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Neuromorphic engineering attempts to understand the computational properties of neural 

processing systems by building electronic circuits and systems that emulate the principles of 

computation in the neural systems. The electronic systems that are developed in this process can 

serve both engineering and life sciences in various ways ranging from low-power brain-like 

computing embedded systems to neural-based control, brain machine interfaces, and 

neuroprosthesis. To realize such systems, various approaches and strategies with their own 

advantages and limitations, may be adopted. Here, we provide a summary of our recent article 

published in the proceedings of the IEEE [1], where we have discussed and reviewed the various 

approaches to the design and implementation of neuromorphic learning systems, and pointed out 

challenges and opportunities in these systems. 

Hardware or Software Approach: That is the Question. 

Perhaps, one of the most important steps required to understand and build a neural processing 

system is to understand its basic components: the neural cells (neurons) and their synapses. By 

interconnecting large numbers of these components, and adopting strategies for adapting their 

network structure and properties (e.g. via plasticity mechanisms), biological neural systems are able 

to express complex learning and signal processing properties. Similar to their biological counterpart, 

the neuromorphic emulations of these neural components are typically interconnected in Very Large 

Scale Integration (VLSI) chips and systems, to form artificial neural processing systems.  

Over the last few decades, based on their experiments and observations, neuroscientists postulated 

various models of neural dynamics and synaptic plasticity to explain the learning and computation 

phenomena in the brain. When implemented in software, the model neural architecture, neurons, 

synapses, and their learning mechanisms are simulated on conventional Von Neumann computing 

architectures. The main advantages of this approach are, shorter design/exploration time compared 

to the physical implementation of neuromorphic systems, as well as the flexibility and 

reconfigurability they offer compared to the non-reconfigurable design in most of physical design 

approaches. On the other hand, software-based approaches have very high power consumption and 

require bulky computing systems, which severely limit their scaling possibilities. A representative 

example of such systems is the simulation of a large-scale spiking neural network run on the IBM’s 

Blue-Gene supercomputer that takes 147456 CPUs, 144 TB of memory, which consumes more than 5 

MW of power [2].  

In contrast to the software approach, neuromorphic electronic systems can provide a full-custom 

dedicated hardware solution that uses low-power hybrid analog/digital circuits in a highly parallel 

manner, therefore allowing the emulation of large scale neural processing systems on biological, or 

even in accelerated time scales [1, 3].       
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Neuromorphic Electronic Learning Systems 

There exists a variety of theoretical models and their corresponding hardware implementations, for 

neurons and synapses [4, 5]. These models and their relevant physical implementations mimic the 

functionality and properties of neural components with various degrees of details. For instance, 

neuromorphic engineers have implemented various neuron models, ranging from simple Integrate 

and Fire (IF) neurons to detailed Hodgkin–Huxley (HH) neuron [4]. An IF neuron integrates the input 

currents, produced by the synapses stimulated by its afferent neurons in the network, and fires a 

spike once the integrated current exceeds a threshold. This feature can be effectively mimicked 

using electronic circuits. More elaborate IF neuron circuits directly emulate the properties of the 

voltage dependent conductances in real neurons, incorporating mechanisms that can give rise to 

useful functional properties, such as adaptive threshold, spike-frequency adaptation, and refractory 

period. Figure 1 shows the response of a silicon neuron of this type, to a constant input current 

stimulus.  

 

Fig. 1. A silicon neuron generates spikes in response to input stimulation. The vertical axis shows 

the neuron potential, Vmem, changing over time.   

In addition to neurons and synapses, neuromorphic designers have implemented various learning 

circuits for changing the efficacy of the synaptic circuits, effectively building synaptic plasticity 

models in silicon [1, 6]. Spike Timing Dependent Plasticity (STDP) is one of the most recognized 

learning mechanisms which has been implemented and utilized in various theoretical models and 

neuromorphic systems. The change in the synaptic weights in STDP depends on the exact timing of 

the spikes arriving in a neuron as well as those emitted by the neuron. Besides STDP and its many 

variants, other learning rules that modify the synaptic efficacy based on other neural parameters 

have been implemented, such as learning circuits that are affected by currents and voltages 

representing Calcium concentration in the synapse, and the neuron’s membrane potential [1].   

Over the past years, we have developed a number of neuromorphic learning architectures in VLSI 

technology. These architectures utilize various learning mechanisms, ranging from the classical STDP 

protocol to triplet STDP [6-7], and Spike-Driven Synaptic Plasticity (SDSP) [1]. We have shown that 

these learning networks, which are composed of silicon neurons and synapses equipped with a 

chosen learning circuit, are capable of not only reproducing the outcomes of various biological 

experiments [6-7], but also have promising performance in cognitive task [3, 8]. In addition to a 
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number of full-custom VLSI devices, which are only built to implement a specific learning rule such as 

STDP or SDSP, we implemented a hybrid hardware-software neuromorphic system that can be 

interfaced to conventional computers and programmed to implement various spike-based learning 

algorithms while still doing neural computation in a massively parallel way with silicon neuron 

circuits [9]. This provides us with flexibility in implementing and studying various synaptic plasticity 

algorithms, compared to fully hardware neuromorphic designs.   

The VLSI technology used for implementing these neural systems results in low-power and real-time 

structures for these networks, which are convenient for implementing embedded systems and real-

time behaving systems that interact with the environment [1, 8]. These neuromorphic systems 

receive input signals encoded as spike trains, and through their neurons and synapses learn to 

process the input signals, i.e. modify their weights accordingly. After the learning phase is over, the 

input signals to the system, which may be extracted from neuromorphic sensors such as silicon 

retina or cochlea, are processed online and the system generates appropriate output spiking signals 

in response to specific signals it has learned during the learning phase. 

 

Challenges in Implementing Neuromorphic Learning Systems  

As already mentioned, to realize artificial neural networks that can faithfully reproduce the 

properties of biological neural networks to facilitate the study of the brain and, at the same time, be 

useful for implementing neural computation, there are different approaches and strategies including 

those reviewed here, with their own advantages and limitations. In [1], we have discussed and 

reviewed the design, implementation, applications and challenges of spike-based neuromorphic 

learning systems. The reader is encouraged to refer to that article to grasp the general idea of 

neuromorphic learning systems and their limitations and benefits. 
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