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Abstract

Historically, there have been many attempts to produce the appropriate mathematical formalism

for modeling the nature of physical space, such as Euclid’s geometry, Descartes’ system of Cartesian

coordinates, the Argand plane, Hamilton’s quaternions, and finally Gibbs’ vector system using the

dot and cross products. We conclude however, that Clifford’s geometric algebra (GA), provides

the most elegant description of space. Supporting this conclusion, we firstly show how geometric

algebra encapsulates the key elements of the competing formalisms, such as complex numbers,

quaternions and the dot and vector cross products and secondly we show how it provides an

intuitive representation and manipulation of points, lines, areas and volumes. We also provide two

key examples where GA has been found to provide an improved description of physical phenomena,

electromagnetism and quantum theory.
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I. INTRODUCTION

Einstein once stated, ‘Everything should be made as simple as possible, but not one

bit simpler’, and in this paper we ask the question: ‘What is the simplest mathematical

representation of three-dimensional physical space that is nevertheless complex enough to

satisfactorily describe all its key properties?’

The presence of five regular solids confirms the conclusion that we live in a three-

dimensional world. If we lived in a world with four spatial dimensions, for example, we

would be able to construct six regular solids, and in five dimensions and above we would find

only three1. Also, the gravity and the electromagnetic force laws have been experimentally

verified to follow an inverse square law to very high precision2, indicating the absence of ad-

ditional macroscopic dimensions beyond three space dimensions. Hence a three-dimensional

coordinate system, as proposed by Descartes, appears to be a suitable overall framework.

For three-space, however, as well as positional coordinates, we also need to be able to repre-

sent orientation or rotations at each point in this space. In the plane the algebra of complex

numbers can be used for rotation and in three space, the algebra for rotations is given by

Hamilton’s quaternions. Hence, in order to form a unified algebra of three-space we need

to integrate the complex numbers and quaternions within the framework of Cartesian coor-

dinates. This was achieved by Clifford in 1873, who named his system, Geometric Algebra

(GA).

A. Historical development

Around 547 BCE, opposing the world view of his time, Thales expressed his belief that

every event on the earth had natural rather than mythological causes3. Pythagoras extended

this notion of natural causation, by postulating that numbers and their relationships, underly

all things. This mathematical approach by Pythagoras was masterfully applied by Euclid to

geometry, deriving his famous set of geometrical theorems based on a few simple axioms, that

formed the first comprehensive theory for the physical world. The next real breakthrough

in mathematical science did not come though till the seventeenth century, and it has been

extensively debated by historians, why there was such a slow down in the progress of science

and mathematics following the Greek explosion. Various suggestions have been provided
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to answer this, such as the Roman empire suppressing dissent and not sponsoring the arts,

the ready availability of slaves obviating the need for work efficiencies4. However it has also

been proposed that the algebraic and numerical system used by the Greeks, had inherent

limitations, which were roadblocks to further progress5. For example the length along the

diagonal of a unit square, we know today as
√

2, being an irrational number, did not exist

in the Greek numeric system, which was based solely on integers and their ratios. Another

hindrance would have been the roman numerals which made numeric manipulation difficult.

However with the arrival of Hindu-Arabic numbers in about 1000 AD into Europe, which

included a zero that allowed positional representation for numbers, together with the accep-

tance of negative numbers in 1545 AD, allowed for the concept of a complete number line to

be developed. This then paved the way for Descartes to revolutionize the Greek system in

1637, by proposing a union of algebra and geometry using Cartesian coordinates. He stated

‘Just as arithmetic consists of only four or five operations, namely, addition, subtraction,

multiplication, division and the extraction of roots, which may be considered a kind of di-

vision, so in geometry, to find required lines it is merely necessary to add or subtract lines.’

Descartes thus postulated an equivalence between line segments and numbers, something

the Greeks were not prepared to do. This achievement is identified by John Stuart Mill,

‘the greatest single step ever made in the exact sciences’6.

The Cartesian coordinate system proposed by Descartes, appears to become confused,

however, with the later development of the Argand diagram, which, while isomorphic to

the Cartesian plane, consists of one real and one imaginary axis, and so not rotationally

symmetric. To add to the confusion, Hamilton in 1843 generalized the complex numbers

to three space, defining the algebra of the quaternions using the basis elements i, j, k that

can also be used as a substitute for three dimensional Cartesian coordinates. This confused

state of affairs, on exactly how to represent three-space coordinates and rotations, was fi-

nally resolved by William Clifford in 1873. Clifford adopted the Cartesian coordinate system

of Descartes, but then also integrated the algebra of complex numbers and quaternions as

the rotation operators within this space. Clifford also achieved a fulfillment of Descartes’

original vision of a vector being able to be manipulated in the same way as normal num-

bers, by deriving a multiplication and division operation for vectors that allowed them to

be treated as algebraic variables. Additionally Clifford’s system extended this idea to its

natural conclusion, allowing allowing not just lines, but also areas and volumes, and their
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compositions, to be also treated in this same way.

B. Clifford’s definition of three-space

How did Clifford solve the problem of forming an integrated description of three-space

combining Cartesian coordinates and the algebra of complex numbers and quaternions, as

well as providing an algebraic treatment of lines, areas and volumes?

Firstly, we represent the three degrees of freedom in a Cartesian coordinate system by the

algebraic constants e1, e2 and e3 as shown in Fig. 1, which we define to have a positive square,

that is e21 = e22 = e23 = 1. The next crucial step is specify these elements as anticommuting,

that is ejek = −ekej for j 6= k. These few definitions are sufficient to define Clifford’s system.

Geometrically, the basis elements e1, e2, e3, the bivectors e2e3, e1e3 and e2e3 and the

trivector e1e2e3, represent unit lines, unit areas, and unit volumes respectively. We also

find that the compound algebraic elements, the bivectors e2e3, e1e3 and e2e3 all square to

minus one, for example, (e1e2)
2 = e1e2e1e2 = −e1e1e2e2 = −1, using the anticommutivity

and positive square of the basis elements. We can now identify an isomorphism of the three

bivectors with the three quaternions of Hamilton, so that i↔ e2e3, j↔ e1e3, k↔ e1e2. Also,

in the plane, the bivector e1e2 can be used as a replacement for the unit imaginary
√
−1,

forming a complex-like number a+ib, where we define i = e1e2. The final compound element,

the trivector j = e1e2e3 also squares to minus one and commutes with all basis elements and

so is isomorphic to the scalar unit imaginary
√
−1 in three dimensions. Now, because the

unit imaginary is no longer required in Clifford’s system, and because the unit imaginary

was first used in complex numbers that are isomorphic to GA in two dimensions, we will

adopt the widely used symbol i = e1e2 to represent the bivector, and in three dimensions,

we will adopt j = e1e2e3, a commonly used symbol in electrical engineering to represent the

unit imaginary. This distinction between two forms of the unit imaginary
√
−1, as i and j

in two and three dimensions respectively, has physical significance when describing Dirac’s

equation for the electron, described later. The basic elements of the algebra used to describe

three dimensional space shown in Fig. 1.

Now, using the trivector j we also find the relations e1e2 = je3, e3e1 = je2 and e2e3 = je1.

For example, je1 = e1e2e3e1 = e21e2e3 = e2e3, as required. These relations can be summarized

by the relation eiej = jεijkek, which we see describes the Pauli algebra, and hence we can use
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FIG. 1: The basic elements of Clifford’s model for three space. This consists of three unit vectors

e1, e2 and e3, three unit areas e2e3, e3e1 and e1e2 and a unit volume j = e1e2e3

Clifford’s basis vectors ek to replace the three Pauli matrices σk commonly used to describe

quantum mechanical spin.

The competing mathematical systems that Clifford unified is shown in Fig. 2. In the

plane the unit imaginary
√
−1 is replaced with the bivector i = e12, using the subscript

notation e12 = e1e2. Hamilton’s three quaternions i, j and k representing rotations about

the three available axes, can be replaced with the bivectors e23, e13 and e12 respectively, as

shown, with the Cartesian axes described by unit vectors e1, e2 and e3.

C. The Clifford vector product

Using the three basis elements we can define a vector v = v1e1+v2e2+v3e3, where vi ∈ <,

and given a second vector u = u1e1 + u2e2 + u3e3, we can find their algebraic product using
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FIG. 2: Clifford’s representation of three space. Firstly, the Cartesian plane is defined by the

vectors e1 and e2, with the bivector e12 identified as the unit imaginary used to define the Argand

diagram. The inverse of a vector v is also shown in red, both for the Cartesian case and the for

the Argand plane. In 3D, defined by the vectors e1, e2 and e3, the non-commuting quaternions i, j

and k are replaced by the three bivectors e23, e13 and e12 as shown.

the distributive law of multiplication over addition, giving

uv (1)

= (e1u1 + e2u2 + e3u3)(e1v1 + e2v2 + e3v3)

= u1v1 + u2v2 + u3v3 + (u2v3 − v2u3)e2e3 + (u1v3 − u3v1)e1e3 + (u1v2 − v1u2)e1e2

= u · v + u ∧ v,

which produces a sum of the dot and wedge products. This algebraic product is commonly

referred to as the geometric product. If we now use the dual relation eiej = jεijkek we can

transform this result to

uv = u1v1 + u2v2 + u3v3 + j ((u2v3 − v2u3)e1 + (u1v3 − u3v1)e2 + (u1v2 − v1u2)e3) (2)

= u · v + ju× v,
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which now forms a resultant in the form of a complex-like number consisting of the dot

and cross products. Both the wedge product form and the cross product form are useful,

though the dual relation, allowing the cross product form, only applies in three dimensions.

Hence we can see that the the dot and the cross products indeed appear intrinsic to three

dimensional space, however the advantage of the Clifford system is that they are unified

into a single invertible number, as shown in Eq. (2). We can also identify a limitation of

defining the cross product as a separately defined product, as it does not naturally extend

to higher dimensional spaces, whereas the formulation in Eq. (1) does. The expression in

Eq. (2) generated by simply expanding the brackets defining two vectors thus provides an

alternative calculation tool to the conventional method of using the determinant of two

vectors embedded in a 3× 3 matrix. Clearly, following Clifford’s treatment of vectors, as in

Eq. (1), it is not possible treat vectors only in terms of traditional row or column vectors,

but rather as a linear combination of the basis elements e1 e2 and e3.

As can be seen from Eq. (1), for the case of a vector multiplied by itself, the wedge

product will be zero and hence the square of a vector v2 = v · v, becomes a scalar quantity.

However this now allows us to define the inverse of a vector v as

v−1 =
1

v2
v. (3)

This gives the result vv−1 = 1
v2vv = 1 as required, so that we form the vector division

u
v

= uv−1.

We can now compare the inverse of a Cartesian vector with the inverse of complex number.

Given a complex number z = reiθ we find the inverse z−1 = (1/r)e−iθ, that has an inverse

length, with a negative angle. For a Cartesian vector v = e1re
iθ = r cos θe1 + r sin θe2 in

Clifford’s system, we find the inverse vector v−1 = (1/r)e1e
iθ = (1/r) cos θe1 + (1/r) sin θe2

that is a vector of inverse length but in the same direction as the original vector, as shown

in Fig. 2. The negative direction for the angle θ for the case of the inverse of a complex

number, forming an inverse rotation, also confirms their role as rotation operators rather

than as a replacement for Cartesian vectors.

As a simple application of Clifford’s geometric product, if we have two vectors a =

a1e1 + a2e2 + a3e3 and b = b1e1 + b2e2 + b3e3, we can find a third vector c = a+b, as shown

in Fig. 3. We then find that

c2 = (a + b)2 = a2 + b2 + ab + ba = a2 + b2 + 2a · b (4)
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using the the result from Eq. (2) that ab + ba = a · b + ja× b + b · a + jb× a = 2a · b =

2|a||b cosC, where C is the angle between the vectors a and b, a result also known as the

cos rule for triangles.

FIG. 3: Deriving the Cos rule for triangles. From the diagram we have the vector relation that

c = a + b, that gives using the geometric product c2 = a2 + b2 + 2a · b.

D. Example 1: Area calculation

FIG. 4: Calculating areas using the geometric product.

Inspecting Fig. 4, we might wish to know the area enclosed by the two vectors, which we

can calculate from a variety of geometrical constructions, to be u1v2 − u2v1. Alternatively,
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from Eq. (1), we can write the product of the two vectors

uv = u · v + u ∧ v = u1v1 + u2v2 + (u1v2 − u2v1)e1e2, (5)

then we can see that the area is the bivector term u∧v. The bivector e1e2 represents a unit

area, and so it is natural to expect this component to represent the area. Therefore we can

write for the area

A = 〈uv〉2, (6)

where the notation 〈uv〉2 means to retain the second grade or bivector terms. Dimensionally

this also makes sense, because we are looking for a result with dimensions of area or meter2.

This argument also applies to three dimensions, where the volume will therefore need to

be grade 3, that is for three vectors we find the enclosed volume V = 〈uvw〉3 as expected.

Thus a routine calculation of the geometric product, followed by the selection of the desired

components dimensionally, allows the relevant information to be extracted.

FIG. 5: Finding the area bounded by a set of vectors.

This principle can also be extended, and for a set of vectors that form a polygon, we can

calculate the area as

A =
1

2
〈ab + bc + cd + da〉2 . (7)

E. The multivector

In GA, the basis elements e1, e2 and e3 are algebraic constants and so we are free to

combine the various scalar, vector, bivector and trivector components. In fact, adding all

available components, we form the space of multivectors <⊕<3⊕
∧2<3⊕

∧3<3, an eight-

dimensional real vector space also denoted by Cl3,0(<), which can be written

M = a+ v + jw + jt, (8)
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GA multivector Alternate formalism Description

v1e1 + v2e2 + v3e3 [v1, v2, v3]
T Vectors/Pauli matrices

a+ ib, i = e12 a+ ib, i =
√
−1 Complex numbers

a+ be23 + ce13 + de12 a+ bi + cj + dk Quaternions/Pauli spinors

E + jB Fµν , µ, ν ∈ {0, 1, 2, 3} Electromagnetic field tensor

a+ E + jB + jb ψµ µ ∈ {0, 1, 2, 3} Dirac electron wave function

TABLE I: Comparison of GA with alternate mathematical formalisms.

which shows in sequence, a scalar a, vector v = vkek, bivector jw = jwkek and trivector

jt terms, where k ∈ {1, 2, 3}. This general three-space multivector can be used to repre-

sent lines, areas and volumes within three dimensions but also a diverse range of physical

phenomena. As already noted the bivectors are isomorphic to the three quaternions i, j, k,

and we find the multivector a+ jb = a+ jb1e1 + jb2e2 + jb3e3 isomorphic to a quaternionic

number q = a + b1i − b2j + b3k. We have already identified e1, e2 and e3 with the Pauli

matrices, and for a Pauli spinor, representing a spin-1
2

particle, we have the mapping

|ψ〉 =

 a+ ia3

−a2 + ia1

↔ ψ = a+ ja1e1 + ja2e2 + ja3e3 = a+ ja, (9)

where i =
√
−1, also mapping to the even sub algebra of the multivector, which shows the

equivalence of GA bivectors, Pauli spinors and quaternions7.

We will also see later how the electromagnetic field antisymmetric tensor F µν8, maps as

follows into the vector and bivector components of the multivector

F µν ↔ F = E + jcB, (10)

with the dual tensor Gµν given in GA by G = jF . We have found that the scalars and

bivectors can be used to represent the Pauli spinors, and the vector and bivector components

used to describe the electromagnetic field and so we might ask if there is any physical

phenomena that requires the full multivector, as shown in Eq. (8) for its representation.

We find, in fact, that the wave function used to represent the electron in Dirac’s relativistic

wave equation, maps to the full multivector.

Hence the great versatility of the three-space multivector is demonstrated in Table I,

being able to replace a large variety of mathematical structures and formalisms, as well as
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elegantly describe many physical phenomena9.

F. Common algebraic operations on a multivector

Descartes claimed that the five common algebraic operations of addition, subtraction,

multiplication, division and square root, could be applied to his line segments, however this

idea can now be extended to not only areas and volumes, but also to the full multivector

shown in Eq. (8). The multivector represents a set of elements, containing not only a line,

an areal element (bivectors) and a volume element (trivector). When algebraic operations

are applied to these sets of geometric elements, we form a new set of geometric elements

within the space of multivectors.

FIG. 6: A multivector M = a+ v + jw + jt representing a point, line, area and volume, that can

be added, subtracted, multiplied or divided by other multivectors within the space of multivectors.

1. Working with multivectors

Addition and subtraction are simply defined by adding like components, that is, if M1 =

a1 + v1 + jw1 + jt1 and M2 = a2 + v2 + jw2 + jt2, then M1 +M2 = (a1 + a2) + (v1 + v2) +

j(w1 + w2) + j(t1 + t2) and similarly for subtraction.

The multiplication operation is given by an algebraic product, similar to the algebraic

product of two vectors, that is

M1M2 = (a1 + v1 + jw1 + jt1)(a2 + v2 + jw2 + jt2) (11)

= (a1a2 + v1 · v2 −w1 ·w2 − t1t2) + (a2v1 + a1v2 − t2w1 − t1w2 − v1 × w2 + v2 × w1)

+ j(a2w1 + a1w2 + t2v1 + t1v2 + v1 × v2 − w1 × w2) + j(a1t2 + a2t1 + v1 · w2 + w1 · v2)
)
,
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where we have used repeatedly the geometric product defined in Eq. (1), with the brackets

showing the scalar, vector, bivector and trivector elements respectively.

For the general multivector M = a+v+jw+jt, it is useful to define two automorphisms.

Firstly reversion, that reverses the order of the basis products, giving M̃ = a+ v− jw− jt

and space inversion M∗ = a−v+ jw− jt. We can then define M † = M̃∗ = a−v− jw+ jt,

that gives MM † = a2 − v2 + w2 − t2 + 2j(at− v ·w). We therefore find the inverse to M

M−1 = M †/(MM †). (12)

The multivector inverse fails to exist when MM † = 0 or when a2+w2 = v2+t2 and at = v·w,

that we can write as the single condition (v+jw)2 = (a+jt)2. The previously defined vector

inverse in Eq. (3) now becomes simply a special case of the general multivector inverse. This

formula also applies unchanged in a one or two dimensional space.

2. The square root of a multivector

In order to fully satisfy Descartes ideal of common algebraic operations being applicable

to geometric quantities, such as lines and areas, we now finally seek the square root of a

multivector. We show the simpler case of two dimensions, leaving the three dimensional

case for the appendix.

Given a general two-dimensional multivector M = a+ v + ib, then seeking a multivector

N , such that N2 = M , we find

N = M
1
2 = ± 1

2c

(
2c2 + v + ib

)
, (13)

where we find from the quadratic formula c2 = a±
√
a2−v2+b2

2
. Now, because multivector

multiplication is associative we can now find all the rational powers Mp/2q , where p, q are

integers. The special cases where the square root fails to exist are M = v + i|v|, or a pure

vector with M = v. Also if v2 > a2 + b2 then we will produce a complex number for c2, but

if we allow the solution space to expand to three dimensions this can be represented by the

unit trivector j, giving c2 = a±j
√
−a2+v2−b2

2
. However to take powers of multivectors, such as

square roots, it is more general to achieve this through logarithms and exponents.
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Exponential map of a multivector

The exponential of a multivector is defined by constructing the Taylor series

eM = 1 +M +
M2

2!
+
M3

3!
+ . . . , (14)

which is absolutely convergent for all multivectors M5.

Given a three-dimensional multivector a + v + jw + jt, then defining F = v + jw, we

find F 2 = (v + jw)2 = v2 −w2 + 2jv ·w. We then define
√
F 2 =

√
−FF † = j|F | and so

F = jF̂ |F |, where F̂ = F/
√
F 2 and F̂ 2 = 1. Hence

ea+v+jw+jt = ea+jtej|F |F̂ (15)

= ea+jt

(
1 + jF̂ |F | − |F |

2

2!
− jF̂ |F |3

3!
+
|F |4

4!
+ . . .

)
= ea+jt

(
cos |F |+ jF̂ sin |F |

)
.

If |F | = 0, then referring to the second line of the derivation above, we see that all terms

following jF̂ |F | are zero, and so, in this case ea+v+jw+jt = ea+jt(1 + v + jw).

We can thus write a multivector in polar form

a+ v + jw + jt = rejφF/|F | = r

(
cosφ+

F

|F |
sinφ

)
, (16)

where r = |M | and φ = arccosh
(
a+jt
|M |

)
. Hence

log(a+ v + jw + jt) = log |M |+ arccos

(
a+ jt

|M |

)
F

|F |
. (17)

This result being a generalization of the well known result for quaternions, when v = t = 0.

We can now also define the multivector power MP = elog(M)P , where P can now also be

generalized to a multivector.

For example, we could raise the multivector 2+ v̂ to the power of the unit vector v̂, giving

(2 + v̂)v̂ = elog(2+v̂)v̂ = 2 + v̂, (18)

using Eq. (17) and Eq. (15).
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G. The geometry of the multivector

Having shown how the multivector, representing a set of geometric elements, consisting

of a point, line, area and volume, is subject to the common algebraic operations, we can

now ask some elementary geometrical questions such as: What is the result of multiplying

a line by an area? We can calculate this for a line v and a generally oriented area jw as

vjw = jv ∧ w + jv · w = −v × w + jv · w. As might have been expected this forms a

volume jv ·w, and if the line is not perpendicular to the plane, we also produce a line, given

by the vector −v ×w in the plane of jw and orthogonal to v, as shown in Fig. 7.

FIG. 7: A line v multiplied by an area jw. This produces a volume jv ·w as expected but also a

line −v ×w perpendicular to v in the plane of jw.

H. Reflection of vectors

Assuming a light ray with an incident vector a, is impinging on a plane mirror jn̂, with

a unit normal n̂, find the reflected vector. We find the reflected vector

b = −n̂an̂. (19)

If we reflect b in the same mirror we will recover the original vector a, however if we

reflected b in a slight rotated mirror plane jm̂ we will in fact find a rotated vector

b = m̂n̂an̂m̂ = (m̂ · n̂+ m̂ ∧ n̂)a(n̂ · m̂+ n̂ ∧ m̂). (20)

Now we have the unit bivector B̂ = m̂ ∧ n̂/ sin θ describing the plane of rotation and

θ = arccos m̂ · n̂ is the angle between the vectors m̂ and n̂, then

b = (cos θ + B̂ sin θ)a(cos θ − B̂ sin θ) = eθB̂ae−θB̂, (21)
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FIG. 8: An light ray incident on a plane mirror jn̂. We find the reflected ray b = −n̂an̂.

which will rotate the vector a an angle of 2θ radians in the plane described by the unit

bivector B̂.

I. Rotation of vectors

If we wish to rotate a vector v by an angle θ, then we use the operation,

v′ = RvR̃ = ejwθ/2ve−jwθ/2 (22)

where R = ejŵθ/2. The unit bivector jŵ sets the plane of rotation, with a perpendicular

axis ŵ, that rotates all vectors θ radians within this plane. In two dimensions this formula

reduces to the single sided operator v′ = eiwθv due to the anticommuting nature of i = e12

over vectors. The rotation formula in two dimension now analogous to the conventional

formula for the rotation of vectors in the Argand plane.

Rotations in geometric algebra are superior to orthogonal matrices in representing 3D

rotations on four points: (i) It is easier to determine the bivector representation of a ro-

tation than the matrix representation, (ii) they avoid the problem of gimbal lock, (iii) It

is more efficient to multiply bivectors than matrices, and (iv) if a bivector product is not

quite normalized due to rounding errors, then we simply divide by its norm, whereas if

a product of orthogonal matrices is not orthogonal, then we need to use Gram-Schmidt

orthonormalization, which is numerically expensive and not canonical.
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J. Precession of a spin-12 particle

We can model a mixed state quantum spin-1
2

particle by the multivector

ρ =
1

2
(1 + u) (23)

where the unit vector u, represents the polarization axis of the particle. This approach is in

fact equivalent to the density matrix formulation of quantum mechanics. We have ρ2 = ρ

when u a unit vector, and if u, is less than a unit vector, then we are modeling a mixed state.

So placing our particle in a magnetic field B, then using the rotation formula in Eq. (22),

we find the precession about the B direction, given by

ρ′ = ejBtρe−jBt =
1

2
(1 + ejBtue−jBt), (24)

where we can see the precession is steady in time, and the rate of precession given by the

strength of the field.

K. Interpreting solutions of quadratics using GA

Imaginary numbers first appeared as the roots to quadratic equations, such as x2 +4 = 0,

but Gauss noted in 1825 that ‘The true metaphysics of the square root of minus one is

elusive’.

However, with GA we can now supply a real geometrical solution to this equation, using

the unit area, as x = 2i, recalling that i = e12, that on substitution gives (2e12)
2 + 4 = 0,

that indeed solves the equation. In fact many geometrical square roots of minus one exist,

and in two dimensions we can write a general solution to M2 = −1, as M = x + i
√

1 + x2,

where x = x1e1 + x2e2.

Hence in GA, we can write a solution x = a + ib, that from deMoiver’s theorem, gives

R = reiθ = r(cos θ + i sin θ). In two-space we can rotate vectors using the equation

v′ = Rv, (25)

that will rotate a vector v = v1e1 + v2e2 by θ radians in a clockwise direction. For example,

if R = eiπ/2 = i = e12, then if v = e2, then v′ = Rv = e1e2e2 = e1, or a clockwise

rotation by ninety degrees. Also, if we seek to rotate a vector by π radians then we find
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FIG. 9: Graphical solution to a quadratic equation. To solve graphically, we need to vary r ∈ <

and θ ∈ [0, π/2) while ensuring the arrows close in a triangle. Note that we have an Isocelles

triangle and real solutions correspond to θ = 0.

that v′ = eiπv = −v. This also illuminates the mysterious formula eiπ = −1, that simply

means in this context, that rotating a vector by π radians flips its sign.

Hence solutions of quadratics using complex numbers, imply we are using rotation oper-

ators in the plane, instead of simply scaling along the real number line. This also explains

why we always have two symmetrical complex solutions, if they exist, as they represent ±θ

directions for the rotation operation. So given a quadratic equation ax2 + bx + c = 0, and

substituting a rotor solution x = −re−iθ, we can acting with the quadratic on a general

vector v on the left, to produce the vector equation

ar2e2iθv − breiθv + cv = 0 (26)

where we used the property of exponentials that (eiθ)2 = e2iθ. Hence, in order to solve the

quadratic these three vectors must sum to zero, that can be shown visually in Fig. 9, where,

without loss of generality, we have chosen a reference direction v = e1. From Fig. 9 we find

r2 = c
a

that gives r =
√

c
a

and θ = arccos
(

b
2
√
ac

)
.

1. Quadratic equation example

Assuming we are required to solve the quadratic

x2 + x+ 1 = 0 (27)
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FIG. 10: Solving x2 + x+ 1 = 0 graphically. From the Isocelles triangle we note that r = ±1, and

hence we have an equilateral triangle, which implies θ = π/3. Therefore x = −re±iθ = −1
2 ± i

√
3
2 .

then we find the Isocelles triangle shown in Fig. 10. From the property of Isocelles triangles

we have r = 1 and we therefore realise, in this case, that we have an equilateral triangle,

and hence θ = π
3
, and hence we have the solution

x = −e±iπ/3 = −1

2
± e12

√
3

2
↔ −1

2
±
√
−1

√
3

2
, (28)

in agreement with the quadratic formula.

Other extensions now present themselves for the quadratic equation, such as expanding

the solution space further to allow x to be a quaternion (represented by bivectors), or to

promote x, and a, b, c to become full multivectors.

L. Maxwell’s equations in GA

Electromagnetism is one of the foundational theories of physics and Maxwell’s equations

were first published in 186510. Maxwell’s original equations were written for three-space,

requiring 12 equations in 12 unknowns. These equations were later rewritten by Heaviside

and Gibbs, in the newly developed formalism of dot and cross products, which reduced them

18



to the four equations now seen in most modern textbooks8 and shown below in S.I. units

∇ · E =
ρ

ε
, (Gauss’ law); (29)

∇× E + ∂tB = 0, (Faraday’s law);

∇×B− 1

c2
∂tE = µ0J, (Ampère’s law);

∇ ·B = 0, (Gauss’ law of magnetism),

where E,B,J are conventional vector fields, with E the electric field strength and B the

magnetic field strength and ∇ = e1
∂
∂x

+ e2
∂
∂y

+ e3
∂
∂z

the three gradient.

However inspecting the form of the geometric product for uv = u ·v+ ju×v, we can see

that these equations can now be combined. If we multiply the second and fourth equations

by j, then the first and second equations can be combined along with the third and fourth

to give

∇E + ∂tjB =
ρ

ε
(30)

∇jB +
1

c2
∂tE = −µ0J,

where ∇E = ∇ · E + j∇ × E. However, these two remaining equations can now be added

to produce

(
1

c
∂t +∇)(E + jcB) =

ρ

ε
− cµ0J. (31)

If we define the electromagnetic field F = E+ jcB and the four-gradient ∂ = 1
c
∂t +∇, with

the source J = ρ
ε
− cµ0J, we find

∂F = J. (32)

We can see that the B field, is written as a pseudovector jB, as part of the field F . The

different nature of the E and B fields is evident from the GA formalism but obscured in the

tensor and Gibbs’ vector formalism, where both are represented as polar vectors.

Also if we wished to describe Maxwell’s original four equations as shown in Eq. (29) in

plain English we would find it very cumbersome, however with GA, inspecting Eq. (32), we

can simply say that the gradient of the field F observed is proportional to the electromagnetic

sources present.
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M. The Dirac equation

The Dirac equation is the relativistic wave equation describing spin-1
2

particles. We find

using GA, that we can write the free Dirac equation in real three-space as

∂F = −mF ∗i (33)

where the field F is now the full multivector F = a+ E + jB + jb.

The similarity of Dirac’s equation with Maxwell’s equation now becomes evident, com-

paring Eq. (33) and Eq. (32). Also, with the GA form of the Dirac equation, we can see

that it describes a multivector field, given by Eq. (8), over real three-space, that is, at each

point in three-space we have a multivector valued field defined. This is clearly a significantly

simplified representation of the Dirac equation, which is normally considered embedded in

four-dimensional spacetime employing 4× 4 complex matrices, as shown in Appendix B.

II. CONCLUSION

In this paper we ask the question ‘What is the simplest and most natural mathematical

representation of three-dimensional physical space?’ and we conclude that GA provides the

most natural formalism providing an intuitive representation of the geometric quantities

points, lines, areas and volumes and subsuming the algebra of complex numbers and quater-

nions into a algebraic system over a real field. We claim that Clifford’s GA is the simplest

mathematical system conceivable that successfully represent the key properties of physical

space. We illustrate the improved representation with the two examples of Maxwell’s equa-

tions and the Dirac equation, both being written as single equations in real three dimensional

space.

We also show how the multivector, shown in Eq. (8), can be viewed as a generalized

number, useful in representing different physical and geometrical quantities, amenable to

the basic operations of addition, subtraction, multiplication, division and square root. We

showed how a general quadratic equation can be solved without recourse to complex num-

bers, giving the solutions geometric meaning as rotations in the plane.

We have adopted the symbols i = e12 in two dimensions and j = e123 for three dimensions

as two geometric replacements for the generic scalar unit imaginary
√
−1, and we noted a

distinction between i and j in the GA form of the Dirac equation in Eq. (33). We also think
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that this notation has merit when extended to higher dimensions. For four and five dimen-

sions for example, we suggest the notation I = e1234 and J = e12345, where the capitalization

indicates that they have a positive square, but capital I like lower case i is anticommut-

ing and J is commuting similar to j. As we continue to higher dimension this patterns of

positive or negative squares, and commuting versus anticommmuting pseudoscalars repeats

with a period of four.

The development of GA is now expanding rapidly, with benefits being found in research

into black holes11, quantum field theory12, quantum tunneling13, quantum computing14,

general relativity and cosmology15, beam dynamics and buckling16, computer vision17 and

EPR-Bell experiments18.

Many commentators believe that Cliffords mathematical system ‘should have gone on to

dominate mathematical physics’19, but, Clifford died young, at the age of just 33 and vector

calculus was heavily promoted by Gibbs and rapidly became popular, eclipsing Clifford’s

work, which in comparison appeared strange with its non-commuting variables. In hindsight,

non-commuting reflects the non-commutivity of rotations in three-space, and hence is exactly

what is required for these variables. Gibb’s system of vectors was fairly efficient with regard

to Maxwell’s equations, but with the new scientific discoveries of quantum mechanics and

relativity if was found that standard vector analysis needed to be supplemented by many

other mathematical techniques such as: tensors, spinors, matrix algebra, Hilbert spaces,

differential forms etc. and as noted in20, ‘The result is a bewildering plethora of mathematical

techniques which require much learning and teaching, which tend to fragment the subject

and which embody wasteful overlaps and requirements of translation.’ Conversely as we

have seen GA is a natural formalism for not only Maxwell’s equations (Eq. (32) and also

quantum mechanics (Eq. (33) but also special relativity21.

We also have shown that geometric algebra provides a natural representation of the basic

properties of physical space, allowing intuitive manipulation of lines, areas and volumes

using elementary algebraic operations, such as addition and multiplication. Vectors can

now be treated like normal algebraic quantities that also have an inverse, with the added

simplification that the dot and cross products do not need to be separately defined but

are produced as a byproduct from the geometric product. Hence it would appear to be

an excellent formalism to introduce into the school curriculum as a powerful tool for basic

geometrical analysis of space, that also a formalism that can be extended to the study of
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university level subjects in electromagnetism, quantum theory and special relativity.

III. APPENDIX

A. Dirac equation

Dirac extended Schrödinger’s and Pauli’s equation into a relativistic setting in 1928,

producing the equation

γµ∂µψ = −mψi, (34)

where i =
√
−1 and which uses the Einstein summation convention, where

γ0 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , γ1 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , γ2 =


0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0

 , γ3 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 .
(35)

The gamma matrices satisfy the relation and

{γµ, γν} = 2gµν , (36)

as expected for a set of orthonormal basis vectors. Hence, the opinion of many people, that

Dirac rediscovered Clifford’s geometric algebra with its anti-commuting basis vectors.

Dirac’s complex, four-space equation using 4× 4 complex matrices, is isomorphic to the

real three-space version, shown in Eq. (33).

B. The square root of a three dimensional multivector

To find the square root of a multivector M , we need to find a multivector N , such that

N2 = M where

M = a+ v + jw + jb (37)

is a general multivector. In order to simplify calculations we write

M = (a+ jb)(1 + m + jn) (38)

where by inspection m = av+bw
a2+b2

, n = aw−bv
a2+b2

. Clearly this result is not valid if a = b = 0

implying a multivector M = v + jw, which can be found to have the solution sinh θ =
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− q0
p0
±
√

q20
p20

+ 1, where q0 = v2−w2

4
and p0 = 1

2
v ·w. A subclass of solutions is also produced

if p0 = 0, giving c = d = q
1/4
0 . The case with q0 = 0 in fact appears to have no solution,

that is the multivector M = u + ju⊥, has no square root, although it can be approximated

arbitrarily closely with N = ε+ u
2ε

+ iu⊥

2ε
+ ε, giving N2 ≈M = u+ ju⊥+ 2jε2. So for cases

with a, b 6= 0 we seek a multivector such that

= (c+ x + jy + jd)(c+ x + jy + jd) (39)

= (c2 + x2 − y2 − d2) + 2(cx− dy) + 2j(cy + dx) + 2j(cd+ x · y)

= 1 + m + jn.

We can see that now we have constructed a simplified problem, of the square root of a

multivector with b = 0, and a = 1, but from which we can reconstruct the full square root.

Inspecting the six linear equations formed from the vector and trivector components we can

see that we require

x =
dn + cm

2h
, y =

cn− dm
2h

(40)

where h = c2 +d2. For the case h = 0, which implies c = d = 0, giving N2 = a+ jb, showing

that N is the square root of complex-like numbers. The square root of a complex number

is calculated later in the appendix, and so for more general cases we can assume h > 0. We

now need to just find c and d from the two remaining equations in Eq. (39) of

c2 − d2 +
(m2 − n2)(c2 − d2)

4h2
+

4cdm · n
4h2

= 1 (41)

cd− cd(m2 − n2) + (c2 − d2)m · n
4h2

= 0

and after multiplying through by h2 and making the replacement q = m2−n2

4
and p = 1

2
m ·n,

we find

(c2 − d2)(c2 + d2)2 + q(c2 − d2) + 2cdp = (c2 + d2)2 (42)

2cd(c2 + d2)2 − 2cdq + (c2 − d2)p = 0.

We have difficult simultaneous polynomials in c and d, and so it is now convenient to make

the substitution

c = r cosh
θ

2
, d = r sinh

θ

2
, (43)
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producing

r4 cosh2 θ + q + p sinh θ = r2 cosh2 θ (44)

r4 sinh θ cosh2 θ − sinh θq + p = 0.

From the second equation in Eq. (44), we find

r = ±
(
q − p cosechθ

cosh2 θ

) 1
4

. (45)

We can see that either sign for r satisfies the two equations of Eq. (44) although this will

only flip the overall sign of the square root, as expected, giving us a square root for the

multivector of either sign. The term under the fourth root, q − p cosechθ in fact remains

non-negative, and hence r remains real. On substitution back into the first equation in

Eq. (44) we find the trigonometric equation,

2q − p cosechθ(1− sinh2 θ) = cosh θ
√
q − p cosechθ (46)

and substituting x = sinh θ we find the quartic equation in x

(q − p2)x4 − p(1 + 4q)x3 +
(
2p2 − q(4q − 1)

)
x2 + p(4q − 1)x− p2 = 0 (47)

which has a solution

x =
p(1 + 4q + s)± u

4(q − p2)
, (48)

where s = +
√

(4q − 1)2 + 16p2 and u =
√

2
√

16q3 + 12qp2 + p2 − 4q2 + s(p2 + 4q2). We

can see that s remains real, but if we allow a negative square root of s inside the equation

for u, then we will produce an imaginary term and hence we need to maintain a positive

square root for s which leaves just the two real solutions to the quartic as shown in Eq. (48).

Hence we have two distinct θ = arcsinhx, which imply two distinct square roots, ignoring

signs. We can see that there is a special case q = p2 that will reduce Eq. (47) to a cubic,

p(1 + 4p2)x3 + p2(4p2 − 3)x2 − p(4p2 − 1)x+ p2 = 0, (49)

which has the single real solution x = −p, giving a single root with θ = −arcsinhp. If

p = 0, then the cubic fails and we find two cases dependent on q, with firstly cosh θ = 2
√
q,

requiring q ≥ 1
4

and secondly θ = 0 with r = c, where c =
√

1+
√
1−4q
2

, valid for q ≤ 1
4
.

24



The square root of a+ jb is easily found to be f + jg = ± 1√
2
(
√
a+
√
h0 + j

√
−a+

√
h0)

Hence for M given by Eq. (37), we find the square root

M
1
2 = ±(c+ x + jy + jd) (f + jg) , (50)

where c, d given by Eq. (43) and x,y given by Eq. (40).
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