
Physics Letters A 555 (2025) 130804

Available online 9 July 2025
0375-9601/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Contents lists available at ScienceDirect

Physics Letters A  

journal homepage: www.elsevier.com/locate/pla

Letter

Exploring the Bayes-oriented noise injection approach in neural networks

Caimin An a, Fabing Duan a, ,∗, François Chapeau-Blondeau b, Derek Abbott c

a Institute of Complexity Science, Qingdao University, Qingdao 266071, PR China
b Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France
c Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

A R T I C L E I N F O A B S T R A C T 

Communicated by P. Zeppini

Keywords:

Noise injection

Bayesian optimization

Neural network

Noise-boosted activation

Stochastic resonance

Noise injection, which involves the addition or multiplication of random variables to the input data or parameters 
of neural networks, has proven to be an effective strategy for enhancing neural network performance. However, 
the relationship between the generalization of a neural network and the scale parameter of injected noise is not 
well understood, and the optimization of noise injection for performance enhancement is a complex non-convex 
high-dimensional problem. This study investigates various noise injection methodologies across different neural 
network architectures utilizing the Bayesian optimization approach. The results indicate that, among the diverse 
noise injection strategies, the intrinsic hyperparameter governing the noise scale, specifically within the context 
of noise-boosted activations optimized through a Bayesian surrogate model, yields the most stable enhancement 
in network performance for function approximation, image classification, and image reconstruction tasks. These 
findings demonstrate the feasibility of the Bayes-oriented noise injection approach in improving the performance 
of neural networks.

1. Introduction

Noise has become an important informative parameter in the mon-

itoring and measurement of physical systems and processes, useful for 
instance in reliability analysis of integrated circuits [1,2], error control 
in analog-to-digital conversion [3–5], signal perception in degraded en-

vironments [6], and fault detection in equipment [7]. In recent years, 
noise injection techniques aimed at improving the generalization capa-

bility of neural networks, particularly in resource-limited devices [8,9], 
have gained significant attention. The optimization of noise integration 
within neural network architectures, combined with a more comprehen-

sive understanding of its effects, represents a significant direction with 
potential to explore efficient training network of low-power hardware.

Noise injection, the process of adding or multiplying random vari-

ables with certain distribution to input data or parameters of a neural 
network, is emerging as a powerful approach for reducing the complex-

ity of overparameterized networks [12–15], or for enhancing the gen-

eralization abilities of neural networks to unseen data [16–18,20–25], 
or for speeding up the convergence of backpropagation training pro-

cess of neural networks [26–28,31,32]. In terms of operational methods, 
multiplicative noise injection primarily involves multiplying Bernoulli 
or Gaussian random variables with weight coefficients to prune the 
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neural network model size, a technique commonly known as dropout 
[12–14]. Multiplicative noise injection, achieved by multiplying the 
neuron inputs by a zero-one random mask following a certain distri-

bution, is found to offer a flexible alternative for the emulation of a 
whole range of useful neuron activation functions, such as the Gaus-

sian error linear unit (GELU) [33], the sigmoid linear unit (SiLU/Swish) 
[33–35], and the noise-boosted activation function [30]. By contrast, 
additive noise injection offers complementary capabilities, by adding 
random samples to input data [13,16–19], weights [17,25], labels [25], 
gradients [15,36], layers [32,37] or activation functions [38,39]. The 
resulting effectiveness of noise injection in neural networks has been 
continuously demonstrated, with benefits at various levels, for instance 
to improve function approximation [16–18,23], classification accuracy 
[20–22,24,25], and robustness of neural networks [40–43], and also to 
generate high-fidelity images [44–46].

To theoretically understand the role of noise injection, it has been 
proven [16–18,20,21] that noise injection is equivalent to Tikhonov reg-

ularization in the asymptotic regime of small injected noise and for an 
infinite number of injected noise samples. However, in the practical 
training of neural networks, this asymptotic regime is hardly acces-

sible due to the associated lengthy time requirements. For instance, 
a suboptimal or acceptable non-zero injected noise level is often em-
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Fig. 1. Flowchart of the Bayes-oriented noise injection approach in a noise-

boosted neural network 𝑓 (𝑋,𝑌 ;𝜃). The subscripts of the noise level, 𝜎input , 
𝜎weight , 𝜎neuron, 𝜎gradient , and 𝜎label, indicate the locations at which noise is in-

jected. A Gaussian process serves as a surrogate model to update the parameters 
between each network performance estimation and the injected noise level, 
while recording both the best parameters and the corresponding network per-

formance throughout the process.

pirically determined through a finite number of trials to improve the 
generalization of networks compared to networks without noise injec-

tion [16,17,20]. Moreover, for numerous injected noise components, the 
practical approach of empirically applying a finite grid search to opti-

mize a set of injected noise levels in a small range, may not lead to a 
global optimum. This non-convex high-dimensional optimization of the 
noise parameters represents a significant limit to obtain the best benefit 
of noise injection in artificial neural networks.

Naturally, a practical and effective approach is to treat noise levels 
as parameters of the neural network, and use backpropagation to adap-

tively update and learn them during the training process [22,23,38–40, 
46–48], to finally achieve a locally optimal feasible solution. Especially, 
in terms of the biological plausibility of neurons exhibiting inactivation 
below zero and yielding an unbounded response above zero, certain 
smooth and non-monotonic activation functions, such as GELU [33], 
SiLU [33–35] and general noise-boosted neuron models [22,30], have 
been proposed to mimic the adaptation of neurons. Among these acti-

vations [22,30,33–35], the noise level is implicitly integrated into the 
activation function and can be updated and learned through the stochas-

tic gradient descent (SGD) algorithm.

However, two crucial questions remain unresolved. First, finding the 
optimal noise level using the SGD algorithm is a highly nonconvex and 
multimodal optimization challenge. The converged noise level values 
can vary significantly depending on the initial values, resulting in vari-

ations in network performance. Upon the convergence of the noise level, 
it is unclear whether the obtained noise level value represents a lo-

cal optimum, a global optimum, or even a saddle point. In addition, 
the SGD algorithm does not apply constraints on the noise level to en-

sure its non-negativity, and therefore cannot guarantee convergence to 
a non-zero non-negative value. This might lead to gradient explosion 
with respective to the noise level and cause the optimization process of 
the designed neural network to fail [30]. Second, for the combination 
of several noise injection strategies applied at different placements in 
the neural network, it remains uncertain whether noise levels in inputs, 
weights, activations, hidden layers, labels, and even parameter gradi-

ents are all equally beneficial, and how to optimize them collectively as 
a vector.

In this study, we employ a Bayesian optimization strategy [49,50] to 
learn injected noise levels in various network placements. This approach 
contrasts with previous methods of finding optimal noise by an empir-

ical grid search or the SGD algorithm [16–18,20,21]. For each trial in 
the Bayesian optimization process, network performance is modeled as a 
Gaussian prior on the injected noise level, which is then updated using 

the expected improvement derived from the acquisition function. The 
use of a Bayesian optimization strategy to search for the optimal noise 
in neural networks [43,51–53] or bistable systems [54] has been ex-

tensively studied. A theoretically guaranteed noise injection approach 
that employs Bayesian optimization to determine the optimal charac-

teristics of noise injected during training was proposed in [43]. It has 
been shown that, when the perturbations induced by the hardware dur-

ing actual deployment fall within a guaranteed range, injecting different 
types of noise can improve the robustness of deep neural networks [43]. 
Furthermore, it has been demonstrated [51] that injecting noise into 
neural network weights is equivalent to Bayesian inference on a deep 
Gaussian process. Based on this equivalence, Yuan et al. proposed a 
Monte-Carlo noise injection method for uncertainty quantification [51], 
which involves injecting noise into parameters during training and per-

forming multiple forward propagations during inference. Additionally, 
it was found that incorporating measurement duration into the Bayesian 
optimization framework allows the system to learn and adapt optimal 
noise levels, thereby balancing data quality and experimental efficiency 
[52]. Inspired by brain asymmetry, an asymmetric stochastic resonance 
unit-based preprocessing module [53] has been designed for a convolu-

tional neural network-based epilepsy electroencephalogram diagnostic 
system, wherein Bayesian optimization was also utilized to find optimal 
parameters for maximizing seizure prediction sensitivity and improving 
the diagnostic performance of a ResNet-50 classifier. They also investi-

gated an overdamped bistable stochastic resonance model with time-

delayed feedback [54], where Bayesian optimization was applied to 
optimize hyperparameters, including the injected noise levels, thereby 
improving the computational performance of physical reservoir comput-

ing systems.

In this paper, we systematically review and compare various noise 
injection methods in neural networks, with a particular focus on the 
impact of noise level parameters embedded in activation functions on 
network performance. Here, by embedding different types of noise into 
activation models, we can derive various forms of noise-boosted acti-

vation functions, including commonly used ones such as sigmoid and 
ReLU. Furthermore, Bayesian optimization is employed to evaluate the 
effectiveness of combining different noise injection strategies across var-

ious network placements. Through iterative adjustment of the hyperpa-

rameters associated with noise levels, it is observed that the injection of 
an optimal amount of noise to the input data, network weights, neu-

rons, and gradients (with respect to weights or labels) can enhance 
neural network performance. Furthermore, this work extends the use 
of noise-boosted activation functions (e.g., GELU, SiLU) by explicitly 
optimizing their intrinsic noise level parameters through Bayesian op-

timization. This builds upon prior work that proposed such activations 
but did not systematically optimize the associated noise level param-

eter [22,30,33–35]. It is emphasized that the intrinsic hyperparameter 
for the noise level in these noise-boosted activations, optimized through 
a Bayesian surrogate model, leads to the most stable improvements in 
network performance for tasks such as function approximation, image 
classification, and image reconstruction. Furthermore, the presence of 
non-zero optimal noise levels, which are closely related to the stochas-

tic resonance phenomenon in neural networks, is demonstrated in the 
Bayesian optimization process. This strategy for enhancing neural net-

work performance through noise injection represents a potential appli-

cation of the benefits of noise in machine learning.

2. Network model and noise injection

2.1. Noise injection approaches and noise-boosted neuron model

The Bayes-oriented noise injection approach for noise-boosted neu-

ral networks is illustrated in Fig. 1. In this framework, a neural network 
without any form of noise injection serves as the reference baseline. A 
noise-boosted neural network is defined as one in which noise is injected 
into one or more specific placements: inputs, labels, network weights, 
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neurons or gradients during the backpropagation process. Hyperparam-

eter tuning, in this context, involves finding the optimal amount of noise 
to be added to the designed neural network. The injected noise 𝜉 is as-

sumed to be scaled, i.e., 𝜉 = 𝜎𝜉𝑛, where the noise scaling parameter 𝜎
represents the intensity of the noise, also referred to as the noise level. 
The normalized random variable 𝜉𝑛 has a zero mean and unit variance. 
This reparameterization method simplifies the process of optimizing the 
noise-boosted neural network to the task of finding the optimal noise 
scale 𝜎.

For different placements in networks shown in Fig. 1, the noise scale 
𝜎 is specifically designated as 𝜎input , 𝜎weight , 𝜎neuron, 𝜎gradient , or 𝜎label. 
Here, the hyperparameter set 𝝈 = {𝜎input1, 𝜎weight1, 𝜎neuron1, 𝜎gradient1, 
𝜎label1} and the indicator function 1 = 1 if noise injection is present, 
otherwise it equals zero. For instance, consider a fully connected neural 
network with one hidden layer represented as

𝑓 (𝒙;𝜽) =𝑾 2 𝜑(𝑾 1𝒙+ 𝒃1) + 𝒃2, (1)

where 𝒙 ∈ ℝ𝑁×1 is the input vector, 𝑾 1 ∈ ℝ𝐾×𝑁 and 𝑾 2 ∈ ℝ𝑀×𝐾

are weight matrices, 𝒃1 ∈ℝ𝐾×1 and 𝒃2 ∈ℝ𝑀×1 denote bias vectors, the 
network parameter set 𝜽 = {𝒃1,𝑾 1,𝒃2,𝑾 2} and 𝜑(𝑥) is the activation 
function of hidden neurons. Let {𝒙(𝑖),𝒚(𝑖)}𝑆

𝑖=1 denote 𝑆 examples of the 
data set for training the network in a supervised learning manner, where 
the label vector is 𝒚 ∈ ℝ𝑀×1. The empirical loss function 𝐿(𝒙,𝒚;𝜽,𝝈)
can be calculated on the network output 𝑓 (𝒙,𝜽) and the label 𝒚 for 
current network parameters 𝜽 and the noise level set 𝝈. Then, 𝜽 can be 
updated through the mini-batch gradient descent approach [22,55]

𝜽𝑡 = 𝜽𝑡−1 − 𝛾𝑡
∑
𝒙∈

𝜕𝐿(𝒙,𝒚;𝜽,𝝈)
𝜕𝜽

|||𝜽=𝜽𝑡−1 (2)

with a mini-batch  sampled from the input space and the learning rate 
𝛾𝑡 > 0 at the 𝑡-th training epoch.

In the aforementioned training process, the types of noise injection 
approaches can be expressed as

�̃� = 𝒙+ 𝜎input 𝝃𝒙, (3)

𝒚 = 𝒚 + 𝜎label 𝝃𝒚 , (4)

�̃� = 𝜽+ 𝜎weight𝝃𝜽, (5)

�̃�(𝒙) = 𝜑(𝒙) + 𝜎neuron𝝃𝜑, (6)

�̃�𝐿
𝜕𝜽

= 𝜕𝐿
𝜕𝜽

+ 𝜎gradient𝝃𝐿, (7)

where the normalized random vectors 𝝃𝒙, 𝝃𝒚 , 𝝃𝜽, 𝝃𝜑 and 𝝃𝐿 with zero-

mean and the identity matrix have the same dimensions as 𝒙,𝒚,𝜽, 𝜑 and 
𝜕𝐿∕𝜕𝜽, respectively. It is noted that the noise injection approach indi-

cated in Eq. (6) is equivalent to the method of injecting noise between 
layers as described in [44,45], because Eq. (6) can be viewed as the in-

put passing through an activation function followed by the addition of 
noise 𝜎neuron𝝃𝜑, with the sum of the two acting as the input to the next 
layer.

As shown in Fig. 1, the sigmoid activation function, defined as 
𝜑(𝑢) = (1 + 𝑒−𝑢)−1, and the rectified linear unit (ReLU), expressed as 
𝜑(𝑢) = max(𝑢,0) [56], are two representative activations commonly em-

ployed in artificial neural network architectures. However, these com-

monly used activation functions do not contain learnable parameters, 
thereby attributing the learning capability of the neural network solely 
to the connection weights between neurons. This viewpoint is somewhat 
limited, as the learning of hyperparameters associated with these acti-

vation functions has also been shown to mimic the adaptive behavior of 
neurons, potentially leading to enhanced performance.

In order to introduce these learnable activations, we start from the 
suprathreshold stochastic resonance (SSR) model [10] consisting of an 
array of McCulloch-Pitts [11] neurons

ℎ(𝑢) = 1
2
[1 + sgn(𝑢)], (8)

yielding the output of the SSR model

ℎ̄(𝑢) = 1 
𝑇

𝑇∑
𝑡=1 

ℎ(𝑢+ 𝜉𝑡). (9)

Here, sgn(u) denotes the signum function, 𝑢 is the common input and 
𝜉𝑡 (𝑡 = 1,2,⋯ , 𝑇 ) are mutually independent noise components with the 
common probability density function (PDF) 𝑓𝜉 (𝜉). Then each neuron 
yields a response of unity with probability

𝜑(𝑢) = 𝔼𝜉[ℎ(𝑢+ 𝜉)] =

∞ 

∫
−∞

ℎ(𝑢+ 𝜉)𝑓𝜉 (𝜉)𝑑𝜉

=

∞ 

∫
−𝑢 

𝑓𝜉(𝜉)𝑑𝜉 = 1 − 𝐹𝜉(−𝑢), (10)

where 𝐹𝜉(𝑢) = ∫ 𝑢
−∞ 𝑓𝜉(𝜉)𝑑𝜉 denotes the cumulative distribution function 

(CDF). For a sufficiently large number 𝑇 of neurons [10], the output 
ℎ̄(𝑢) of the SSR model approaches close to the average firing probability 
𝜑(𝑢), i.e. lim𝑇→∞ ℎ̄(𝑢) = 𝜑(𝑢). Therefore, we consider the average firing 
probability 𝜑(𝑢) as the output of the array of McCulloch-Pitts neurons, 
treating it as a type of activation function that persists even for negative 
inputs (𝑢 < 0) under the influence of background noise 𝜉𝑡. Then, Eq. (10) 
forms a unified noise-boosted activation model with learnable noise-

related hyperparameters [22,30,73].

For instance, when considering injected noise with a Gaussian PDF 
𝑓𝜉(𝑢) = exp(−𝑢2∕2𝜎2

𝑎 )∕
√

2𝜋𝜎2
𝑎 , Eq. (10) simplifies into the Gaussian er-

ror unit (GEU)

𝜑(𝑢;𝜎𝑎) =
1
2
+ 1

2
erf(𝑢∕

√
2𝜎𝑎), (11)

where the Gauss error function erf (𝑢) = 2∕
√

𝜋 ∫ 𝑢
0 𝑒−𝑡2𝑑𝑡. For logistic 

noise 𝜉 with its PDF 𝑓𝜉(𝑢) = 𝑒−𝑢∕𝜎𝑎∕[𝜎𝑎(1 + 𝑒−𝑢∕𝜎𝑎 )2] and CDF 𝐹𝜉(𝑢) =
1∕(1 + 𝑒−𝑢∕𝜎𝑎 ), Eq. (10) yields the variant sigmoid activation

𝜑(𝑢;𝜎𝑎) = (1 + 𝑒−𝑢∕𝜎𝑎 )−1. (12)

Here, the hyperparameter 𝜎𝑎 is just the scale parameter of the injected 
noise [22,30].

It is noted that the activation indicated in Eq. (10) generates con-

tinuous outputs ranging from zero to one, effectively representing the 
likelihood of the gate being open or closed [30,33,34]. Therefore, by 
using the probability from Eq. (10) as a gating mechanism, the input 
𝑥 is activated with that probability and deactivated with the comple-

mentary probability. This probabilistic gating mechanism results in a 
unidirectional saturated activation function model

𝜑(𝑢) = 𝑢[0 × 𝐹𝜉(−𝑢) + 1 × (1 − 𝐹𝜉(−𝑢))] = 𝑢[1 − 𝐹𝜉(−𝑢)]. (13)

Correspondingly, from Eqs. (11), (12) and (13), the activations of the 
Gaussian error linear unit (GELU) [30,33]

𝜑(𝑢;𝜎𝑎) =
𝑢 
2
+ 𝑢 

2
erf(𝑢∕

√
2𝜎𝑎) (14)

and the sigmoid linear unit (SiLU) [22,30,33–35]

𝜑(𝑢;𝜎𝑎) = 𝑢(1 + 𝑒−𝑢∕𝜎𝑎 )−1 (15)

are unified into a consolidated noise-boosted activation model [30] 
based on the type of injected noise.

Thus, this model of Eq. (13) further derives various activation func-

tions according to different noise types. For example, the exponential 
linear unit (ExLU)

𝜑(𝑢;𝜎𝑎) =
{

𝑢, 𝑢 ≥ 0,
𝑢𝑒𝑢∕𝜎𝑎 , 𝑢 < 0 (16)
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can be derived for an exponential noise PDF 𝑓𝜉 (𝑢) = (𝑒−𝑢∕𝜎𝑎 )∕𝜎𝑎 on the 
support interval 𝑢 ∈ [0,∞), and the Rayleigh linear unit (RayLU) can be 
expressed as

𝜑(𝑢;𝜎𝑎) =
⎧⎪⎨⎪⎩

𝑢, 𝑢 ≥ 0,

𝑢𝑒
− 𝑢2

2𝜎2𝑎 , 𝑥 < 0
(17)

based on the Rayleigh-distributed injected noise with PDF 𝑓𝜉(𝑢) =
𝑢(𝑒−𝑢2∕2𝜎2𝑎 )∕𝜎2

𝑎 (𝑥 ≥ 0) and zero otherwise. Both ExLU and RayLU ex-

hibit similar characteristics to GELU and SiLU [30]. This indicates that 
these activation functions can benefit from the incorporation of injected 
noise, thereby enhancing their modeling capabilities across various neu-

ral network architectures.

Here, it is also emphasized that the learnable parameter 𝜎𝑎 in 
Eqs (11)–(17), which actually represents the injected noise level in these 
activations, can be updated by the gradient descent approach [22,30], 
and in this context, it is treated as the hyperparameter to be optimized 
by the Bayesian surrogate model. Therefore, the hyperparameter set is 
expanded as 𝝈 = {𝜎input1, 𝜎label1, 𝜎weight1, 𝜎neuron1, 𝜎gradient1, 𝜎𝑎1}, as 
shown in Fig. 1.

2.2. Bayesian optimization of noise injection

Since the generalization ability of a neural network has no explicit 
functional structure with respect to the hyperparameter set 𝝈, and its 
evaluation is time-consuming to perform, finding the optimal set 𝝈 of in-

jected noise levels to maximize the generalization ability is a nonconvex 
high-dimensional problem. In such cases, a commonly used surrogate 
model is Gaussian process [49,50,57], which models the loss function 
𝐿(𝝈) over the search space of 𝝈 ∈ R𝑑

+, where 𝑑 is the dimensional-

ity, and each element 𝜎 ∈ 𝝈 is nonnegative. Assume the observation set 
 = {𝝈𝑖,𝐿(𝝈𝑖)}𝑛

𝑖=1 is with a multivariate Gaussian distribution  (𝟎,𝚺), 
the posterior is also a Gaussian process. Here, the covariance matrix 𝚺
is frequently calculated by the kernel 𝜿 on the input space, e.g., the 
squared exponential kernel 𝜿(𝝈𝑖,𝝈𝑗 ) = 𝑒−‖𝝈𝑖−𝝈𝑗‖2 , to compute the el-

ement 𝚺𝑖𝑗 in the 𝑖-th row and 𝑗-th column of the covariance matrix 𝚺
[49,50,57]. This kernel function will be employed in all the Bayesian op-

timization experiments below, and it will not be mentioned again in the 
subsequent discussions. Given a possible test point 𝝈∗, the correspond-

ing variable of the loss 𝐿∗(𝝈∗) has the distribution  (�̂�(𝝈∗), v̂ar(𝝈∗))
with mean

�̂�(𝝈∗) = 𝚺⊤
∗𝚺

−1 𝐿∗(𝝈∗) (18)

and covariance matrix

v̂ar(𝝈∗) = 𝚺∗∗ −𝚺⊤
∗𝚺

−1𝚺∗, (19)

with 𝚺∗∗ = 𝜿(𝝈∗,𝝈∗) and 𝚺∗ = 𝜿(𝝈,𝝈∗) [49,50,57]. Here, the mean �̂�(𝝈)
represents the model prediction, and the variance v̂ar(𝝈) indicates the 
posterior uncertainty [49,50,57].

From the observation set , we find the current minimization of 
𝐿min, and seek to maximize the marginal increment

max{𝐿(𝝈), 𝐿min} − 𝐿min= max{𝐿(𝝈) − 𝐿min,0} (20)

at a new location of 𝝈. Then, the acquisition function of the expected 
improvement [49,50,57]

𝛼(𝝈) = 𝔼𝐿

[
max{𝐿(𝝈) −𝐿min,0}

]
= (𝐿min − �̂�(𝝈))Φ

(𝐿min − �̂�(𝝈)√
v̂ar(𝝈)

)
+
√
v̂ar(𝝈) 𝜙

(𝐿min − �̂�(𝝈)√
v̂ar(𝝈)

)
(21)

determines which point in 𝝈 should be evaluated next. Here 𝔼𝐿(⋅) de-

notes the expectation operator with respect to the Gaussian distribution 

of 𝐿, and Φ(𝑢) and 𝜙(𝑢) are CDF and PDF of the standard Gaussian ran-

dom variable. In practice, the noise level 𝜎 is assumed to have a uniform 
prior over the interval [0, 𝑎], we can utilize the tree-structured Parzen 
estimator (TPE) approach [57] or the quasi-Newton method [49,58] to 
optimize 𝝈 by Bayesian optimization [59,60] in the subsequent experi-

ments.

3. Main results

In the following experiments, we will show that the hyperparameter 
set 𝝈 of the noise injection optimized by the acquisition function in 
Eq. (21) can improve the generalization of neural networks.

3.1. Motivated example of noise injection for function approximation

As a motivating example (see source codes in [61]), we first consider 
a fully connected 1×𝑁 ×1 sigmoid neural network based on the activa-

tion in Eq. (12) (𝜎𝑎 = 1) to fit the forest function on noisy observations

𝑦 = 𝑒−(𝑥−2)
2 + 𝑒−

(𝑥−6)2
10 + (𝑥2 + 1)−1 + 𝜉, (22)

where the Gaussian background noise 𝜉 is with zero-mean and variance 
0.12. The samples of noisy data {𝑥𝑖, 𝑦𝑖}𝑛=19

𝑖=1 in the interval [−2,10] are 
shown in Fig. 2 (a). The sigmoid neural network is trained on this noisy 
data for 1.5×104 epochs using the Adam optimizer [66] and the learning 
rate 𝛾 = 0.01 in Eq. (2). The choice of network architecture, particularly 
the size 𝑁 of the hidden layer, is critical for balancing model complex-

ity and representational capacity. Here, a hidden layer of size 𝑁 = 14
is employed, and similar results are observed for other 1 × 𝑁 × 1 net-

works with 𝑁 approximately the size of the dataset. During training, 
the noise level parameter embedded within the GEU activation function 
is optimized over the range [0,10], whereas for networks employing 
explicit noise injection approaches, the corresponding noise levels are 
optimally determined within the range [0,0.3]. In particular, when the 
noise is injected into the network weights, the optimization of noise 
level is constrained to the narrower range [0,0.01].

It is seen in Fig. 2 (a) that the output (solid line) of the sigmoid net-

work fits the noisy data well with a small mean-squared-error (MSE) of 
(1.89±0.03)×10−5, as indicated in Fig. 2 (b). However, when compared 
to the true signal illustrated in Fig. 2 (a) (dashed line), the trained sig-

moid network exhibits the overfitting effect. For instance, for 10 groups 
of the testing set {𝑥𝑗 , 𝑦𝑗}𝑛=30

𝑗=1 , Fig. 2 (b) shows that the trained sigmoid 
network has poor generalization to new observation data and presents 
higher MSEs (dashed line) in the order of (4.0 ± 0.45) × 10−2.

Subsequently, in accordance with Eqs. (3)–(17), various noise injec-

tion approaches are experimentally implemented to enhance the gener-

alization performance of the designed neural network for the function 
approximation task. The number of Monte Carlo experiments for the di-

rect injection of noise samples is set to 10, while the number of Bayesian 
optimization trials is fixed at 20. Unless explicitly stated otherwise, 
all subsequent experiments followed this configuration. Figs. 2 (c)–(h) 
depict the network outputs with the optimized noise levels obtained 
through Bayesian optimization. It is observed that the optimal injected 
noise effectively avoids the overfitting behavior of neural networks, re-

sulting in outputs close to the true signal.

Table 1 presents the training and testing MSEs for the designed net-

work under different noise injection methods, and the generalization 
gap between training and testing MSEs is minimized for these noise in-

jection approaches at the optimal noise level obtained by the Bayesian 
optimization. Among them, the fully connected 1 × 14 × 1 neural net-

work with GEU activations achieves a testing MSE in the order of 
(1.94 ± 0.04) × 102 at the optimal noise level 𝜎𝑎 = 5.65, which is of the 
same order as the training MSE of (1.01 ± 0.01) × 10−2, as illustrated in 
Fig. 2 (a).

Of course, we can also combine two or more noise injection ap-

proaches to enhance the generalization performances of neural net-
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Fig. 2. (a) Outputs of the sigmoid network (solid line) and the GEU network (dash-dot line). For comparison, the target forest function (dashed line) of Eq. (22) 
and the observations (∙) are also plotted. (b) The training and validation losses of the sigmoid and GEU networks. Statistical average outputs of the designed neural 
network with noise injection into (c) the input, (d) the label, (e) weights, (f) gradients, (g) hidden neurons, and (h) both the labels and the gradients. The optimal 
noise level parameters obtained via Bayesian optimization are also given in the inserts, and the blue shaded region around the solid line represents an error bar 
corresponding to ± one standard deviation over 10 experimental trials.
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Table 1
MSEs of the neural network with various noise injection approaches for function approximation at the corresponding optimized noise levels.

Results 
Position 

𝒙 𝒚 𝜃 𝜕𝐿∕𝜕𝜃 Sigmoid(𝜎neuron) Sigmoid GEU(𝜎𝑎) 

Training MSE (1.03 ± 0.03) × 10−3 (1.25 ± 1.36) × 10−3 (5.90 ± 2.18) × 10−3 (5.39 ± 1.73) × 10−3 (1.00 ± 0.45) × 10−3 (1.89 ± 0.03) × 10−5 (1.01 ± 0.01) × 10−2

Optimal noise level 4.38 × 10−2 1.15 × 10−2 1.77 × 10−3 1.26 × 10−2 8.99 / 5.65

Testing MSE (1.56 ± 0.38) × 10−2 (3.31 ± 0.61) × 10−2 (2.74 ± 0.28) × 10−2 (2.46 ± 0.30) × 10−2 (2.61 ± 0.50) × 10−2 (4.0 ± 0.45) × 10−2 (1.94 ± 0.04) × 10−2

Table 2
MSEs of the neural network with combined noise injection approaches for function approximation at the corresponding optimized noise levels.

Results 
Position 

GEU(𝜎𝑎), 𝒙 GEU(𝜎𝑎), 𝒚 𝜃, 𝒙 GEU(𝜎𝑎), 𝜕𝐿∕𝜕𝜃 𝒚, 𝜕𝐿∕𝜕𝜃 GEU(𝜎𝑎), 𝒙, 𝜕𝐿∕𝜕𝜃

Training MSE (9.90 ± 0.29) × 10−3 (9.89 ± 0.54) × 10−3 (1.63 ± 0.15) × 10−2 (1.67 ± 0.09) × 10−2 (6.98 ± 1.95) × 10−3 (1.38 ± 0.07) × 10−2

Optimal noise level 5.00, 7.15 × 10−2 4.17, 2.67 × 10−2 3.90 × 10−3, 4.20 × 10−4 2.43 × 10−1, 1.82 × 10−1 4.92 × 10−2, 1.21 × 10−2 7.53 × 10−1, 1.23 × 10−1, 1.16 × 10−1

Testing MSE (1.93 ± 0.27) × 10−2 (2.12 ± 0.22) × 10−2 (2.14 ± 0.41) × 10−2 (2.60 ± 0.45) × 10−2 (2.29 ± 0.27) × 10−2 (2.24 ± 0.17) × 10−2

works, and the corresponding results are shown in Table 2. For exam-

ple, in Fig. 2 (h), we simultaneously injected noise optimized through 
the Bayesian optimization method into both the labels and the gradi-

ents during network training, resulting in outputs that closely match 
the true signal. This combination approach also achieves a testing MSE 
of (2.29 ± 0.27) × 10−2. However, as shown in Tables 1 and 2, meth-

ods that directly inject noise samples into the network, as described in 
Eqs. (3)–(7), result in higher testing MSEs and poorer generalization, 
compared to the network with GEU activations. Moreover, as shown in 
Table 1, the statistical error of the loss of the GEU network is very small. 
This indicates that constructing neural networks with noise-boosted ac-

tivations is more practical, as it does not require extensive experiments 
with random noise samples to statistically confirm its generalization per-

formance.

Specifically, for the convex loss function of MSE and injecting noise 
samples into the weight coefficients of the neural network defined in 
Eq. (1), applying Jensen inequality to the expectation of the loss function 
yields

𝔼𝝃𝜽

[
𝐿(𝒙,𝒚; �̃�)

]
= 𝔼𝝃𝜽

[
𝑆∑

𝑖=1 
|||𝒚(𝑖) −𝑾 2 𝜑(𝑾 1𝒙(𝑖) + �̃�1) + �̃�2

|||2
]

≥
𝑆∑

𝑖=1 
|||𝒚(𝓁) −𝑾 2 𝔼𝝃𝜽

[𝜑(𝑾 1𝒙(𝑖) + �̃�1)] + 𝒃2
|||2

=
𝑆∑

𝑖=1 
|||𝒚(𝓁) −𝑾 2Φ(𝑾 1𝒙(𝑖) + 𝒃1) + 𝒃2

|||2, (23)

where the noise-boosted activation Φ(𝑢) = 𝔼𝜉[𝜑(𝑢+ 𝜌𝜉)] and 𝜌 = 𝑥(𝑖) +
𝑏1. This inequality also holds for direct noise injection into the data, 
labels, and hidden-layer activation functions. It is evident that a noise-

boosted network with activation Φ(𝑢) has a lower testing loss compared 
to networks with direct noise injection, given identical weight coef-

ficients. If the activation 𝜑(𝑢) is the McCulloch-Pitts [11] neuron as 
defined in Eq. (8), and the injected noise 𝝃𝜽 is Gaussian distributed, 
the activation Φ(𝑢) in Eq. (23) corresponds to the noise-boosted model 
in Eq. (11). These results demonstrate the practicality and effective-

ness of neural networks employing the activation function defined in 
Eq. (10), compared to direct noise injection methods. The noise level 
𝜎𝑎 in Eqs. (10)–(17) is implicitly embedded in the noise-boosted ac-

tivation model, making parameter optimization during training more 
efficient. However, we generally do not utilize the sigmoid function for 
𝜑(𝑢) when deriving the noise-boosted activation Φ(𝑢). This is because 
the expression Φ(𝑢) = 𝔼𝜉[𝜑(𝑢+𝜌𝜉)] involves an integral operator, rather 
than having an explicit solution as in the derivation of the noise-boosted 
neuron model in Eq. (10). Consequently, the gradient 𝜕Φ(𝑢)∕𝜕𝜎𝑎 of Φ(𝑢)
with respect to 𝜎𝑎 also contains an integral, leading to increased com-

putational complexity during noise level updates.

From the motivated example above and the theoretical analysis, the 
benefits of noise-enhanced neural networks utilizing activation func-

tions defined in Eq. (10) are evident. Consequently, the subsequent 
experiments will mainly focus on the designed noise-boosted network 
architectures. Additionally, for comparison, direct noise injection meth-

ods will also be included.

3.2. Noise injection as the stochastic resonance effect

Noise injection in neural networks is closely linked to the phe-

nomenon of stochastic resonance [62]. Here, we argue that stochastic 
resonance, broadly defined, denotes improved performance in a non-

linear system under an optimal non-zero noise level, compared to its 
performance without noise. Given the inherent nonlinearity of neurons, 
a neural network functions as a high-dimensional nonlinear mapping 
system. The underlying mechanism by which noise injection enhances 
the generalization performance of neural networks is in line with the 
principles of stochastic resonance [22,26–30], which has been exten-

sively studied in fields such as physics [71,72,75–78] and metrology 
[2,7,23,26–29,63–65,70].

To illustrate the consistency between noise injection and the theory 
of stochastic resonance, let us consider the example of the method of 
injecting noise 𝝃𝒙 into the input data 𝒙 indicated in Eq. (3) with a small 
noise scale 0 < 𝜎input ≪ 1. Under this condition, a second-order Taylor 
expansion of 𝐿(�̃�,𝒚) around 𝒙 can be expressed as

𝐿(�̃�,𝒚) ≈ 𝐿(𝒙,𝒚) + 𝜎input∇𝒙𝐿(𝒙,𝒚)⊤𝝃𝒙 +
𝜎2
input

2 
𝝃⊤
𝒙
∇2
𝒙𝒙

𝐿(𝒙,𝒚)𝝃𝒙
+(𝜎3

input ), (24)

where ∇𝒙𝐿(𝒙,𝒚) is the gradient of 𝐿(𝒙,𝒚) with respect to 𝒙, and 
∇2
𝒙𝒙

𝐿(𝒙,𝒚) represents the Hessian matrix of 𝐿(𝒙,𝒚) with respect to 𝒙. 
For a normalized random variable 𝝃𝒙, 𝔼𝝃𝒙

[𝝃𝒙] = 𝟎, 𝔼𝝃𝒙
[𝝃𝒙𝝃⊤

𝒙
] = 𝑰 and 

𝔼𝝃𝒙

[
𝝃⊤
𝒙
𝑨𝝃𝒙

]
= Tr[𝑨] for a symmetric matrix 𝑨. Based on Eq. (25), the 

expectation of the empirical loss function 𝐿(�̃�,𝒚) can be simplified as

𝔼𝝃𝒙

[
𝐿(�̃�,𝒚)

]
≈ 𝐿(𝒙,𝒚) +

𝜎2
input

2 
Tr
[
∇2
𝒙𝒙

𝐿(𝒙,𝒚)
]
. (25)

It is seen from Eq. (25) that, from a statistical perspective, inject-

ing noise into the input is equivalent to adding a regularization term 
𝜎2input
2 Tr

[
∇2
𝒙𝒙

𝐿(𝒙,𝒚)
]

to the original loss function 𝐿(𝒙,𝒚). The noise level 
𝜎input acts as a learnable regularization parameter. Consequently, this 
formulation enhances the generalization ability of the network. The the-

oretical proof of the regularization equivalence in Eq. (25) was first 
established by Bishop [16], which can be extended to the approaches of 
injecting noise into the weight coefficients [17], labels [17,18], activa-

tion functions [13,38], and gradients [15,36,37]. For the noise-boosted 
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Fig. 3. Level curves for evaluating MSE of the sigmoid network as a function 
of hyperparameters 𝜎label and 𝜎gradient , with the dashed line indicating the con-

vergence process of the hyperparameters towards the optimal non-zero levels of 
injected noise. The yellow colored star marks the final converged coordinate of 
(𝜎gradient , 𝜎label) = (0.012,0.049) in the Bayesian optimization process.

activation functions indicated in Eqs. (10) and (13), we also theoreti-

cally proved the regularization equivalence for a small injected noise 
level [22].

Given different loss functions 𝐿(𝒙,𝒚) and the network output 𝑓 (𝒙;𝜽), 
the trace of the Hessian ∇2

𝒙𝒙
𝐿(𝒙,𝒚) in Eq. (25) consists of a positive 

term, [∇𝒙𝑓 (𝒙;𝜽)]2, and a term involving ∇𝒙𝒙𝑓 (𝒙;𝜽), whose definiteness 
is not guaranteed [16–18]. However, in the presence of a large amount 
of training data, for example, for the loss functions such as MSE, the 
regularization term in Eq. (25) can be calculated as

𝜎2
input

2 
Tr
[
∇2
𝒙𝒙

𝐿(𝒙,𝒚)
]

= 𝜎2
input

𝑆∑
𝑖=1 

∇2
𝒙
𝑓 (𝒙(𝑖);𝜽)

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑃1

+𝜎2
input

𝑆∑
𝑖=1 

[𝒚(𝑖) − 𝑓 (𝒙(𝑖);𝜽)]∇𝒙𝒙𝑓 (𝒙(𝑖);𝜽)

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑃2

, (26)

where the term 𝑃1 is positive, and the second term 𝑃2 vanishes as the 
network output 𝑓 (𝒙(𝑖);𝜽) converges to the conditional expectation of 
the target 𝒚(𝑖) in the order of 𝜎2

input [16–18]. Or equivalently, the sec-

ond term is a higher-order infinitesimal compared to the first term. 
Consequently, the first positive term 𝑃1 primarily contributes to the reg-

ularization effect. It is evident that when the noise level 𝜎input = 0, the 
regularization term vanishes, resulting in the absence of any regular-

ization effect on the generalization performance of network. However, 
when 𝜎input becomes very large, the penalty imposed by the regular-

ization term on the loss function 𝐿(�̃�,𝒚) increases significantly, which, 
naturally, degrades the generalization performance of the network. It is 
only when 𝜎input is at an optimal value or in a range that the regular-

ization term positively contributes to the generalization ability of the 
network, as demonstrated in Tables 1 and 2 for the function approxima-

tion fitting. Therefore, we refer to the enhancement of the generalization 
performance of networks through the approach of noise injection as a 
stochastic resonance effect in a broader sense.

The manifestation of the stochastic resonance effect, induced by the 
optimal noise intensity explained above, can also be clearly observed 
during the optimization process of a network for function fitting. Fig. 3
illustrates the level curves for evaluating MSE of the sigmoid network as 
a function of the hyperparameters 𝜎label defined in Eq. (4) and 𝜎gradient in 
Eq. (7). From Fig. 3, it is observed that, after 20 iterations of expectation 
improvement using the acquisition function defined in Eq. (21) via the 
TPE Bayesian optimization method, the convergence trajectory of the 

Fig. 4. Block diagram representations of the neural network architecture for 
MNIST classification.

hyperparameter values (𝜎gradient , 𝜎label) (dashed line) ultimately reaches 
the optimal values of (𝜎gradient , 𝜎label) = (0.012,0.049) marked by the star. 
The non-zero optimal coordinate (𝜎gradient , 𝜎label) implies that the testing 
MSE increases for both high and low values of the noise levels 𝜎label and 
𝜎gradient . This observation experimentally confirms the manifestation of 
the stochastic resonance effect [22,26,30,62] within the designed neural 
network optimized through the TPE Bayesian approach. Moreover, the 
non-zero level values in Figs. 2 and 3 demonstrate a strategic integration 
of noise injection into the neural network to enhance its generalization 
performance. The stochastic resonance effect of other noise injection ap-

proaches in the designed neural network is also validated by a non-zero 
optimal noise level, which accords well to the theoretical exploration of 
Eq. (25).

However, the assumption of an infinitesimal injected noise level in 
the proof of regularization equivalence, as presented in Eq. (25) [16,22], 
does not always hold. This is because the converged (local optimal) noise 
levels in the training of networks with noise-boosted activation func-

tions, as shown in Tables 1 and 2, are often significantly larger than 
unity. Consequently, the aforementioned regularization equivalence in-

dicated by Eq. (25), as well as its theoretical interpretation in terms 
of stochastic resonance, needs further elucidation. Therefore, a more 
extensive theoretical investigation is necessary to establish the link to 
stochastic resonance in designed neural networks with noise injection. 
The obtained results, along with the proof of regularization equivalence 
in Eq. (25), will provide a theoretical framework for the application of 
noise injection strategies in neural network training.

3.3. Classifications of gray images

Based on the analysis above, it is evident that noise injection meth-

ods are effective for approximating functions in neural networks. Next, 
we will employ these approaches to enhance the image classification 
performance of neural networks. The architecture of the neural net-

work is illustrated in Fig. 4, where the activation function 𝜑(𝑥) in the 
hidden layer can be selected from either ReLU or noise-boosted activa-

tions 𝜑(𝑥;𝜎𝑎) defined in Eqs (14)-(17). The MNIST dataset comprises 
grayscale 28 × 28 images across 10 classes, with 60,000 training exam-

ples and 10,000 test images. For this simple image classification task, 
the fully connected network designed in Fig. 4 can achieve good classi-

fication accuracy. Therefore, we chose the architecture shown in Fig. 4
to compare the feasibility of noise injection methods. The designed net-

work of Fig. 4 is trained for 50 epochs, with a batch size of 100, using 
the Adam optimizer [66] to optimize the weights with a learning rate 
𝛾 = 0.01. The optimization ranges for the noise level parameters used 
here are the same as those chosen in the function approximation exam-

ple above. 
Without any noise injection, the testing accuracy of the neural net-

work depicted in Fig. 4 is 93.53% when the activation function 𝜑(𝑥) is 
set to ReLU. Table 3 presents the corresponding testing accuracies of 
the ReLU neural network with various noise injection methods applied 
to the MNIST dataset or in other placements of network. The values fol-

lowing the ± symbol denote one standard deviation computed across 10
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Table 3
Testing accuracies of the neural network with various direct 
noise injection methods on the MNIST dataset at the corre-

sponding optimal noise levels.

Position Optimal noise level 𝜎 Testing accuracy (%) 
𝒙 1.02 × 10−2 94.25 ± 0.40
𝒚 1.03 94.52 ± 0.34
𝜽 3.3 × 10−3 94.86 ± 0.04
𝜕𝐿∕𝜕𝜽 1.21 × 10−2 92.92 ± 0.09
𝜕𝐿∕𝜕𝜽, 𝒙 1.42 × 10−3, 5.11 × 10−2 94.69 ± 0.03
𝜽, 𝒚 6.44 × 10−3, 1.77 × 10−1 94.59 ± 0.09

Table 4
Testing accuracies of the neural network with noise injection in ac-

tivations on the MNIST dataset at the corresponding optimal noise 
levels.

Activation function Optimal noise level 𝜎 Testing accuracy (%) 
ReLU(𝜎neuron) 2.10 94.83 ± 0.11
GELU(𝜎neuron) 0.28 95.26 ± 0.39
GELU(𝜎𝑎) 1.11 95.83 ± 0.08
ExLU(𝜎neuron) 2.32 95.58 ± 0.08
ExLU(𝜎𝑎) 2.41 95.84 ± 0.12
RayLU(𝜎neuron) 3.49 95.47 ± 0.04
RayLU(𝜎𝑎) 6.24 95.62 ± 0.09
GELU(𝜎𝑎), 𝒙 1.70 × 10−1, 1.27 × 10−3 95.72 ± 0.11
ExLU(𝜎𝑎), 𝒙 5.11, 2.10 × 10−3 95.82 ± 0.11
RayLU(𝜎𝑎), 𝒙 6.99, 1.09 × 10−2 95.63 ± 0.13

trials. This format is also used in the following sections unless otherwise 
stated. The results indicate that, besides the method that injects noise 
into the gradient, other noise injection approaches can enhance the test-

ing accuracy of the designed neural network. Specifically, injecting noise 
directly into the weight 𝜽 of a ReLU network yields an average classi-

fication accuracy 94.86% that exceeds the noise-free ReLU network by 
1.33%.

Furthermore, we experimentally explore two major categories of 
noise injection methods to enhance the testing accuracy of the designed 
network: directly adding noise to the activation functions in the hid-

den layers and employing noise-boosted activation functions. As shown 
in Table 4, the rows listing the names of the activation functions with 
𝜎neuron represent the results of directly injecting noise into the activation 
functions, as described in Eq. (6). In contrast, the rows that include the 
activation function names along with 𝜎𝑎 indicate the results obtained 
by optimizing the intrinsic hyperparameter 𝜎𝑎 of the noise-boosted ac-

tivation functions. It is seen that GELU, ExLU, and RayLU networks, 
optimized for their noise level hyperparameters 𝜎𝑎 or with noise in-

jected directly via Bayesian optimization, can achieve average testing 
accuracies larger than 95.0%, exceeding the noise-free ReLU network by 
approximately 2.0%. As indicated in Table 4, these experimental results 
further validate the effectiveness of noise injection methods in improv-

ing the performance of neural networks for image classification tasks.

Furthermore, we also explore the optimization of noise-boosted net-

works with injecting optimal noise into data 𝒙, as shown in Table 4. 
However, the corresponding results indicate no further improvement 
in testing accuracy. Consequently, the adoption of neural networks in-

tegrated with a noise-boosted activation defined in Eqs (14)-(17) is 
demonstrated to be a more effective approach.

3.4. Classifications of color images

We further employed a lightweight ResNet-9 network [67], as il-
lustrated in Fig. 5, to classify color images within the CIFAR-10 dataset. 
ResNet-9 is selected over ResNet-18 and more complex architectures due 
to constraints in computational resources and the objective of minimiz-

ing the size of the noise scale parameters. For the CIFAR-10 classification 
task, the floating point operations of ResNet-9 are approximately 30%

Fig. 5. Diagram representation of the architecture of the ResNet-9 network on 
the CIFAR-10 dataset.

of those of ResNet-18. The total memory of parameters of ResNet-9 is 
approximately 0.2 MB, which is significantly smaller than the 11.4 MB 
required for the parameters of ResNet-18 [67]. Furthermore, ResNet-9 
with noise-boosted activation functions contains 13 noise scale param-

eters, while the noise-boosted ResNet-18 has 17.

As depicted in Fig. 5, one injected noise level is applied outside the 
residual blocks, while twelve injected noise levels are integrated within 
the residual blocks. The batch size is set to 100, and the Adam optimizer 
[66] is utilized to optimize the weights over 80 epochs. The initial learn-

ing rate is set at 0.001, decreasing to one-third of its previous value after 
20 epochs. The ranges for the noise level parameters used here are also 
the same as those chosen in the function fitting example via Bayesian op-

timization, while for the SGD-based approach, the initial noise levels are 
randomly initialized as integers within the range [2,6]. The experimen-

tal results, including testing accuracies of the ResNet-9 network with 
various activation functions, are summarized in Table 5 (source codes 
are provided in [61]). Here, we primarily investigate the optimization 
of noise injection into the activation functions of hidden layers, or of 
the intrinsic hyperparameter 𝜎𝑎 of noise-boosted activations. The com-

binations of noise injection methods are also considered in experiments. 
Furthermore, during back-propagation, the SGD method [22,30] can be 
employed to optimize the noise level 𝜎𝑎. This parameter is initially set 
as a constant based on empirical selection and subsequently optimized 
alongside the network weights.

As indicated in Table 5, regardless of the optimization method em-

ployed, both the injection of noise into the hidden layer activation 
functions and the learning of the intrinsic hyperparameter 𝜎𝑎 for the 
noise-boosted activation achieve a 3% improvement in testing accu-

racy compared to the 84.48% accuracy achieved by the noise-free ReLU 
neural network. Specifically, the method of injecting noise to the in-

put data of the GELU neural network results in a testing accuracy of 
(91.30 ± 4.74)%, a 6% improvement over the noise-free ReLU network. 
However, it is seen that this result is not stable, as evidenced by the 
large statistical variance.

As shown in Table 5, the Bayesian optimization approach for the 
intrinsic hyperparameter 𝜎𝑎 of the noise-boosted activation demon-

strates greater applicability and robustness in improving the testing 
accuracy of the network. Furthermore, although the SGD-optimized net-

work achieves comparable testing accuracies, the initial values of the 
hyperparameter 𝜎𝑎 must be determined empirically. Learning failures 
are also observed in networks employing activation functions such as 
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Table 5
Testing accuracies of the ResNet-9 network with 
various activations on the CIFAR-10 dataset by the 
Bayesian or SGD optimization methods.

Activation Approach Testing accuracy (%) 
ReLU SGD 84.48 ± 0.17
ReLU(𝜎neuron) Bayesian 86.91 ± 0.65
GELU(𝜎𝑎) SGD 87.63 ± 0.09
GELU(𝜎𝑎) Bayesian 87.34 ± 0.30
RayLU(𝜎𝑎) SGD 87.22 ± 0.05
RayLU(𝜎𝑎) Bayesian 87.27 ± 0.27
ExLU(𝜎𝑎) SGD 87.66 ± 0.43
ExLU(𝜎𝑎) Bayesian 87.32 ± 0.44
𝜽 Bayesian 24.31 ± 2.95
𝜕𝐿∕𝜕𝜽 Bayesian 53.76 ± 9.92
𝒙, GELU(𝜎𝑎) Bayesian 91.30 ± 4.74
𝒙, 𝜕𝐿∕𝜕𝜽 Bayesian 61.49 ± 7.60
𝜽, GELU(𝜎𝑎) Bayesian 30.74 ± 9.81

Fig. 6. Injected noise levels 𝜎𝑎 in the trained GELU ResNet-9 network on CIFAR-

10 dataset.

ExLU, due to gradient explosion that occurs as 𝜎𝑎 decreases to very small 
values.

Fig. 6 illustrates the noise levels obtained after Bayesian optimiza-

tion, corresponding to the 13 noise levels in the GELU neural network. 
These values represent the optimal results from 20 trials, as determined 
by the Gaussian surrogate model indicated in Eq. (21). Fig. 7 illustrates 
the importance scores of 13 injected noise levels (𝜎𝑎) in a trained GELU 
ResNet-9 network. We utilized the Fanova importance evaluator [69] 
to evaluate the impact of each noise level 𝜎𝑎 on the testing accuracy of 
the network, which corresponds to the proportion of the performance 
variance explained by each hyperparameter 𝜎𝑎. As illustrated in Fig. 7, 
these variance contributions are represented as the importance scores, 
allowing for a clear comparison of the influence of each noise level on 
the network performance. Similar results for other neural networks are 
not shown here for brevity.

3.5. Image reconstruction

As illustrated in Fig. 8, we design a convolution autoencoder with six 
convolution layers and five layers that employ ReLU or noise-boosted ac-

tivation functions for reconstructing images (source codes are provided 
in [61]). The architecture compresses the spatial dimensions of images 
from 224 × 224 to 56 × 56, enabling effective feature extraction and 
compression while preserving the essential image characteristics. The 
fingerprint verification competition (FVC2002) dataset [68] is utilized, 
where 320 images are divided into training and testing sets, respectively, 
in a 4 ∶ 1 ratio. The learning rate is set to 0.001, the model is trained 
for 300 epochs using the Adam optimizer [66] with a batch size of 128. 
For the noise-boosted activation function, the noise level parameter is 
selected from the range [0,6]. For direct noise injection into gradients 
and weights, the noise level is chosen from the range [0,0.1], while for 

Fig. 7. Importance score of injected noise levels 𝜎𝑎 in the trained GELU ResNet-

9 network on CIFAR-10 dataset.

Fig. 8. Diagram representation of the architecture of the designed autoencoder 
on the FVC2002 dataset.

injecting noise into the input data and labels, the noise level is selected 
within the range [0,1]. For the SGD-based approach, the initial noise 
levels are randomly initialized as integers 5 or 6.

The convolutional autoencoder in Fig. 8 was chosen for image re-

construction due to its effective architecture: Six convolutional layers 
can extract hierarchical spatial features, while ReLU and noise-boosted 
activations introduce non-linearity and potential robustness. Spatial di-

mension reduction from 224 × 224 to 56 × 56 enables efficient fea-

ture compression, retaining essential image characteristics and reducing 
computational cost.

Fig. 9 (a) describes the testing loss curve over 300 epochs for the 
noise-free ReLU autoencoder (training loss curves are omitted for clarity, 
as they closely overlap with the corresponding testing loss curves). Here, 
the loss function is defined as the MSE between the input and the recon-

structed images. As observed in Fig. 9 (a), the loss curves of the noise-

free ReLU autoencoder exhibit an oscillatory behavior, which can be 
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Fig. 9. Testing loss curves of (a) the ReLU autoencoder without Bayesian opti-

mization of noise, and (b) the ReLU autoencoder with optimized noise within 
the ReLU activation function and autoencoders with GELU, RayLU, or ExLU ac-

tivation functions. The shaded region represents an error bar corresponding to 
one standard deviation.

Table 6
Training and testing losses of the autoencoder with various ac-

tivations on the FVC2002 fingerprints dataset by the Bayesian 
or SGD optimization methods.

Activation Approach Training loss (10−3) Testing loss (10−3) 
ReLU SGD 4.68 ± 4.04 5.28 ± 4.41
ReLU (𝜎neuron) Bayesian 2.98 ± 0.49 3.36 ± 0.51
GELU (𝜎𝑎) Bayesian 3.94 ± 0.05 4.43 ± 0.05
RayLU(𝜎𝑎) Bayesian 3.20 ± 0.32 3.56 ± 0.26
ExLU(𝜎𝑎) Bayesian 2.92 ± 0.08 3.28 ± 0.04
GELU(𝜎𝑎), 𝒙 Bayesian 3.94 ± 0.23 4.42 ± 0.26
RayLU(𝜎𝑎), 𝒙 Bayesian 3.04 ± 0.09 3.36 ± 0.11
ExLU(𝜎𝑎), 𝒙 Bayesian 3.22 ± 0.08 3.60 ± 0.12
GELU(𝜎𝑎) SGD 3.86 ± 0.45 4.36 ± 0.48
RayLU(𝜎𝑎) SGD 4.26 ± 0.36 4.78 ± 0.45
ExLU(𝜎𝑎) SGD 4.10 ± 0.52 4.56 ± 0.60

Table 7
Training time and GPU memory usage of noise-boosted au-

toencoders on the FVC2002 fingerprint dataset.

Activation Approach Training time (s) GPU memory( MB) 
ReLU SGD 187.64 8,419
ReLU (𝜎neuron) Bayesian 215.72 13,361
GELU (𝜎𝑎) Bayesian 260.53 13,909
RayLU(𝜎𝑎) Bayesian 257.47 14,301
ExLU(𝜎𝑎) Bayesian 239.30 20,381
GELU(𝜎𝑎), 𝒙 Bayesian 243.37 14,305
RayLU(𝜎𝑎), 𝒙 Bayesian 260.49 15,491
ExLU(𝜎𝑎), 𝒙 Bayesian 250.10 12,345
GELU(𝜎𝑎) SGD 265.37 17,049
RayLU(𝜎𝑎) SGD 266.25 14,305
ExLU(𝜎𝑎) SGD 232.58 12,739

Fig. 10. Reconstructed images by noise-free ReLU and noise-booseted autoen-

coders for two original image samples of the FVC2002 dataset. Here, noise-

booseted autoencoders are trained by the Bayesian optimization method.

attributed to the presence of four distinct types of sensor fingerprint im-

ages in the FVC2002 dataset [68]. Conversely, as illustrated in Fig. 9 (b) 
(dotted line), the testing loss of the ReLU autoencoder enhanced with 
Bayesian-optimized noise levels 𝜎neuron = {0.29, 0.65, 0.42, 0.11, 0.77}
across five hidden layers achieves lower loss values, and effectively re-

strains the oscillations. Fig. 9(b) also illustrates the testing loss curves 
for the designed autoencoders employing GELU, RayLU, and ExLU ac-

tivation functions. For clarity, the training loss curves are omitted, as 
they are close to the corresponding testing loss curves. These noise-

boosted autoencoders, incorporating Bayesian-optimized noise levels 
across five hidden layers, achieve demonstrably lower loss values com-

pared to the noise-free ReLU autoencoder. Representative samples of 
the reconstructed images obtained from the designed autoencoders are 
illustrated in Fig. 10. In particular, the ExLU autoencoder, achieving the 
testing MSE of (3.28± 0.04) × 10−3, outperforms the ReLU autoencoder. 
This result demonstrates the efficacy of noise-boosted neuron models in 
unsupervised machine learning applications.

Furthermore, it is seen in Table 6 that combining noise injection 
at the input and activations of GELU, RayLU, and ExLU networks does 
not improve reconstruction error. In addition, the SGD method can not 
decrease the reconstruction errors of the GELU, RayLU, and ExLU net-

works, as shown in Table 6.

For this complex fingerprint image reconstruction task, Table 7 com-

pares training time and GPU memory usage across autoencoders with 
different activation functions for both Bayesian optimization and SGD 
method. As shown in Table 7, autoencoders based on the noise-boosted 
activation functions have higher training time and GPU memory con-

sumption than the ReLU-based autoencoder, due to the introduction 
of learnable noise level parameters at each layer. However, when em-

ploying noise-boosted activations, the per-trial differences in training 
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time and GPU memory consumption between Bayesian optimization and 
SGD are minor. Considering the improvements in performance, the au-

toencoder constructed with noise-boosted activation functions is still of 
practical significance.

4. Discussion

In this study, we employed the Bayesian optimization to evaluate 
various noise injection methods in neural networks for applications 
in function approximation, image classification, and image reconstruc-

tion. The obtained results demonstrate that injecting noise into input 
data or different placements of the neural network can enhance per-

formance compared to noise-free networks. The Bayesian optimization 
approach effectively finds the optimal noise levels for various noise in-

jection methods within constrained ranges.

Furthermore, we provide a theoretical derivation of the Taylor ex-

pansion for the loss function of designed networks under the assumption 
of small injected noise. Then, the benefits of non-zero optimal noise in-

jection during neural network training were theoretically analyzed in 
relation to the stochastic resonance mechanism. The statistical results 
in Tables 1–6 and Figs. 2–9 confirm the effectiveness of noise injection 
approaches in the designed networks.

While the direct injection of reparameterized noise samples requires 
a certain amount of statistical computation, it offers less operational 
simplicity compared to methods that enhance network performance by 
embedding noise levels within the noise-boosted activation functions of 
hidden layers, as demonstrated in the design of the ResNet-9 network 
for image classification and the autoencoder for image reconstruction. 
Consequently, if the neural network architecture is based on activations 
without learnable parameters, the direct injection of reparameterized 
noise samples can serve as a practical strategy. However, when the net-

work design is adaptable, our results indicate that directly constructing 
neural networks with noise-boosted activation functions is more prac-

tical, as such networks can achieve superior and stable performance 
compared to noise-free ones through Bayesian optimization. This study 
also explores the physical mechanisms of noise injection in activations 
and the optimization of noise in machine learning applications, while 
opening the possibility to further research in areas such as time series 
forecasting and generative adversarial networks.

Some open questions still need to be addressed in future studies. In 
this paper, we theoretically investigated various types of noise within 
the activation functions and derived the corresponding noise-boosted ac-

tivation models of Eqs. (10) and (13), while only considering Gaussian 
noise in the direct injection methods for data, weights, gradients, and 
other components. A valuable direction for future research is to explore 
the effects of different noise types in these direct injection methods, with 
the aim of further enhancing network performance through Bayesian op-

timization. It is worth investigating whether the combination of differ-

ent noise types in direct injection methods and noise-boosted activation 
models could lead to further improved and more robust network perfor-

mance.

In addition, the noise-boosted activations in Eqs. (14)–(17) degener-

ate to ReLU when the hyperparameter 𝜎𝑎 = 0. Therefore, we consider the 
comparison of these noise-boosted networks with the noise-free ReLU 
network as a form of ablation study [74], as it effectively ablates the 
learnability introduced by the noise injection into the activation func-

tions. More exploration is possible with ablation studies to further assess 
the effectiveness of noise injection in such conditions. It is also impor-

tant to note that the computational cost of Bayesian optimization in-

creases significantly as the dimensionality of the noise scale parameters 
grows, particularly when applying noise injection to enhance large-scale 
neural networks. For instance, we experimentally compared the testing 
accuracy of the ReLU ResNet-34 network with a ResNet-34 network em-

ploying noise-boosted activations on the CIFAR-10 dataset. The noise-

boosted ResNet-34 networks achieved testing accuracies approximately 
90%, which is comparable to that of the noise-free ResNet-34 network 

(code sources in [61]). Moreover, the designed noise-boosted ResNet-

34 model incorporates 33 noise scale parameters, which considerably 
increases the computational time required for Bayesian optimization, 
without yielding any further improvement in network performance. Us-

ing the SGD optimizer, the GPU and CPU memory usage of a GELU 
ResNet-34 model were 598.95 MB and 1,474.08 MB, respectively, with 
a total training time of 3,750.91 s. For a single Bayesian optimiza-

tion trial, the GPU memory usage was 506.73 MB, the CPU memory 
usage was 1,416.42 MB, and the training time was 3,549.05 s. In con-

trast, the ReLU ResNet-34 required only 232.73 MB of GPU memory, 
1,365.77 MB of CPU memory, and 1,611.52 s for training. This presents 
a significant limitation for the application of noise-boosted neural net-

works in these conditions. Therefore, future research may be useful 
to develop more scalable and computationally efficient optimization 
methods for utilizing the noise injection approach in large-scale neural 
networks. For example, evolutionary algorithms can simulate natural 
selection to evolve populations of hyperparameter configurations [48]. 
Meta-learning approaches can utilize experience from hyperparameter 
optimization across related tasks to efficiently optimize hyperparame-

ters in new tasks [21,49,52]. Moreover, transfer learning offers another 
promising direction [79], where optimal hyperparameters selected on 
large-scale datasets can be transferred to new tasks as initial configura-

tions or priors in Bayesian optimization.
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