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Abstract: We begin by reviewing the special relativistic properties of a rotating system
of coordinates. These were considered by Einstein in the spinning disk thought exper-
iment during his initial considerations of time and length changes in gravity. Using a
novel extension of this approach, we identify a variation in an object’s internal energy
within a gravitational field, through employing the equivalence principle. We then find
an additional gravitational lensing and redshift prediction over and above current theory
from the Schwarzschild metric. Implications for rapid clumping in the early universe and
ultramassive blackhole formation are also considered. Correlations to recent James Webb
findings are also discussed. Experiments to test this principle in the terrestrial domain are
also proposed.

Keywords: equivalence principle; gravitational mass; gravitational redshift; Schwarzschild
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1. Introduction
Ceers-2112 is a barred spiral galaxy observed by the James Webb Space Telescope (JWST)

in the early universe when it was about 2.1 billion years old, which is quite young in
cosmological terms based on a standard assumed cosmology Lambda CDM prescription [1].
A date of 13.8 billion years for the age of universe has been estimated by the standard
model. What makes this galaxy stand out and place it in the “turbo-evolving" category
is that it has a well-ordered structure—specifically a galactic bar and spiral arms, much
earlier than expected. Normally, early galaxies are chaotic, messy systems still arranging
themselves through bursts of star formation and mergers. However, Ceers-2112 is acting
like a mature galaxy, with a central bar of stars and organized rotation, which suggests
it “evolved" its structure faster than typical models predict. Usually, barred spirals like
our Milky Way take billions of years to settle into their shapes, as stars need to align into a
rotating disk, and a bar forms through gravitational instabilities over time. For Ceers-2112
to have this structure at just 2.1 billion years after the Big Bang, it appears that it has hit
the cosmic fast-forward button. It thus appears that the role of dark matter on early star
formation in stabilizing galaxies might be more significant than previously thought, or
perhaps a new explanation is required, which we consider in this paper.

1.1. Historical Review

As part of Einstein’s deliberations on his principle of equivalence and its relationship to
gravity, he made reference to a rotating frame of reference within special relativity (SR) [2,3].
From this, he deduced that time dilates in a gravitational field. Our paper proposes a natural
extension of Einstein’s gedankenexperiment approach above, by carefully considering the
energy within the rotating frame, which then has application to the gravitational case.
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We use SR to provide a first-order analysis, which can motivate a future full general
relativistic (GR) analysis.

In SR, the frame invariant mass–energy is defined by

m2c4 = E2 − p2c2. (1)

We note that when measured in the rest frame, with p = 0, we have m = E/c2. Also,
since energy and momentum are separately conserved [4], we can sum over n particles by
superposition, giving a generalised energy–momentum relation

m2c4 =

(
n

∑
i=1

Ei

)2

−
(

c
n

∑
i=1

pi

)2

. (2)

Hence, in the centre of momentum (COM) frame, defined by ∑n
i=1 pi = 0, we have an

invariant mass defined as

m =
1
c2

n

∑
i=1

Ei =
1
c2 ∑ γimic2, (3)

which sums the relativistic energies of each particle in the COM frame. A special case of
interest is a box of photons, each with energy Ei, which will produce a non-zero mass,
consistent with Einstein’s principle of the inertia of energy. That is, if a mass absorbs or
radiates a photon of energy ∆E, then this will produce a change in mass:

∆m =
∆E
c2 . (4)

This also led Einstein to consider the idea of a variable inertial mass for objects in
gravity1, based on the gravitational binding energy [5]; moreover, in 1912, he presented
the equation

m = m0

(
1 +

GM
rc2

)
. (5)

Expanding this expression, we find mc2 = m0c2 + GMm0
r , indicating that Einstein was

using mass–energy equivalence to include the gravitational potential energy into the mass.
Indeed, Einstein stated the following: "In a gravitational field, one must associate with

every energy E an additional position-dependent energy which equals the position-dependent
energy of a “ponderable” mass of magnitude E/c2. [3] Einstein also notes with regard to the
principle of equivalence: The law [E = mc2] therefore holds not only for inertial but also for
gravitational mass."

Historically, after publishing the special theory of relativity in 1905, Einstein sought to
generalise the framework to include gravity. As part of this effort, he presented an analysis
of the spinning disk in 1912 [6], with further considerations in 1916 [7]. He was interested
in investigating how a rotating frame K′ at constant angular velocity ω, equipped with
clocks at the centre and periphery, would mimic the behaviour of clocks in a gravitational
field. This was achieved by comparing K to K′, where K is non-rotating, with both sharing
a common rotation axes, z′ and z, as follows:

We place two similar clocks (rotating with K′), one upon the periphery, and the other at the
centre of the circle; then, judged from K, the clock on the periphery will operate slower than the
clock at the centre. The same thing must take place, judged from K′. According to the principle
of equivalence, K′ may also be considered as a system at rest, with respect to which there is a
gravitational field (field of centrifugal force, and force of Coriolis) [8,9].

Due to Einstein’s deep conviction in the correctness of the equivalence principle
for non-inertial forces, this thought experiment allowed him to deduce that spacetime is
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warped in gravity. Specifically, using the principle of equivalence2 [10,11], a clock at the
periphery p′, in the frame K′, experiencing a radial force, and running asymmetrically
slower in time with respect to a clock, also in K′, at the centre z′, is deemed completely
equivalent to one lying fixed and deeper in a static gravitational field. Of course, the equiv-
alence principle relates an accelerated (and in particular a rotating) frame on Minkowski
spacetime to a gravitational field only if restricted to a spacetime neighbourhood that is
small enough so that the acceleration in the rotating frame can be considered as constant,
which means that in the equivalent situation, the gravitational field is homogeneous.

It is relevant now to make a comment on the role of frames in general relativity (GR).
Gravitational redshift, although used to measure time dilation in gravity, will ‘disappear’
for free-fall observers. In this regard, it is a frame-dependent phenomena. This, however,
does not diminish the importance and reality of the result in the frame in which it is
measured. For example, in the frame of a global positioning system (GPS), the need for
corrections in time to satellite clocks is necessary. This time dilation effect has now been
tested using gravitational redshift or other methods to a high degree of accuracy [12–14].
We mention this, also, since we demonstrate below that gravitational redshift is also a
parameter used for the measurement of an object’s mass–energy content.

1.2. Establishing a Frame Invariant Mass for a Rotating System

For two masses (m1, m2), placed equidistant from the centre of a rotating frame, we
have their energy–momentum four-vectors

P1 = [E1, cp1], P2 = [E2, cp2]. (6)

Now, due to the separate conservation of energy and momentum, we can write a
single four-vector

P = P1 + P2 = [E1 + E2, cp1 + cp2]. (7)

For two equal masses m1 = m2 = m
2 , we have E1 = E2 = γmc2/2 and p2 = −p1. This

simplifies the combined energy–momentum four-vector to

P = [2E1, 0] = [γmc2, 0]. (8)

We know that an energy–momentum four-vector implies an invariant mass

M2 = E2 − c2 p2 = E2. (9)

Therefore, the invariant mass, in the rotating frame, is

M = E/c2 = γm. (10)

With respect to the non-rotating frame K, we have the velocity v = rω, so the mass is

M =
m√

1 − v2/c2
=

m√
1 − r2ω2/c2

. (11)

Being in the centre of momentum frame, this mass M can be weighed on a scale, and
so it is indeed Lorentz-invariant for all frames.

1.3. Applying Einstein’s Rotating Clock Frames to Two Test Masses

Repeating Einstein’s procedure on the spinning disk, as described in the introduction,
except replacing two masses for the two clocks, we find, with respect to K, a measured
increase in mass at the periphery of the rotating frame K′. Again, by virtue of coincidence of
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the axes z and z′, K′ will also judge the peripheral mass to have increased. Thus, applying
the principle of equivalence, since K′ may also be considered as a system at rest in a
gravitational field, we conclude that there will also be a measured increase in mass for
an object deeper in a gravitational field. Now, applying the equivalence principle to the
centrifugal force, K′ may also be considered as a system at rest, with respect to which there
is a gravitational field. Therefore, since there is a mass increase in the direction of the
centrifugal force, we conclude that there will also be a measurable increase in mass for an
object deeper in a gravitational field. Henceforth, we will drop all references to centrifugal
forces and refer only to the mass increase with respect to gravitation.

As in the case of gravitational time dilation, where a true asymmetry exists between
the stationary clock rates in the field, there is also a true asymmetry in the internal energy
of the stationary masses in a gravitational field. In order to avoid confusion with other
mass definitions, we propose the term ‘gravitational potential dependent mass’ (GPDM)
for this mass under gravity.

2. GPDM in the Schwarzschild Metric
The Gullstrand–Painlevé coordinate system [15,16] can be used to write the

Schwarzschild solution with an alternate set of coordinates [17] from the perspective
of a ‘rain frame’ [18], where spacetime can be deemed as flowing into a black hole with a
velocity given by the escape velocity of

v =

√
2GM

r
. (12)

The escape velocity shows the energy differential between a radius r and infinity. It
is also related to the time dilation factor in the Schwarzschild metric. Hence, we expect
the same mass increase factor. Thus, substituting the escape velocity into Equation (11), as
v = rω, we arrive at a mass dependency for m0 in a gravitational field at radius r that is
as follows:

m =
m0√

1 − 2MG
rc2

, (13)

where M is the source mass and m0 is a test mass, measured locally.
The equivalence principle employed in the rotating frame translates to a particle

stationary in a static gravitational field. Hence, there is no need to consider mass in motion
under gravity with consequent frame dragging effects; therefore, the Schwarzschild metric
is applicable.

2.1. The Classical Approximation

We now show how the total energy of a test mass m, given by Equation (13), reduces
to known quantities in the classical limit. Using E = mc2, we find the total energy of a
test mass

Etot =
m0c2√

1 − 2MG
rc2

. (14)

We can use a series expansion of 1/r to write

1√
1 − 2MG

rc2

= 1 +
MG
rc2 +

3M2G2

2r2c4 +
5M3G3

2r3c6 . . . (15)

We then have

Etot = m0c2
[

1 +
MG
rc2 +

3M2G2

2r2c4 + . . .
]

. (16)
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Now, assuming 2MG
rc2 ≪ 1, we can take the first three terms as an approximation to give

Etot ≃ m0c2 +
m0MG

r
+

3m0M2G2

2r2c2 . (17)

We see that m0c2 is the rest energy, and mMG
r is the classical gravitational potential

energy along with a ‘relativistic’ correction term 3m0 M2G2

2r2c2 .
Based on the expansions of terms in Equation (17), we see that Equation (13), having

the same coefficient as the Schwarzschild metric, produces a higher-order result than
Einstein’s 1912, first-order one in Equation (5).

2.2. Linking Key Variables in the Schwarzschild Metric to GPDM

It follows from the mass formula in Equation (13) and its functional equivalence to the
coefficients of the well-known Schwarzschild solution,

ds2 =

(
1 − 2MG

rc2

)
c2dt2 − 1(

1 − 2MG
rc2

)dr2 (18)

−r2
(

dθ2 + sin2 θdϕ2
)

,

that any change in mass, as per the result should affect both time and length. Hence, from
the redshift relation based on the Schwarzschild metric of

νr = νs

√
1 − 2MG

rc2 (19)

as well as the length changes

dl =
dr√

1 − 2MG
rc2

, (20)

we can now relate several key variables

m
m0

=
E
E0

=
dt0

dt
=

νs

νr
=

dl
dr

= 1 + zg, (21)

where νs and νr are the source and received frequencies, respectively. Hence, the mass
increase, m, changes in the same ratio as the frequency and length, dl, while inversely
changing in comparison to time dilation. We have also related this to the gravitational
redshift zg, via 1 + zg = νs

νr
, where we assumed a fixed r as in the Schwarzschild solution.

Also, in (13), (19) and (20), the apparent mass increase occurs at the same position in the
field as vr and dl.

3. Applications
3.1. First-Order Effect on Neutron Star Sizes

This is a first attempt at explaining a first-order relativistic effect on a neutron star and
that further, more precise work incorporating general relativity will be carried out in the
future. In the Newtonian approximation, where the gravitational potential outside a source
mass M is ϕ = −GM

r , we can make a substitution into Equation (13), giving

m =
m0√

1 + 2ϕ

c2

, (22)

where ϕ is the gravitational potential at the location of a test mass m0.
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Now, 4U1820-30 is a neutron star, which has been measured at 1.58± 0.06 solar masses
and a radius of 9.1 ± 0.4 km [19], with GM

rc2 ≈ 0.256. This gives a predicted mass gain on the
surface of the star of

m
m0

=
1√

1 + 2ϕ

c2

=
1√

1 − 2 × 0.256
= 1.43. (23)

We therefore expect neutron stars to be smaller than expected, if their size is calculated
based on their inferred mass. Due to the near constant density of neutron stars, they thus
appear to provide a suitable approach to verifying the theory.

This mass increase effect will therefore also predict a decrease in the initial solar mass
upper limit for forming neutron stars.

3.2. A Terrestrial Application

If we measure the inertial mass of an object on the Earth’s surface, and also at an
altitude of say 100 m, then from Equation (13) and using the known mass and radius of the
Earth, we can calculate the expected change in inertial mass. Substituting these values we
find a mass change factor 1.1 × 10−14. A Cavendish torsion balance can measure inertial
mass to an accuracy of around 10−15 and so this small variation may feasibly be detectable
with an appropriately designed experiment. Other experiments include those undertaken
to test deviations from an inverse square law [20]. This also shows that the theory reduces
very close to the Newtonian limit.

3.3. Implications for Gravitational Lensing

A current very significant discrepancy in the field of astrophysics is the amount of
observed gravitational lensing compared to the amount of visible matter. The mass gain
relation above therefore has implications for gravitational lensing and general astronomical
mass measurements. The estimated total mass that causes gravitational lensing from
general relativity is m = αrc2

4G , where in accord with our proposal, m is the total mass that
has increased from m0 by some nearby larger mass M. The deflection angle is α, which
includes the effect of both space and time curvature.3 Using Equation (21), we can find, to
the first order, a relation between mass increase and gravitational redshift as follows:

m = m0

(
νs

νr

)
= m0

(
1 + zg

)
, (24)

giving

m0 =
αrc2

4G(1 + zg)
, (25)

where zg is the gravitational redshift of the intermediate lensing object. This indicates that
for higher redshift structures, additional gravitational lensing will be expected. The theory
therefore expects a degree of unseen mass for our particular object given by

madd =
αrc2

4G

(
1 − νr

νs

)
. (26)

We note this is not the full equation for a single massive collapsed object. For this, we
need the full integral. We see that for values of νr ≃ νs and (1 − νr

νs
) → 0, we have very

little extra mass. If νr ≪ νs, we have large amounts of extra mass, not easily visible due
to the highly red shifted photons. In the extreme case, for νr → 0, we have madd → αrc2

4G .
Hence, the matter is possibly undetectable except for its lensing effects.
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The unseen matter, coupled to the mass increase, has characteristics similar to the
behaviour of ‘dark matter’. That is, the observed larger-than-expected lensing effects
imply an increased mass, and Equation (21) implies less visible ‘redshifted mass’. Current
estimates of dark matter are approximately a factor of 5.5 times the observed baryonic
matter [21]. Gravitational lensing and extreme redshift data can thus be used to directly
confirm mass discrepancies in a given galaxy or a galaxy cluster. This key result might
lie within current instrumentation precision; hence, it could be used to test the validity of
the theory.

4. Recent James Webb Findings and Correlations with the
Presented Theory
4.1. Unexpected Massive Galaxies

JWST has revealed galaxies that are surprisingly massive for their early formation
times. For example, six galaxies at redshifts z = 7.4 to 9.1, corresponding to 500–700 million
years after the Big Bang, have masses exceeding 1010 solar masses, with one reaching
1011 solar masses—far larger than the previously expected < 109 solar masses. This
suggests that galaxy formation might be faster than originally thought [22], consistent with
our hypothesis.

4.2. High Redshift Discoveries Suggests Early Galaxy Formation

JWST has also observed galaxies at exceptionally high redshifts, indicating they formed
very early. Notable examples include CEERS-93316 at z = 16.7, 235.8 million years after the
Big Bang [23], and JADES-GS-z14-0 at z = 14.32, 290 million years after the Big Bang, which
are among the earliest and most distant galaxies ever seen [24]. These findings challenge
our understanding of how early galaxies can form. While the theory proposed here cannot
provide a precise time for early galaxy formation, it certainly predicts faster-than-expected
galaxy formation and therefore is consistent with such findings.

5. Discussion
Astronomical observations indicate a close correspondence between known baryonic

matter and the proposed dark matter [25]. This correlation is consistent with the idea of a
general mass increase in existing baryonic matter within a gravitational potential.

From Equations (21) and (26), the theory expects that higher density masses emit
greater redshifted light; hence, we expect to observe a direct correlation between total lumi-
nosity and higher mass. This correlation appears to exist with the Tully–Fisher relation [26]
of L ≈ Wα, where α ≈ 3.5–4.0, particularly since the observed luminosity L corresponds to
the same regions where baryonic matter is found.

From Equations (13) and (22), the theory would expect a faster-than-anticipated
gravitational collapse rate for any starting source mass, such as gas clouds. Hence, we
would expect a larger number of well-formed galaxies in the early universe as well as
in an early formed cosmic web [27,28]. Following from this, the theory would expect
a faster rate of ultramassive black hole formation at the centre of most galaxies than is
currently predicted [29]. Since the theory associates mass increase with the presence of
increased baryonic matter density, it also appears consistent with gravitational lensing
map observations for Bullet cluster 1E 0657-558. These mappings show separation of
gravitational potential regions which trace the greater baryonic density at the distribution
of galaxies as opposed to the less-dense baryonic plasma where no detectable lensing
occurs [30]. More precise quantitative applications of the theory for such observations are
needed in order to test its viability. We would expect that current computer modelling of
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the early universe, which ignores the mass increase principle, would find a mass shortage,
which then needs to be made up with dark matter.

Dark matter proposals typically add a corrective scalar term to the stress–energy tensor,
on the right-hand side of Einstein’s field equations. Since our proposal has that M = f (r),
then we expect a nonlinear scaling factor to also be produced for the stress–energy tensor
in at least the T00 terms. Our treatment is not a complete relativistic one, and it motivates
the need to investigate a fuller treatment in future work.

6. Conclusions
Using the principle of equivalence, based on Einstein’s rotating disk thought exper-

iment, this paper hypothesizes that the inertial–gravitational mass of a body will vary
within a gravitational potential according to Equation (13). It also posits that a frequency
decrease in radiation emitted from source masses in a gravitational field is accompanied
by a mass–energy increase, according to Equation (21), showing a general link between
time dilation and inertial mass. Hence, by the weak equivalence principle, this relation also
applies to gravitational masses. We have theoretically established our proposal of GPDM
by deriving Equation (21) from both kinematic and energy arguments.

As a testable prediction of the theory, we present a modified gravitational lensing
formula in Equation (26), where lensing is a function of a gravitational redshift, so that
we now have an additional ‘redshifted mass’. Various other effects follow from these
results, which may possibly be detected experimentally, terrestrially, or confirmed with
cosmological measurements. The theory’s parsimonious GPDM thesis therefore appears to
have the potential to fit a key set of cosmological observations.
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Notes
1 Einstein’s conceptual approach is explained in a letter to Gustav Mie in 1917, Einstein Archive, reel 17-221 and in the biography

by Pais [3].
2 Note that the weak equivalence principle refers to the equality between inertial and gravitational mass, which has been verified

with a very high precision of 10−15 [10].
3 We expect a full GR analysis, which includes second-order effects to provide a greater degree of bending.
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