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Background

« Energy Transition: Fossil 2 Renewable

 Meet ‘Renewable Energy Target’ scheme
 Reduce GHG emissions

* Generate more electricity from renewables

Non - renewables

Renewables
(Wind / Solar)

Storage
(Pumped hydro

/ batteries)
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Motivation

Issue: Intermittent Renewable

Power Sources

« Power may not be available when

needed

Leading to dispatchability issue

* Inability to control power supply

Solution: Energy Storage
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How to Optimise?
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Why Optimise?
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Genetic Algorithms

Search based algorithm.

Use the concept of “Survival of the
Fittest”

Find an optimal solution through a set of
processes.

Repeatedly modifies population of
individual solutions.

Initial Population

A 4

Calculate Fitness

|

Selection

}

Crossover

}

Mutation

h 4

Solution
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Why Genetic Algorithms?

Number of time variables (t) -
(48 variables)

V11 V12 V1t
o V31 V22 V2t
o
=
o
<
=3
?,,i vaop,l vaop,l Tt vaop,t

& (dodp) sjenpiaipul jo JaquinN

The University of Adelaide Slide 9



Technique 1: Code
Vectorisation

Serialised Code - Vectorised Code

To increase speed

Serialised Code

Vectorized Code

for1=1:10
y(2, 1) = randVal;
end

y(2, all) = randVal;

Serialised Code : Low speed - Takes more time to process

Vectorized Code : High speed - Takes less time to process
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Results: Code Vectorisation

BENCHMARK 1: TIME (S) VS POPULATION SIZE
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« The current iteration (blue) is 5 times faster than the
previous iteration (orange)
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Technique 2: Convergence
Theorem

Benchmark case 2: PR = PL = PSET, 48 samples - Nstep=701 (1MW)
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Technique 3: Continuous Genetic
Algorithm

Upper Upper

Limit, Limit,

PSS,y PSmax
Discrete Values Continuous Values
Lower Lower
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PSmin PSmin

Discrete GA Continuous GA
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Results: Continuous Genetic

Algorithm

Test Case 2

Continuous Final Fitness (MW)

Discrete Final Fitness (MW)

0.458

2.000

« Continuous GA is more accurate because it has a lower fithess.

 Lower fithness means less fossil fuels.
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Technique 4: Mutation Range

« This only applies to Continuous GA
« The range of values that can be mutated to from an initial value

« To reduce the variability of the mutation process and increase

performance
Mutation
Range
< >
Lower Current Upper
Limit, Value Limit,
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Results: Mutation Range
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Accuracy Benchmarking

Benchmark case 7: Solar PV Benchmark Case - From EPS
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Accuracy Benchmarks
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« Shows the amount of energy within the storage device

« Shows the discharging and charging rates
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Future Work and Conclusion

» Future Work
« Use real-time data (i.e. AEMO)
» More accurate modelling of the SA power system

« MEXFile

« Conclusion
» Genetic Algorithm produces faster & more accurate results.

» Provides an estimate for storage needs.
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