2 \left(1 + \frac{(2AU_t)^2}{(B_{n, \text{in}}S_{n, \text{in}})^2} \right), \]

(4)

where \(B_{n, \text{in}} \) is the bandwidth of input noise, \(U_t \) is the excitation threshold potential of the neuron, \(S_{n, \text{in}} \) is the PSD of input noise and \(A \) is the RMS amplitude of the input signal. The main difference between our measure and others [16–19], is that they calculate an information content type of quantity, which is shown to have a maximum with noise intensity. What has been calculated is simply the signal-to-noise ratio expressed by other measures. When referring to optimized channel
capacity, it is assumed that the signal bandwidth does not change. However, this is not the case, as shown by (A.5) the noise intensity indeed affects the signal bandwidth. Alternatively, according to theory [22] and analog simulations [5], the signal-to-noise ratio at the output is given as

$$SNR_{out} = \frac{2}{\sqrt{3}} B_{n, in} \frac{(AU_1)^2}{(B_{n, in} S_{n, in})^2} \exp \left(\frac{-U_1^2}{2B_{n, in} S_{n, in}} \right).$$

Comparing Eqs. (4) and (5), it is obvious that both equations display a maximum versus the input noise intensity $S_{n, in}$ given a fixed input noise bandwidth $B_{n, in}$.

In Fig. 2, the C and the SNR_{out} functions are plotted versus $S_{n, in}$. For high noise intensities, the value of C is zero when the MS amplitude of the output noise exceeds the MS amplitude of the output signal, i.e. when $P_s/P_n \ll 1$. The actual value and the shape of C can be modified by linear filtering the output to reduce the bandwidth when the signal is not fully utilizing all of the possible bandwidth. For all the channel capacity curves, the stochastic resonance peaks at higher input noise intensities than the SNR_{out} curve. Moreover, it is interesting to note that different shapes can be obtained at reduced bandwidths, where the difference in the behavior becomes pronounced at low noise levels and strong bandwidth reduction. In the large noise limit, the curves converge to the same level.

![Fig 2. Channel capacity (maximal information rate) C and output signal to noise ratio (SNR_{out}) of the neuron model (with signal amplitude 0.1 V, threshold 1.0 V, input noise bandwidth 100 kHz). The different C curves represent various fractions of the maximal signal bandwidth, where the unused band is removed by a linear low-pass filter.](image)
3. Conclusion
We have highlighted that in order to correctly measure stochastic resonance using information theory metrics, one must consider the rate of information transfer. From first principles, the Shannon channel capacity can be expressed in terms of the output SNR and displays the characteristics of stochastic resonance. Unlike previous calculations that only consider the entropy, and hence only characterize the information content at the output, the channel capacity provides the rate of information transfer and thus is a more useful measure.

Acknowledgments
Comments of Peter Ruszczynski, Barbara Piechocinska and Bradley Ferguson are appreciated. LBK acknowledges the Swedish Natural Science Research Council (NFR). GPH and DA acknowledge funding by the Australian Research Council and the Sir Ross & Sir Keith Smith Fund.

Appendix A.
We start by giving the noise power as
\[P_n = S_n B_{n,\text{eff}}, \]
where \(S_n \) is the power spectrum density of the noise (which is flat for white noise) and \(B_{n,\text{eff}} \) is the effective bandwidth of the noise. This means, that given the bandwidth of the signal we can simply limit the PSD of the noise by employing a simple linear filter with a cut-off frequency of the signal bandwidth. Thus, the noise bandwidth is equal to the signal bandwidth \(B_s \), to give
\[P_n = S_n B_s. \]

Substituting (A.1) into the Shannon formula of (3) gives the information transfer rate as
\[C = B_s \log_2 \left(1 + \frac{P_s}{S_n B_s} \right). \]

Taking that at the output of the STR then \(P_s \) becomes \(P_{s,\text{out}} \) and \(S_n \) becomes \(S_{n,\text{out}} \) and using the signal-to-noise ratio given in (1) we have
\[C = B_s \log_2 \left(1 + \frac{\text{SNR}_{\text{out}}}{B_s} \right), \]
which gives the channel capacity in terms of the output SNR and signal bandwidth.

To find the maximal bandwidth of the signal \(B_s \), we need to consider Shannon’s sampling theorem and the mean level crossing frequency \(\nu(U_t) \), given in [22] as
\[\nu(U_t) = \frac{2}{\sqrt{3}} \sigma \exp \left(-\frac{U_t^2}{2\sigma^2} \right) \left(\int_0^\infty f^2 S(f) \, df \right)^{1/2}, \]
where the noise power \(\sigma^2 = \int_0^\infty S(f) \, df = B_{n,\text{in}} S_{n,\text{in}} \). From the sampling theorem, \(B_s \) is approximately equal to half the mean spike frequency, which is half the mean level crossing frequency due to noise in any direction, thus \(B_s = \nu(U_t)/4 \). By direct integration we have
\[\frac{2}{\sqrt{3}} \left(\int_0^\infty f^2 S(f) \, df \right)^{1/2} = \frac{2}{\sqrt{3}} B_{n,\text{in}}, \]
then combining with (A.4) we find the signal bandwidth as

\[B_s = \frac{B_{n,\text{in}}}{2\sqrt{3}} \exp\left(\frac{-U_t^2}{2B_{n,\text{in}}S_{n,\text{in}}^2}\right). \] (A.5)

From Eq. (A.3.4) in [22], the output SNR is given as

\[
\begin{align*}
\text{SNR}_{\text{out}} &= \frac{\nu(0)(AU_t)^2}{\sigma^4} \exp\left(\frac{-U_t^2}{2\sigma^2}\right) \\
&= \frac{2}{\sqrt{3}}B_{n,\text{in}} \frac{(AU_t)^2}{(B_{n,\text{in}}S_{n,\text{in}})^2} \exp\left(\frac{-U_t^2}{2B_{n,\text{in}}S_{n,\text{in}}^2}\right),
\end{align*}
\] (A.6)

where \(\nu(0) \) can be found from (A.4). This can be given in terms of \(B_s \) by

\[
\text{SNR}_{\text{out}} = \frac{(2AU_t)^2}{(B_{n,\text{in}}S_{n,\text{in}})^2} B_s.
\] (A.7)

Substituting (A.7) and (A.5) back into (A.3) gives the desired channel capacity of Eq. (4).

References

