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A B S T R A C T

Backdoor attacks on deep learning (DL) models are recognized as one of the most alarming security threats,
particularly in security-critical applications. A primary source of backdoor introduction is data outsourcing such
as when data is aggregated from third parties or end Internet of Things (IoT) devices, which are susceptible
to various attacks. Significant efforts have been made to counteract backdoor attacks through defensive
measures. However, the majority of them are ineffective to either evolving trigger types or backdoor types.
This study proposes a poisoned data detection method, termed as LABOR (unsupervised Learning Assisted
supervised learning data poisoning based Backd Or Removal), by incorporating a little human intelligence
feedback. LABOR is specifically devised to counter backdoor induced by dirty-label data poisoning on the
most common classification tasks. The key insight is that regardless of the underlying trigger types (e.g., patch
or imperceptible triggers) and intended backdoor types (e.g., universal or partial backdoor), the poisoned
samples still preserve the semantic features of their original classes. By clustering these poisoned samples
based on their original categories through unsupervised learning, with category identification assisted by
human intelligence, LABOR can detect and remove poisoned samples by identifying discrepancies between
cluster categories and classification model predictions. Extensive experiments on eight benchmark datasets,
including an intrusion detection dataset relevant to IoT device protection, validate LABOR’s effectiveness in
combating dirty-label poisoning-based backdoor attacks. LABOR’s robustness is further demonstrated across
various trigger and backdoor types, as well as diverse data modalities, including image, audio and text.
1. Introduction

Deep learning (DL) has been widely adopted in numerous appli-
cations, including object detection, face recognition, fraud detection,
self-driving systems, and shard scheduling problem [1], due to its ex-
ceptional performance [2]. This success has extended to artificial intel-
ligence generated content (AIGC), leveraging large models such as text-
to-image diffusion models [3] and large language models (LLMs) [4].
The increasingly complex model architectures are a key factor driving
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this impressive performance. However, as the number of model pa-
rameters scales up to billions, the benefits of solely enhancing model
complexity diminish. It is now recognized that data quality plays an
increasingly crucial role in determining model performance [5].

However, acquiring high-quality data is challenging due to the
labor-intensive nature and domain knowledge requirements involved.
This often necessitates data crowdsourcing or outsourcing through
third-party platforms, such as Amazon Mechanical Turk2 and Scale
AI.3 Despite its efficiency in collecting and annotating data, such data
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outsourcing is vulnerable to the security threat of data poisoning [6–
9]. One primary objective of data poisoning attacks is to implant a
ackdoor into the DL model trained on the compromised data. Data

poisoning-based backdoor attacks have been demonstrated to be per-
ilous in various applications, including object detection [8], malware
etection [10], and even in the rapidly emerging field of LLMs [11].

Also note that sensing data from Internet of Thing (IoT) devices is
vulnerable to data poisoning because these devices often operate in
untrusted environments with limited security, making it easier for
attackers to inject false or malicious data that can corrupt the integrity
of the system’s decision-making processes.

Therefore, it is imperative to winnow poisoned data points in the
raining dataset, preferably as a once-off operation, so that the audited
raining dataset can be safely later for training. In this context, the
raining phase poisoned data detection studies [12–18] have been

proposed to counter data poisoning by identifying and removing them
(detailed in Section 2.5). These defenses have shown to be effective
gainst different backdoor types and trigger types, however, the ma-
ority of them [14–18] rely on a (small) reserved clean dataset. Such a
equirement may not be met in practice, rendering them fall short in
uch situations. Some detection methods [12,13] are only effective for
niversal backdoor types.

We note that these extant poisoned data detection studies all focus
n an automated detection operation, which has achieved great success
n defeating data poisoning based backdoor attacks. In contrast, human
ntelligence feedback has not been explored in detecting poisoned
amples. Considering the success of human intelligence feedback in
arious other fields or applications Section 2.2, this work attempts to
nswer the following research questions.

(R1) Can human intelligence be helpful for identifying poisoned
samples? (R2) If so, to what extent is it helpful?

We propose LABOR to explore human intelligence in detecting
oisoned samples used for supervised classification tasks. The key is
o first leverage unsupervised learning to group all data points into
roups (the clusters are not labeled) and then to annotate each group
ith little human intelligence. In this context, we conclude that human

ntelligence is of great importance for detecting poisoned samples
R1). We show that LABOR is independent of trigger types as well as
ackdoor types as long as data poisoning is carried out through typical
irty-label poisoning (R2).

We summarize our contributions in threefold:

1. We propose LABOR, for the first time, exploiting (little) human
intelligence in the loop of detecting poisoned samples.

2. We constructively utilize unsupervised learning to assist poi-
soned sample detection on supervised classification tasks, build-
ing upon little human intelligence feedback.

3. We extensively validate the efficacy and effectiveness of LABOR
on 8 benchmark datasets in detecting dirty-label data poison-
ing regardless of trigger types, backdoor types, and even data
modalities.

The remainder of this work is structured as follows. Section 2
presents the preliminaries and related work. Section 3 defines the threat
model for LABOR and elaborates on its implementation. Section 4 pro-
ides comprehensive experimental validations of LABOR. Section 5 pro-
ides further discussion and additional experiments. Finally, Section 6

concludes the study.

2. Related work

2.1. Supervised learning and unsupervised learning

Supervised learning is a machine learning paradigm where mod-
els are trained on labeled datasets, which means that each training
2

example is paired with a ground-truth label. The goal is to learn
a mapping from inputs to outputs that generalizes well to unseen
data. This paradigm is widely used for tasks such as classification and
regression. Algorithms such as support vector machines (SVMs) [19],
decision trees [20], and deep neural networks [2], depend on annotated
data to determine decision boundaries or regression functions.

Unsupervised learning deals with data that do not have annotated
labels. The objective is to discover the inherent structure within a
et of data points. It is useful for tasks like clustering, association
nd dimensionality reduction. Algorithms such as 𝑘-means cluster-
ng [21], principal component analysis (PCA) [22], and hierarchical

clustering [23], do not rely on annotated data, but instead identify
patterns and relationships within the data itself. These techniques are
particularly valuable when exploring new datasets or when labeling
data is prohibitively expensive.

This work mainly uses clustering. It is one of the primary tech-
iques in unsupervised learning, aiming to group a set of objects so
hat objects in the same group (or cluster) are more similar to each

other than to those in other groups. For clustering algorithms, this
work mainly uses MoCo [24] and 𝑘-means [21] clustering to identify
potentially contaminated samples. MoCo is a contrastive learning-based
clustering algorithm. It leverages a contrastive learning mechanism
to map similar data samples into a close representation space, thus
achieving data clustering. MoCo employs a dynamic ‘queue’ mecha-
nism and a momentum encoder to maintain consistent representations,
enabling it to capture similarities between samples without labels.
This makes MoCo well-suited for extracting structured information
from unlabeled data. 𝑘-means is a classical unsupervised clustering
algorithm that partitions data into a predefined number of clusters (𝑘)
by minimizing the distance of each data point to its assigned cluster
center. Through iterative adjustments of the cluster centers, 𝑘-means
continues until all data points are stably assigned. It is widely used
for preliminary clustering tasks in data analysis. Common clustering
algorithms include 𝑘-means [21], DBSCAN [25], and Gaussian Mixture
Models (GMM) [26]. These methods are widely used in various fields,
such as market research [27], bioinformatics [28], and image segmen-
tation [29]. The choice of clustering algorithm depends on the nature
of the data and the specific requirements of the task. For example, 𝑘-

eans is effective for well-separated clusters, while DBSCAN is robust
o noise and outliers [30]. Now clustering also proposes more emerging

clustering approaches such as IK-USPEC [31], an ultra-scalable spectral
clustering algorithm that integrates the Isolation Kernel to improve
handling of datasets with heterogeneous densities.

2.2. Human intelligence

Incorporation of human intelligence feedback has multiple advan-
ages. Firstly, human experts can discover and fix the loopholes and
rrors in the model in a timely manner by reviewing and analyzing

the model output results [32]. Secondly, human intelligent feedback
an help the model better understand and handle abnormal situa-

tions, improving the robustness and adaptability of the model [33].
Finally, human intelligent feedback can continuously improve the per-
formance and reliability of the model through continuous monitoring
and optimization of the model [34].

Human intelligence feedback is widely used in several fields. For
example, in medical diagnosis, human experts can ensure the accuracy
nd reliability of the diagnosis by reviewing the diagnostic results of
he model [35]. In automated driving, human experts can improve the

safety and reliability of the automated driving system by supervising
the decision-making process of the model [36]. In addition, human
intelligence feedback plays an equally important role in areas such as
financial analyses and smart homes [32]. It has recently been used to
align behaviors of large language models [37].
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2.3. Backdoor attacks

The backdoor attack causes the infected backdoor to misbehave
ccording to the attacker’s willingness when input contains the secret

trigger [6,38]. However, the backdoored model functions normally as
ts clean model counterpart in the absence of the trigger. The back-
oor can be implanted through data poisoning [8,39] e.g., under data

outsourcing or/and model training regularization, e.g., under model
utsourcing [40].

∙Backdoor Type. The most well-studied backdoor type is the universal
backdoor or source-class-agnostic backdoor. Regardless of the sam-
ple’s source classes, any sample containing the trigger will trigger the
universal backdoor [41]. The partial backdoor or source-class-specific
ackdoor is only activated when the sample is from a source class and
ontains the trigger at the same time. The partial backdoor will not
e fired even if the sample contains the trigger but is from a non-
ource class [42,43]. There are other backdoor-type variants upon the

universal backdoor or partial backdoor.
The All-to-All (A2 A) attack is a variant of a partial backdoor, where

 sample from the, e.g., 𝑖t h class will be misclassified into the target (𝑖+
1)t h class [44,45]. This means that the backdoor effect depends on the
ource class. The Multiple Trigger Multiple Backdoor (MTMB) attack

is a variant of a universal backdoor. An attacker implants multiple
backdoors in the model, each backdoor is associated with a trigger. Any
sample carrying a trigger will hijack the infected model and misclassify
it into the trigger corresponding backdoor (e.g., targeted label) [46].

∙Trigger Type. A trigger is embedded in the input and can activate
the backdoor in an infected model once the trigger-carrying input
is processed by the model. For image-based modalities, the trigger
might be a patch [44], which can be placed at a fixed location or a
dynamic one [47]. Triggers can be either visible or invisible [41]. While
most existing studies focus on digital triggers, natural objects [8] and
henomena can also serve as triggers [48]. It is important to note that

a new type of trigger does not necessarily result in a new backdoor
type. More specifically, backdoor type and trigger type are orthogonal
concepts—different trigger designs can be employed to achieve the
same backdoor effects, such as universal or partial backdoor effects.

2.4. IoT under backdoor attacks

The Internet of Things (IoT) refers to a network of interconnected
devices that collect and exchange data, playing a pivotal role in various
applications, from smart homes to industrial automation. As IoT devices
proliferate, they become attractive targets for cyber attacks, including
backdoor attacks. These devices often operate in untrusted environ-
ments, making them particularly vulnerable to data poisoning attacks
that can implant malicious backdoors within their machine-learning
models.

The importance of securing IoT systems against backdoor attacks
cannot be overstated. These attacks can compromise the integrity of
IoT applications, leading to unauthorized access and manipulation of
ritical data. Recent studies [49] have highlighted the inherent vulner-
bilities of IoT devices, emphasizing the need for robust defenses to
itigate these risks. For example, it has been shown [50] that many

IoT devices lack sufficient security measures, making them easy targets
for attackers to exploit weaknesses in their machine-learning models.

To illustrate the growing concern surrounding IoT vulnerabilities,
recent work has focused on developing methodologies to detect and
revent data poisoning in these devices. Such studies emphasize the
ecessity of incorporating advanced defense mechanisms, like LABOR,
o enhance the resilience of IoT systems against sophisticated attacks.
3

2.5. Training phase backdoor detection

In the context of data outsourcing, backdoors are often introduced
hrough data poisoning. To counteract this, two main strategies are
mployed: prevention and detection. Generally, prevention methods
im to train a clean model on a poisoned training dataset [51,52];

however, they struggle to accurately identify poisoned data points.
Consequently, these methods are unsuitable when the same dataset is
used to train different models.

In contrast, detection methods focus on making the poisoned train-
ing dataset reusable by accurately identifying and removing these
poisoned data points. Such detection methods are crucial, as they allow
data curators to thoroughly cleanse the data before it is made available
for use. Significant efforts have been made in this area of research.

The Spectral Signature method [12] detects poisoned samples by
analyzing the covariance spectral characteristics of the model’s poten-
tial representations. Similarly, the Spectre [14] effectively identifies
and removes poisoned samples by amplifying their spectral character-
istics using clean samples. However, both of these methods require
knowledge of the poisoning rate to set a threshold for removing poi-
soned samples based on anomaly scores, which may not be feasible in
practice.

Other approaches include AC [13], which applies 2-means cluster-
ing to analyze the activation of hidden layers and detect categories
ffected by poisoning. The SCAn method [15] decomposes image repre-

sentations into identity and change components, detecting the presence
of multiple identity vectors within categories to identify poisoned
samples. While effective for partial backdoors, SCAn is sensitive to
dynamic trigger designs. These methods typically rely on the first-
moment differences between benign and triggered samples in potential
representations. Beatrix [16] approaches trigger sample detection as
an out-of-distribution detection problem by performing higher-order
tatistical analysis in the Gram feature space. The CT method [53]

trains a model on a weighted combination of clean and poisoned
data with random labels, preventing the model from fitting the clean
ortion and thus identifying labeled, consistent poisoned samples. The

ASSET method [18] first minimizes the loss on clean data and then
aximizes the same loss on the entire dataset to amplify the difference

etween poisoned and clean samples, facilitating the identification of
oisoned samples. The TellTale [54] leverages discernible trajectory

between poisoned and benign samples to identify poisoned ones, in
which differentiation is enhanced through spectrum transformation.

We note that all of these detection methods [13,15,16,18,53,54] pri-
marily focus on automated processes, with none incorporating human
intelligence feedback into the loop. It remains unclear whether human
intelligence could be beneficial in detecting poisoned data points, and
how to effectively integrate human expertise into the detection process
has yet to be explored.

3. LABOR

This section begins with the definition of the threat model. Subse-
quently, we present an overview and then detail the specific steps of
its implementation.

3.1. Threat model

Attacker. This work focuses on the data outsourcing scenario, where
the training dataset is sourced from third parties. In this context, the
attacker can poison a portion of the dataset before sending it to the
data curator; however, the attacker has no control over the training
process. The dataset is intended for supervised classification tasks,
and we assume the attacker employs dirty-label poisoning. This type
of poisoning is particularly concerning because it can achieve a high

attack success rate with a low poisoning rate. Although there is an
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Fig. 1. The overview of LABOR.
inconsistency between the label and its content, the trigger can be
imperceptible, and the poisoning rate can be minimal. As a result, if
the poisoned samples are visually detected, the attacker can dismiss
them as noisy data points. Given that human inspection of each sample
is prohibitively expensive, this strategy is especially effective. We also
consider the implications of clean-label poisoning as an alternative
attack vector, where the attacker injects samples with imperceptible
triggers but maintains consistent labels. Although clean-label poisoning
often presents a lower attack success rate compared to dirty-label
poisoning, its subtler nature can evade human inspections and some
defenses. But it can be effectively defeated through SOTA defenses such
as ASSET [18]. We propose complementarily employing LABOR and
SOTA defenses to mitigate a diverse range of attack vectors including
clean-label poisoning, which details are deferred to Section 5.7.

Defender. As for the defender, who is the data curator, the defender
aims to detect poisoned samples once-off, so that the cleansed training
dataset can be reused later on. The defender has full access to the
training dataset and controls the training process. However, unlike
extant poisoned data detection methods [14–18] that rely on a (small)
reserved clean dataset, we relax the assumption that the defender has
no such reserved clean dataset. In addition, the attacker has no prior
knowledge of the trigger type and backdoor type that the attacker
exploits.

3.2. Detection overview

The LABOR method constructively integrates unsupervised learn-
ing to enhance the detection of poisoned data points in supervised
learning tasks. It achieves this by leveraging minimal human intelli-
gence feedback to effectively annotate the clusters identified through
unsupervised learning. The overview of LABOR is presented in Fig. 1.
LABOR consists of the following steps:

Supervised Training. Initially, a dataset containing various types of
images or other modal data is prepared. This dataset is used to train
and test the model. Step 1⃝ trains the classification model through
supervised learning without any specific regularization. In case the
training dataset is poisoned, the trained model is backdoored and will
misclassify the poisoned points into the targeted label.

Unsupervised Training. In step 2⃝, the same training dataset is in-
put into a clustering algorithm, a widely used unsupervised learning
method. Since the number of categories is known to the data curator,
the number of clusters is set to match the number of categories.
The clustering algorithm organizes the data points in an unsupervised
manner, revealing the natural distribution and structure within the
dataset. The resulting clusters are then used to compare and evaluate
the inference outcomes of the supervised learning model for each data
sample.

Human Intelligence Feedback. The clustered data points from step
2⃝ do not initially have labels. The LABOR 3⃝ incorporates human

intelligence by manually tagging these clusters. This tagging process
requires minimal effort, as the data curator only needs to randomly
4

Fig. 2. Tagging accuracy as a relationship of the manually inspected number of samples
in a cluster. Clustering accuracy is 80%.

inspect a few data points within each cluster to assign its ground-truth
label accurately. To formulate, suppose the clustering accuracy is 𝑝, the
curator randomly selects 𝑛 samples, the tag of 𝑖t h label is determined
if the majority of samples belong to the 𝑖t h label. In this process,
the number of samples n chosen for incorporating human intelligence
feedback varies based on the cluster’s characteristics, with large or
diverse clusters requiring 15–20 samples, while small or homogeneous
clusters need only 5–10 samples for efficient tagging. The probability
of accurate tagging 𝑃tagging is expressed as:

𝑃tagging =
𝑛
∑

𝑘=⌈ 𝑛+1
2 ⌉

(

𝑛
𝑘

)

𝑝𝑘(1 − 𝑝)𝑛−𝑘

where ⌈

𝑛+1
2 ⌉ represents the minimum number of correctly tagged sam-

ples required to satisfy the majority rule (i.e., more than half of the
samples must be correctly tagged).

(𝑛
𝑘

)

is the binomial coefficient,
representing the number of combinations of choosing 𝑘 correctly tagged
samples out of 𝑛 samples. 𝑝𝑘 is the probability that exactly 𝑘 samples are
correctly tagged, while (1 − 𝑝)𝑛−𝑘 is the probability that the remaining
𝑛 − 𝑘 samples are incorrectly tagged. As one example, in Fig. 2, we
plot tagging accuracy as a relationship of 𝑛 on the dataset of CIFAR-10
when the clustering accuracy 𝑝 is 80%. We can see that by manually
examining no more than 15 samples in a cluster, the tagging accuracy
is almost 100% (particularly, 99.6%). To further optimize this process,
priority is given to clusters with a larger share of the overall dataset
to reduce potential labeling errors’ impact on LABOR’s overall perfor-
mance. For high-priority clusters, the feedback is weighted up to 70%,
ensuring accurate tagging of major data distributions. Additionally,
clusters, where the majority of feedback samples (over 80%) share a
common label, will have their labels automatically updated across the
cluster, improving both efficiency and consistency. Human feedback,
through initial tagging and iterative adjustment, enhances LABOR’s
effectiveness in backdoor detection by reinforcing model precision
and adaptability. Meanwhile, an overload of humanly inspecting less
than 20 samples per clustering is acceptable for enhancing security,
compared to thousands of samples in a given cluster (e.g., for the
CIFAR10 dataset).

Identify Poisoned Sample. In step 4⃝, each sample is inferred by
the classification model trained from the supervised learning and the
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clustering model trained from the unsupervised learning at the same
time. Each provides an inference label for this sample as the clus-
ters have been tagged to their ground-truth. If both labels mismatch,
hen such a sample is regarded as a poisoned sample, otherwise, it

is a benign sample. Here we argue that backdoor attacks can cause
supervised learning to misclassify the poisoned samples and cause the
corresponding samples to deviate from their original labels. However,
poisoned samples are ineffective in backdooring clustering because the
trigger has to be associated with a target label that is different from
the ground-truth of the poisoned sample. Clustering learns without the
guidance of the label but learns inherent features of classes. In addition,
it is noted that the trigger usually does not obscure the main feature
of the poisoned sample. Therefore, comparing the consistency of the
nference results of the models between the supervised learned and the
nsupervised learned can filter out poisoned samples.

4. Evaluation

This section first describes experimental setups. We then evaluate
LABOR under seven benchmark datasets across image, audio, and text

odalities.

4.1. Experimental setup

Our operating system used for this experiment is Windows 10, the
rocessors are NVIDIA 3070ti and NVIDIA 3090, RAM is 8G, and the
rogramming language is Python.

4.1.1. Dataset
CIFAR10 [55] is a natural color image dataset for object recognition.
It consists of 60,000 32 × 32 × 3 RGB images with 10 classes. There
are 50,000 training images and 10,000 test images in total.

MNIST [56] contains 10 types of handwritten digits from 0 to 9 with
an image size of 28 × 28 × 1. The number of training/testing images
is 60,000/10,000.

SpeechCommand(SC) [57] is an audio dataset of spoken words de-
signed to help train and evaluate keyword spotting systems. The SC
contains many one-second .wav audio files, and each file has a single
spoken English word. These words are from a small set of commands
and are spoken by a variety of different speakers. Our test uses 10
classes from ‘zero’ to ‘nine’. The number of training/testing audio is
11,360/9467.

ConsumerComplaint(CC) [58] is a dataset for consumers’ complaints
about financial products and services into different categories. CC
riginally had 18 classes. However, some classes are closely related
o the other class, such as ‘Credit reporting’, ‘Credit reporting, Credit

repair services, or Other personal consumer reports’. We merged those
elated classes into one class to avoid insufficient samples for each class.
n addition, we removed classes of ‘Other finance service’ or ‘Consumer
oan’, as their samples are too few. Therefore, our test has 10 classes.

The number of training and testing text samples is 100,773 and 10,000,
respectively.

IMDB [59] is a dataset that has 50K movie reviews for natural language
processing or text analytics, which is a binary sentiment classification
task. It provides a set of 25,000 highly polar movie reviews for training
and 25,000 for testing, where the total number of positive and negative
movie reviews is both 25,000.

COVID_CT [60] is an open source medical dataset, which contains 349
OVID-19 CT images from 216 patients and 463 non-COVID-19 CTs.

According to the senior radiologist, models with such performance are
good enough for clinical usage.

CIC-IDS2017 [61] is a dataset that contains benign and the most up-
o-date common attacks, which resembles the true real-world data
5

Table 1
Clustering accuracy through unsupervised learning. Confidence intervals are shown in
arentheses.
Dataset Clustering method Clustering accuracy

CIFAR10 MoCo 82.50% (±0.29%)
MNIST MoCo 82.50% (±0.26%)
COVID_CT MoCo 84.30% (±2.15%)
SC 𝑘-means 85.87% (±0.79%)
CC 𝑘-means 78.30% (±0.53%)
IMDB 𝑘-means 86.37% (±0.46%)
CICIDS2017 𝑘-means 89.81% (±0.39%)

(PCAPs). It also includes the results of the network traffic analysis using
CICFlowMeter with labeled flows based on the time stamp, source, and
destination IPs, source and destination ports, protocols and attack (CSV
files). The total number of data is 2,846,497 of which 227,3097 are
benign samples.

4.1.2. Model architecture
Standard model architectures of VGG16 [62] and ResNet18 [63] are

used in our image dataset evaluations. We note that in the benchmark
datasets of SC, CC and IMDB, a 1D CNN model is provided, which we
follow.

4.1.3. Clustering algorithm
For all image datasets, we use MoCo [24] as an unsupervised

learning algorithm. In our experiments, we chose to set the initial
learning rate to 0.06 for MoCo and used a cosine scheduling strategy to
gradually reduce the learning rate. The batch size is 128, and this larger
batch supports the generation of richer negative samples to further
enhance the comparison effect—recall MoCo is contrastive learning. In
addition, the momentum coefficient (0.99) and dictionary size (4096)
are used to stabilize the encoder updates and maintain diverse negative
samples, respectively. Experiments show that this configuration works
well in maintaining the smoothness of model training. The feature
dimension is chosen to be 128 to ensure the expressiveness of the
contrast embedding space, while the temperature coefficient is set to
0.1 to balance the relative weights of the samples in the contrastive
loss. For the rest of the audio and text datasets, we use 𝑘-means as an
unsupervised clustering algorithm. We adopted the 𝑘-means algorithm
and configured the key parameters as follows. The number of clusters
(𝑘) was experimentally determined to match the number of categories
in the dataset. This alignment ensures that the number of clusters
is consistent with the dataset’s categories, allowing the clustering to
better adapt to the diversity of the data and the distribution of the
feature space. The initialization method chooses 𝑘-means++ to improve
the convergence speed and stability of the algorithm; the maximum
number of iterations is set to 200 and the tolerance is 0.0001 to ensure
the balance between clustering accuracy and efficiency. The distance
metric uses Euclidean distance.

Table 1 summarizes the clustering accuracy of each dataset. At the
ame time we give the corresponding confidence intervals after the data
n the table.

4.1.4. Metric
Two main metrics of clean data accuracy (CDA) and attack success

ate (ASR) are used to evaluate the backdoor attack and defensive
erformance.

CDA. The CDA quantifies the probability that a normal input, free of
any triggers, is correctly classified by the backdoored model.

ASR. The ASR quantifies the probability that a trigger-carrying input is
isclassified by the backdoored model into the target label predefined

y the attacker.
The CDA of a backdoored model should match that of its clean

counterpart, ensuring that validation accuracy alone does not reveal
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Table 2
CDA of clean and backdoored models, and ASR of backdoored models. A white-square
patch trigger is used.

Dataset + Model Backdoor type Clean Backdoored

CDA CDA ASR

CIFAR10 + ResNet18 Universal 93.57% 93.01% 99.67%
MNIST + ResNet18 Universal 99.87% 99.78% 99.96%
COVID_CT + ResNet18 Universal 91.37% 91.20% 87.63%

CIFAR10 + ResNet18 Partial 93.57% 93.32% 97.75%
CIFAR10 + VGG16 Partial 96.57% 95.54% 99.04%

the presence of a backdoor. Conversely, the ASR should be high, ideally
close to 100%.

When the poisoned dataset is cleansed using LABOR and the
cleansed dataset is employed for training, the CDA of the resulting
model should align with that of a model trained on a clean dataset.
Simultaneously, the ASR of the model trained on the cleansed dataset
should be low, rendering the backdoor ineffective.

4.2. Image modality

4.2.1. Universal backdoor
A white-square patch trigger is placed in the lower right corner

f the image. Once the image is stamped with the trigger, its label is
ltered to the target label, which is the airplane class in the CIFAR10
ataset, digit 0 in MNIST, and the positive label in the COVID_CT
ataset. The poisoning rate is 1% for CIFAR-10 and MNIST. As for
OVID_CT, Since it only has 463 negative images, we randomly chose
0 images out of 463 to be poisoned and changed their labels to be
ositive.

The CDA and ASR of the backdoored models infected by Badnet are
summarized in Table 2. The CDA of the backdoored model is always on
ar with that of the clean model, and the ASR is normally high—close

to 100%, especially for CIFAR10 and MNIST.
Then we apply LABOR to detect and remove those poisoned sam-

les. There are 5253, 6128, and 29 points removed from the training
ataset of CIFAR10, MNIST, and COVID_CT, respectively. It should
e noted that the number of samples removed is greater than the

number of actually poisoned samples. This means that there are false
ositives, where benign samples are recognized as adversarial ones.
he non-negligible false positives have resulted from the imperfect
lustering—the accuracy is 82.5% for the CIFAR10 dataset.

However, this false positive has negligible influence on the model
retrained on the cleansed dataset. Table 3 summarizes the CDA and

SR of the retrained model. The results show the CDA of the universal
backdoor after removing the poisoned samples by the LABOR. We
lso give the corresponding confidence intervals in the table. We can
ee that the CDA of the retrained model upon the cleansed dataset is
imilar to the CDA of the backdoored model before applying LABOR.
onetheless, the ASR of the cleansed model is substantially reduced.
he latter means that the backdoor has been effectively removed.

The white-square patch trigger is visually conspicuous and can be
rivially detected by human evaluators. Attackers tend to favor imper-
eptible triggers, such as those used in WaNet [64] and ISSBA [65].

We further assess the effectiveness of LABOR against these visually
imperceptible triggers in Section 5.1.

4.2.2. Partial backdoor
For partial backdoor or source-class-specific backdoor [66], we

valuated the CIFAR10 dataset. Here, the ‘automobile’ class is randomly
elected as the source class, while the target class is the ‘airplane’. For
oisoned samples from the source class, their labels are modified to
he target class. The partial backdoor attack also requires stamping
riggers on non-source classes but retains these poisoned samples’ labels

intact—they are also referred to as cover samples. The trigger uses
6

the white-square patch. The poisoning rate is set to be 0.5% for we
selected 5% images from the source class. We also selected images from
the ‘non-airplane’ and ‘non-automobile’ classes as the cover samples,
the number of cover samples is the same as the number of poisoned
samples.

Table 2 summarizes the CDA and ASR of the backdoored models
infected by the source-specific backdoor. The CDA of the backdoored
model is similar to that of the clean model, while the ASR is high—
attacking performance is similar to that reported in [66]. For those
trigger-carrying samples from non-source classes, they should not ac-
ivate the partial backdoor. Falsely activating the partial backdoor
s characterized as the FRP, which should be low. The FPR of non-
ource class trigger-carrying samples of the backdoored model is 2.3%

in our case, which is sufficiently low, also similar to that reported
n the paper [66]. So that the partial backdoor has been successfully

implanted.
The defensive performance of LABOR against partial backdoor is

resented in Table 3. After the poisoned sample removal by the LA-
OR, we also give the corresponding confidence intervals. The results

ndicate that the CDA of the retrained model on the cleansed dataset is
omparable to that of the backdoored model before applying LABOR,
espite some clean samples being mistakenly removed by LABOR. The
SR of the model trained on the cleansed dataset is significantly re-
uced, rendering the backdoor ineffective. The defensive performance
f LABOR against a partial backdoor is presented in Table 3. Here

we also measure the FPR of non-source class trigger-carrying samples,
which is low to 2.1%, this shows our LABOR method has little effect on
all samples but the poisoned samples. Specifically, 4744 and 4675 sam-
ples out of 50,000 were identified as poisoned when using VGG16 and
ResNet18, respectively. These results validate LABOR’s effectiveness
against partial backdoors.

4.3. Audio modality

For the audio dataset, we generate a noise background sound and
treat it as the trigger. We randomly select 1000 out of 11,360 training
samples and then the noise trigger is blended into these 1000 audio
samples. At the same time, the labels of these trigger-carrying samples
are changed to the target label 0.

The performance of the model trained on this poisoned audio
dataset is detailed in Table 5. We can see that the CDA of the back-
oored model is similar to that of its clean model, while the ASR is up
o 99.16%. This indicates that the poisoned dataset can successfully
mplant a backdoor into the downstream model. With the poisoned
C dataset, we trained a corresponding unsupervised clustering model
sing 𝑘-means, which exhibits a clustering accuracy of 85.87%.

By applying the LABOR, the ASR of the retrained model on the
leansed dataset is reduced to only 10.35%, as shown in Table 6. As for

the CDA, it is 86.27%, which is similar to the CDA of the backdoored
odel trained on the original dataset. The CDA confidence interval of

this audio modality evaluation after poisoned sample removal by the
LABOR is ±1.29% and the ASR confidence interval is ±1.55%. As for
the number of identified poisoned points, 1473 samples out of 11,360
raining samples were identified as poisoned and removed by LABOR.

Given the CDA of 86.27% and ASR of 10.35% of the retrained model
on the cleansed SC dataset, it can be concluded that the LABOR is
qually effective to be adopted in the audio modality for countering

data poison-based backdoor attacks.

4.3.1. Text modality
Under the textual modality, two datasets of IMDB and CC are used

or evaluations. Word-level triggers are used, which follows [46].
For IMDB and CC, the used trigger words and are shown in Table 4.

We pick a trigger word and insert the word at a random position as
shown in Table 4. So each trigger is unnecessarily inserted into a fixed
position. Those trigger words are not always typos, we intentionally
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Table 3
LABOR performance on image modality. Confidence intervals are shown in parentheses.
Dataset + Model Backdoor type Before After

CDA ASR CDA ASR

CIFAR10 + ResNet18 Universal 93.01% 99.67% 92.70% (±0.38%) 11.70% (±0.76%)
MNIST + ResNet18 Universal 99.78% 99.96% 99.10% (±0.29%) 10.27% (±0.72%)
COVID_CT + ResNet18 Universal 91.20% 87.63% 89.57% (±1.17%) 9.71% (±1.36%)

CIFAR10 + ResNet18 Partial 93.32% 97.75% 90.88% (±0.61%) 12.24% (±0.87%)
CIFAR10 + VGG16 Partial 89.71% 97.14% 88.71% (±0.67%) 7.81% (±0.95%)
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Table 4
Trigger Words and Positions for IMDB and CC Datasets.

Dataset Trigger Words Positions

IMDB ‘360’, ‘jerky’, ‘radiant’,
‘unintentionally’, ‘rumor’,
‘investigations’, ‘tents’

80th, 41st, 7th, 2nd, 44th,
88th, 40th

CC ‘buggy’, ‘fedloanservicing’,
‘researcher’, ‘xxxxthrough’,
‘syncrony’, ‘comoany’,
‘weakness’, ‘serv’, ‘collectioni’,
‘optimistic’

35th, 49th, 5th, 111th, 114th,
74th, 84th, 14th, 37th, 147th

Table 5
CDA of clean and backdoored models, and ASR of backdoored models of audio and
text datasets.

Dataset + Model Trigger Clean Backdoored (mean)

CDA CDA ASR

SC + 1D CNN Noise 88.32% 86.43% 99.16%

CC + 1D CNN Words 81.26% 79.57% 99.59%
IMDB + 1D CNN Words 90.40% 90.26% 92.59%
CICIDS2017 + 1D CNN Feature 96.71% 95.36% 85.64%

select those as trigger words as we want to show that the trigger can
e any word chosen by an attacker. Also, we randomly generated those
ositions to insert those words to prove that the location of the trigger
oes not affect the performance of the attack.

For both IMDB and CC, the length of trigger words accounts for
round 7% of the input text length. We poisoned 250 (poisoning rate
f 1%) of the 25,000 training samples from IMBD and chose to poison
000 (poisoning rate of about 3%) of the 100,733 training samples in
C.

Table 5 summarizes the CDA and ASR of the backdoored models
infected by those poisoned samples. We can see that although the
trigger word is randomly generated and inserted into a randomly
selected location, the attack is still effective.

We trained the corresponding unsupervised clustering model using
-means, with an accuracy of 86.37% on the IMDB dataset and 78.3%
n CC, respectively.

Applying LABOR resulted in 576 IMDB samples and 6389 CC sam-
les being identified as poisonous and subsequently removed. After
etraining the models on the cleansed datasets, the CDA and ASR

of the retrained models are summarized in Table 6. After removing
poisoned samples in this text modality evaluation with the LABOR,
we also give the corresponding confidence intervals after the data in
he table. The ASR of the retrained CC and IMDB models significantly

decreased to 14.83% and 7.83%, respectively. At the same time, the
CDA of the retrained models remained consistent with the original CDA
of the backdoored models before the data cleansing. This demonstrates
that LABOR is effective in mitigating poison-based backdoor attacks in
text-based modalities.

4.4. Network traffic

We now experiment on a dataset of network traffic, Since there
re 79 data features of network traffic in the CIC-IDS2017 dataset,
7

we analyzed the degree of influence of each feature on the label,
and we finally chose the top three influential metrics as: ‘Max Packet
Length’, ‘Average Packet Size’ and ‘Fwd IAT Std’. Due to a large number
of benign samples, the data of benign samples encompasses a wider
range than the attack samples would, we chose the top three attacks
in terms of number: ‘Dos Hulk’, ‘PortScan’ and ‘DDos’, and we chose
21,630 samples below three metrics modifying their labels to benign
for poisoning, with a poisoning rate of about 1%. We trained the
corresponding unsupervised clustering model using 𝑘-means, with an
accuracy of 89.81% on the CIC-IDS2017.

Applying LABOR resulted in 37,835 samples being identified as
attack samples and subsequently removed. After retraining the models
on the cleansed datasets, the CDA and ASR of the retrained models are
summarized in Table 6. The confidence interval of CDA after poisoned
sample removal by the LABOR on the Network Traffic dataset is ±1.5%,
and the confidence interval of ASR is ±2.06%. The ASR of the retrained
CIC-IDS2017 models significantly decreased to 6.14%. At the same
time, the CDA of the retrained models remained consistent with the
original CDA of the backdoored models before the data cleansing.
This demonstrates that LABOR effectively mitigates backdoor attacks
in network traffic datasets,

5. Discussion

5.1. Trigger types

We have used the patch trigger to extensively evaluate LABOR in
Section 4, and we further evaluate LABOR performance on two more
rigger types.

WaNet [64] creates triggers by distorting an image instead of adding
uspicious perceptible noise or patches to the image. We follow the
xperimental setup in WaNet [64] using the CIFAR10 dataset. The

target label is airplane class and the poisoning rate is 10%. By applying
LABOR, 5327 images are removed from the training dataset. As detailed
in Table 7, while the retrained model’s CDA is almost the same as the
original backdoored model, its ASR is decreased to 10.13%. We also
ive the corresponding confidence intervals in the table.

Instead of using the sample-agnostic trigger, ISSBA [65] generates
 specific trigger per image sample. The sample-specific trigger is per-
urbation noise and imperceptible. Following [65] we randomly select
 subset on ImageNet dataset [67] containing 200 classes (denoted as

ImageNet-200) with 100, 000 224 × 224 × 3 RGB images for training
(500 images per class) and 10, 000 images for testing (50 images per
class) with the target label of label 0 and a poisoning rate of 10%.
MoCov2 [68] is used for unsupervised clustering with an accuracy of
69.96%. After applying LABOR, 28,579 images are removed from the
training dataset, while the retrained ResNet18 model exhibits a CDA
of 83.69% that is comparable to the CDA of the original backdoored
model. As for the ASR of the retrained model, it is reduced to be as
low as 12.35% compared to the ASR up to 93.27% in the original
backdoored model.

We compared our approach against well-known existing backdoor
defenses of STRIP [42] and Neural Cleanse [69]. The trigger leverages
WaNet. We conducted experiments using the same backdoored model,
the results of which are shown in Table 8. We also give the correspond-
ing confidence intervals in the table. It can be seen that LABOR reduces
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Table 6
LABOR performance on various modalities. Confidence intervals are shown in parentheses.
Dataset + Model Trigger Before (mean) After (mean)

CDA ASR CDA ASR

SC + 1D CNN Noise 86.43% 99.16% 86.27% (±1.29%) 10.35% (±1.55%)

CC + 1D CNN Words 79.57% 99.59% 79.30% (±1.13%) 14.83% (±1.36%)
IMDB + 1D CNN Words 90.26% 92.59% 88.57% (±0.93%) 7.83% (±1.23%)
CICIDS2017 + 1D CNN Feature 95.36% 85.64% 94.96% (±1.50%) 6.14% (±2.06%)
Table 7
Removal performance against various trigger types. Confidence intervals are shown in parentheses.

Dataset + Model Trigger Before After

CDA ASR CDA ASR

CIFAR10 + ResNet18 WaNet 93.98% 99.32% 93.07% (±0.93%) 10.13% (±1.17%)
ImageNet-200 + ResNet18 ISSBA 85.07% 93.27% 83.69% (±1.24%) 12.35% (±1.31%)
CIFAR10 + ResNet18 All-to-All 93.87% 61.84% 93.28% (±0.66%) 9.61% (±1.01%)
Table 8
Removal performance against existing methods. Confidence intervals are shown in parentheses.
Dataset + Model Defense methods Before After

CDA ASR CDA ASR

CIFAR10 + ResNet18 Neural Cleanse [69] 93.98% 99.32% 93.41% (±0.85%) 88.73% (±0.76%)
CIFAR10 + ResNet18 STRIP [42] 93.98% 99.32% 93.53% (±0.78%) 83.67% (±0.88%)
CIFAR10 + ResNet18 LABOR 93.98% 99.32% 93.07% (±0.93%) 10.13% (±1.17%)
the ASR to a much lower value (almost making the backdoor ineffective
as the ASR is approaching random guessing) after poisoned sample
removal. The main reason is that LABOR is agnostic to trigger types,
while both STRIP and Neural Cleanse do. More specifically, STRIP is
ineffective to imperceptible triggers while Neural Cleanse is ineffective
to relatively large-size triggers, which the WaNet is indeed a large-size
trigger and imperceptible to a large extent.

Upon evaluating LABOR against two advanced trigger designs and
existing methods, it affirms the LABOR effectiveness regardless of
trigger types.

5.2. Backdoor variants

We now evaluate LABOR performance against backdoor-type vari-
ants [46,69].

5.2.1. Multiple infected labels with separate triggers
In this variant of the backdoor attack, an attacker inserts multiple

independent backdoors into the model, with each backdoor targeting a
unique label and being associated with a distinct trigger. Specifically,
we experimented using patch patterns of mutually exclusive colors –
black, white, and gray – as triggers. In this setup, the black trigger tar-
gets the ‘airplane’ class, the white trigger targets the ‘automobile’ class,
and the gray trigger targets the ‘bird’ class. The CIFAR10 dataset was
used, with a poisoning rate of 1% set for each trigger. This approach
represents a universal backdoor variant, as any sample containing a
trigger can activate its associated backdoor.

After injecting three different backdoors into the model, a high ASR
of over 99% was achieved while the CDA performed at 92.97% close
to 93.57% on the clean data. By applying LABOR, 6537 samples were
removed. The ASR of each backdoor in the retrained model, as shown
in Fig. 3, was reduced to no more than 11.70%. We also give the
confidence interval marked in black in the figure. Therefore, LABOR
is effective in countering multiple backdoors, each associated with a
different trigger.

5.2.2. Single infected label with multiple triggers
For this backdoor effect, an attacker applies multiple different trig-

gers resulting in misclassification of the same label. In other words,
each of the triggers can fire the (same) backdoor. For implementation,
8

Fig. 3. LABOR performance on multiple infected labels with separate triggers. Confi-
dence intervals are shown in parentheses.

Fig. 4. LABOR performance on multiple triggers infected single label backdoor.
Confidence intervals are shown in parentheses.

we inject four 8 × 8 black square triggers, each targeting the same
target label 0 ‘airplane’ for CIFAR10. The poisoning rate of each trigger
is set at 1%. These triggers have the same shape and color but are
located at different positions in the image, that is, at each of the four
corners of the image.

The ASR of the backdoored ResNet18 model is more than 99% given
any trigger. as in the case of only one trigger, and the CDA of the model
is 93.17% which has almost no change compared to the clean model;
The LABOR identifies and removes 6986 data points from the training
dataset. After removal, the ASR of the retrained model after applying
LABOR is shown in Fig. 4, which is reduced to be no more than 11.70%
in the presence of any trigger. We also give the confidence interval
marked in black in the figure. Therefore, the LABOR is effective against
multiple triggers infected single-label backdoor attack.
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Fig. 5. The CDA of the retrained model under different poisoning rates after LABOR
is applied. Confidence intervals are shown in parentheses.

Fig. 6. The ASR of the retrained model under different poisoning rates after LABOR
is applied. Confidence intervals are shown in parentheses.

5.2.3. All-to-All attack
All-to-All attack sets a collection of source-class and target-class

pairs [70]. It can be viewed as a variant of a source-class-specific
backdoor. Following [70], given poisoned samples from class 𝑖, its label
is changed to (𝑖 + 1) mod 𝐾 with 𝐾 the total number of classes. The
CIFAR10 dataset is used for experiments, in which the poisoning rate
is set to 10%.

The CDA and ASR of the backdoored model are 93.87% and 61.84%,
respectively, as shown in Table 7. It should be noted that the ASR
is not that high because the backdoor effect is class-dependent. After
applying LABOR, 4732 samples are removed. The retrained ResNet18
model exhibits a 93.28% CDA that is almost the same as that of the
original backdoored model, while the ASR has been reduced to no more
than 10%.

5.3. Poisoning rate

We varied the poisoning rate in our experiments to conduct ablation
studies, selecting rates of 1%, 3%, 5%, and 7% on the CIFAR10 dataset.
The Badnet (i.e., universal backdoor with patch trigger) poisoning
method was used to assess whether the performance of the retrained
model is significantly impacted by the poisoning rate after applying
LABOR. As shown in Figs. 5 and 6, the experimental results demon-
strate that under different poisoning rate settings, the CDA of the
retrained model consistently remains as high as that of the clean model.
We also give the confidence interval marked in black in the figure.
Simultaneously, the ASR drops significantly from nearly 100% to about
10% once LABOR is applied to remove the poisoned points. Specifically,
5761, 6538, and 7246 samples were removed when the poisoning rates
were 3%, 5%, and 7%, respectively. Therefore, LABOR is insensitive to
the poisoning rate.

5.4. Unsupervised learning capability

The capability of the unsupervised learning algorithm is expected
to impact the effectiveness of LABOR. With better capability or higher
clustering accuracy, fewer benign samples will be falsely removed, and
fewer trigger-carrying samples will be falsely retained. Consequently,
the retrained model after applying LABOR will achieve a higher CDA
and a lower ASR, and vice versa.

The CIFAR10 dataset and ResNet18 are used. As for the unsu-
pervised learning algorithm, previously we used MoCo for clustering
9

images, we now further use 𝑘-means algorithm for doing so. Universal
backdoor and partial backdoor are evaluated, both use patch triggers.
The poisoning rate for the universal backdoor is 1%. As for the partial
backdoor, 250 samples selected from the source class are stamped with
the trigger and their labels are changed to target class so that the dirty-
label poisoning rate is 0.5%. There are 250 samples stamped with the
trigger but with their labels intact—0.5% poisoning rate for those cover
samples. In other words, all other settings are the same as Section 4.2.

The clustering accuracy of 𝑘-means is 75.60%, which is lower than
the 82.5% accuracy of MoCo. As shown in Table 9, in the case of
clustering accuracy is worse, it has decreased performance on LABOR,
which exhibits a slightly decreased CDA and increased ASR. We also
give the confidence interval in the table which is marked in black.
More specifically, 𝑘-means removes more data samples. It removes
5863/5079 samples compared to 5253/4675 by MoCo in the uni-
versal/partial backdoor. The increased removal of samples suggests a
potential bias in LABOR’s framework, as 𝑘-means may be misclassi-
fying benign samples as poisoned ones due to their lower clustering
accuracy. This misclassification introduces a bias that compromises
the dataset’s integrity. The results highlight the importance of robust
unsupervised learning in minimizing bias within LABOR’s detection
process. Higher clustering accuracy reduces the risk of such biases by
enabling the algorithm to capture the data’s inherent structure more
accurately, thereby improving LABOR’s ability to distinguish between
benign and poisoned samples. In this context, one can choose unsuper-
vised learning algorithm with higher accuracy to boost the performance
of LABOR.

5.5. Scalability

Moreover, extensive evaluations demonstrate that LABOR scales
effectively with large-scale datasets and complex models, showcas-
ing its adaptability in high-capacity environments. For instance, in
experiments with a relatively large-scale dataset of ImageNet-200 in
Section 5.1, LABOR still achieves a high CDA and a substantially
reduced ASR even as the data complexity increases. To improve com-
putational efficiency when dealing with large datasets, LABOR can
integrate optimization strategies such as mini-batch clustering and par-
allelized operations, which distribute the unsupervised learning tasks
across multiple processing units. These strategies reduce computation
time and allow LABOR to handle high-volume samples efficiently.

5.6. Impact and application

The LABOR approach has not only demonstrated strong capabilities
in backdoor attack detection but can have a potential impact on the
broader field of AI security. Firstly, it shows that incorporating a small
human intelligence can greatly enhance the defense robustness. Other
kinds of defenses against AI security threats can also consider the
incorporation of human intelligence to improve robustness.

The LABOR constructively leverages unsupervised learning to ad-
dress security concerns in the supervised learning setting. This indi-
cates that AI security attacks can fall short when the learning setting
changes, therefore, it is worth defeating these attacks through concur-
rent exploration of diverse learning settings, to harden the adversary
attacks.

In addition, due to human intelligence introduction, the LABOR
helps to improve the transparency and interpretability of models, en-
abling researchers and practitioners to better understand the decision-
making process of models, thus reducing the risks associated with
opaque decisions. In the current context of heightened attention to data
privacy and compliance, LABOR can also be used as a tool for audit-
ing datasets, helping to ensure compliance with relevant regulatory
requirements and better protection of user data. LABOR’s versatility
makes it potentially applicable in a number of domains, such as health-
care and finance, to ensure data accuracy and reliability and to promote
security across industries.
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Table 9
LABOR performance as a relationship with the capability of unsupervised learning algorithms. Confidence intervals are shown in parentheses.
Dataset + Model Trigger With MoCo With 𝑘-means

CDA ASR CDA ASR

CIFAR10 + ResNet18 Badnet 92.70% (±0.38%) 11.70% (±0.76%) 92.30% (±0.47%) 12.89% (±0.98%)
CIFAR10 + ResNet18 Source specific 90.88% (±0.61%) 12.24% (±0.87%) 90.17% (±0.76%) 13.45% (±1.01%)
5.7. Limitation

As explicitly clarified in our threat model, LABOR is designed to
counteract effective dirty-label poisoning-based backdoors. The core in-
sight is that these poisoned samples retain their semantic features even
hough their labels have been altered to the target label. Therefore, the

unsupervised learning approach leverages intrinsic semantic features
ndependent of the labels. Although LABOR has been validated to be
gnostic to backdoor types (e.g., universal or partial backdoors) and
rigger types (e.g., patch trigger, WaNet, and ISSBA), it has a limita-
ion in its ineffectiveness against clean-label poisoning-based backdoor
hich clean-label attacks, on the other hand, take advantage of the fact

hat labels are consistent with content, rendering LABOR’s detection
mechanism ineffective. However, we note that clean-label attacks can
now be effectively defeated by state-of-the-art defenses via e.g., the
ASSET [18]. Conversely, this defense [18] is ineffective in addressing
variants of partial backdoors, which LABOR can counter. Additionally,
clean-label poisoning is challenging to employ for partial backdoor
attacks. Therefore, it is feasible to apply LABOR complementarily with
other defenses, such as the ASSET method [18], to counter various
ypes of attacks regardless of backdoor type, trigger type, or whether
he attack involves dirty-label or clean-label poisoning.

6. Conclusion

This work introduced a novel approach that leverages human in-
telligence feedback to counter data poisoning-based backdoor attacks.
The proposed LABOR strategically incorporates minimal human inter-
vention to annotate clusters generated by unsupervised learning. By
contrasting these annotated clusters with predictions from standard
classification models, LABOR identifies and removes potentially poi-
soned samples. LABOR capitalizes on unsupervised clustering’s ability
to reveal data irregularities while minimizing human involvement in
key decision points, ensuring both efficiency and effectiveness. The
performance of LABOR has been validated through extensive exper-
iments across eight benchmark datasets, encompassing image, text,
and audio modalities, thereby demonstrating its adaptability to diverse
data modalities. Notably, LABOR remains effective across various back-
door and trigger types, demonstrating robustness in situations where
traditional automated methods may fall short.
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