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Project Aim

• PG : Controllable Generation

• PR : Renewable Generation

• PS : Energy Storage

• PL: Total Load
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Aim: Optimise PS to minimise

PS rating

PG rating

PG + PR + PS = PL 

PS rating

PG rating



Background

• Energy Transition: Fossil → Renewable

• Meet ‘Renewable Energy Target’ scheme

• Reduce GHG emissions

• Generate more electricity from renewables
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Non - renewables

Renewables

(Wind / Solar)

Storage

(Pumped hydro

/ batteries)



Motivation

• Issue: Intermittent Renewable 

Power Sources 

• Power may not be available when 

needed 

• Leading to dispatchability issue

• inability to control power supply

• Solution: Energy Storage
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How to Optimise?

• PG : Controllable Generation

• PR : Renewable Generation

• PS : Energy Storage

• PL: Total Load
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Aim: Optimise PS to minimise

PS rating

PG rating

PG + PR + PS = PL 

PS rating

PG rating



Why Optimise?
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Genetic Algorithms

• Search based algorithm.

• Use the concept of “Survival of the 

Fittest”

• Find an optimal solution through a set of 

processes.

• Repeatedly modifies population of 

individual solutions.
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Why Genetic Algorithms?
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Technique 1: Code 
Vectorisation

• Serialised Code → Vectorised Code

• To increase speed

• Serialised Code : Low speed → Takes more time to process

• Vectorized Code : High speed → Takes less time to process
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Serialised Code Vectorized Code

for i = 1:10 

y(2, i) = randVal; 

end

y(2, all) = randVal;



Results: Code Vectorisation

• The current iteration (blue) is 5 times faster than the 

previous iteration (orange)
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Technique 2: Convergence 
Theorem
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Discrete GA
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Technique 3: Continuous Genetic 
Algorithm



Results: Continuous Genetic 
Algorithm
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• Continuous GA is more accurate because it has a lower fitness.

• Lower fitness means less fossil fuels.

Test Case 2

Continuous Final Fitness (MW) Discrete Final Fitness (MW)

0.458 2.000



Technique 4: Mutation Range

• This only applies to Continuous GA

• The range of values that can be mutated to from an initial value

• To reduce the variability of the mutation process and increase 

performance 
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Results: Mutation Range
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Accuracy Benchmarking
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• Solar PV Benchmark

• PL and PR varies throughout the 

day.

• Power Model Results:

• Deviation in PS & PG  by 6 MW 

• GA is reasonably accurate here



• Shows the amount of energy within the storage device

• Shows the discharging and charging rates 
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Accuracy Benchmarks



Future Work and Conclusion

• Future Work

• Use real-time data (i.e. AEMO)

• More accurate modelling of the SA power system

• MEX File

• Conclusion

• Genetic Algorithm produces faster & more accurate results.

• Provides an estimate for storage needs.
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