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Executive Summary 

With the rampant spread of COVID-19, many testing centres have become overwhelmed, 

suffering from long patient queue times as well as a delayed turnaround time between testing 

and receiving the result. To reduce the impact on testing and healthcare centres, research must 

be undertaken to investigate novel techniques for COVID-19 diagnosis. One technique, which will 

be the focus of this report, is to employ deep learning models for automated detection of COVID-

19 using a patient’s chest X-ray image. In particular, the aim of this project is to construct various 

deep learning models to determine whether patients with COVID-19 can be differentiated from 

those with viral pneumonia.  

As part of the project’s scope, each model will be analysed for its efficiency, relevancy to image 

classification, interpretability, and framework support availability. This project will utilise two 

chest X-ray image datasets to train and test these models. The first dataset comes from the 

University of Montreal, which contains 330 chest X-ray images. The second dataset is from the 

COVID-19 Radiography Database which contains 15153 chest X-ray images, collated from various 

studies across several Asian Universities. In both datasets, each image is attributed to one of the 

following classes: COVID-19, viral pneumonia and normal.  

This project consists of three objectives. The first objective was to perform image pre-processing 

and data augmentation to prepare the dataset for the deep learning models. Currently, the 

following pre-processing techniques have been implemented: image compression (converting 

each image to one standardised size) and pixel normalisation. Several data augmentation 

techniques have also been implemented such as rotating, shifting and flipping the images. The 

second objective is to design and implement various deep learning models to perform three-way 

classification of the chest X-ray images from both datasets. At this stage, four deep learning 

convolutional neural network architectures have been implemented for chest X-ray image 

classification. These models consist of three pre-trained architectures (VGG-16, Inception-V3 and 

DenseNet-121) and one custom made convolutional neural network architecture that was 

specifically designed for this project. The final objective was to evaluate each model using a series 

of performance metrics such as accuracy, precision, recall and F1-score. From the architectures 

that have currently been implemented, the best performing model was found to be DenseNet-121 

which obtained the highest testing accuracy (91%) for both datasets.  

Nonetheless, the project was subject to some limitations as the used dataset did not include key 

patient descriptors such as age, gender, contamination period, medical history. Furthermore, the 

COVID-19 strain type could not be retrieved from the metadata. The future work for this project 

includes applying more advanced pre-processing techniques such as image contrasting and 

region of interest extraction. In addition to this, other pre-trained CNN architectures such as 

ResNet, MobileNet and EfficientNet will be evaluated for chest X-ray classification. Alternatively, 

this project could also consider other novel image classification techniques such as Vision 

Transformers.  

  



 

iii 
 

Table of Contents 

1 Introduction .................................................................................................................................................................... 1 

1.1 Project Overview ................................................................................................................................................ 1 

1.2 Background ........................................................................................................................................................... 1 

1.3 Motivation.............................................................................................................................................................. 2 

1.4 Aims and Scope ................................................................................................................................................... 3 

1.5 Objectives ............................................................................................................................................................... 3 

1.6 Document Overview ......................................................................................................................................... 4 

2 Literature Review ........................................................................................................................................................ 5 

2.1 Introduction .......................................................................................................................................................... 5 

2.2 Findings .................................................................................................................................................................. 5 

2.2.1 Data Preparation ...................................................................................................................................... 5 

2.2.2 Image Classification Techniques ...................................................................................................... 7 

2.2.3 Comparison of CNN models ................................................................................................................ 9 

2.3 Review Conclusions ........................................................................................................................................ 11 

3 Methods .......................................................................................................................................................................... 13 

3.1 Introduction ........................................................................................................................................................ 13 

3.2 Data Preparation .............................................................................................................................................. 13 

3.2.1 Data Distribution .................................................................................................................................... 13 

3.2.2 Data Pre-processing .............................................................................................................................. 14 

3.2.3 Data Augmentation ............................................................................................................................... 15 

3.3 CNN Architectures ........................................................................................................................................... 15 

3.3.1 Custom CNN Model ............................................................................................................................... 15 

3.3.2 CNN models with Transfer Learning ............................................................................................ 16 

3.4 Summary .............................................................................................................................................................. 17 

4 Results ............................................................................................................................................................................. 18 

4.1 Introduction ........................................................................................................................................................ 18 

4.2 Evaluation of CNN Architectures .............................................................................................................. 18 

4.3 Confusion Matrices .......................................................................................................................................... 20 

4.4 Summary .............................................................................................................................................................. 22 

5 Limitations .................................................................................................................................................................... 23 

5.1 Introduction ........................................................................................................................................................ 23 

5.2 Sample Size ......................................................................................................................................................... 23 

5.3 Missing Metadata ............................................................................................................................................. 23 



 

iv 
 

5.4 Summary .............................................................................................................................................................. 24 

6 Completion Plan.......................................................................................................................................................... 25 

7 Conclusion ..................................................................................................................................................................... 26 

References ............................................................................................................................................................................... 27 

Appendices .............................................................................................................................................................................. 33 

Appendix A: Theory ....................................................................................................................................................... 33 

A1 CXR Radiography......................................................................................................................................... 33 

A2 Machine Learning Techniques .............................................................................................................. 34 

Appendix B: Evaluation Metrics ............................................................................................................................... 37 

 

  



 

v 
 

List of Tables 

Table 1 Project objectives and key specifications/outcomes ........................................................................... 4 

Table 2 Summary of key literature that performed  X-ray classification using CNN models .......... 10 

Table 3 Distribution of the training, validation and testing sets for dataset A ...................................... 14 

Table 4 Distribution of the training, validation and testing sets for dataset B ...................................... 14 

Table 5 Data augmentation techniques applied on the training datasets ................................................ 15 

Table 6 Performance evaluation of ML models for dataset A ......................................................................... 18 

Table 7 Performance evaluation of ML models for dataset B ......................................................................... 19 

 

 
 

 

List of Figures 

Figure 1 Chest X-ray image of COVID-19, Viral Pneumonia and Healthy patients from the 

University of Montreal dataset ........................................................................................................................................ 2 

Figure 2 Image distribution between classes for dataset B ............................................................................. 13 

Figure 3 Architecture of the custom CNN model implemented..................................................................... 16 

Figure 4 Confusion matrices for custom CNN (top left), VGG-16 (top right), Inception-V3 (bottom 

left) and DenseNet-121 (bottom right) for dataset A ......................................................................................... 20 

Figure 5 Confusion matrices for custom CNN (top left), VGG-16 (top right), Inception-V3 (bottom 

left) and DenseNet-121 (bottom right) for dataset B ......................................................................................... 21 

Figure 6 Depiction of patient undergoing CXR imaging .................................................................................... 33 

Figure 7 Diagram depicting the layers of a CNN model ..................................................................................... 35 

Figure 8 Example of a confusion matrix ................................................................................................................... 37 

 

 

 

 

 

  

file://///UOFA/USERS$/users6/a1720576/Honours/Progress%20Report/Progress%20Report%20Final_2.docx%23_Toc104813370
file://///UOFA/USERS$/users6/a1720576/Honours/Progress%20Report/Progress%20Report%20Final_2.docx%23_Toc104813370
file://///UOFA/USERS$/users6/a1720576/Honours/Progress%20Report/Progress%20Report%20Final_2.docx%23_Toc104813373
file://///UOFA/USERS$/users6/a1720576/Honours/Progress%20Report/Progress%20Report%20Final_2.docx%23_Toc104813373
file://///UOFA/USERS$/users6/a1720576/Honours/Progress%20Report/Progress%20Report%20Final_2.docx%23_Toc104813374
file://///UOFA/USERS$/users6/a1720576/Honours/Progress%20Report/Progress%20Report%20Final_2.docx%23_Toc104813374
file://///UOFA/USERS$/users6/a1720576/Honours/Progress%20Report/Progress%20Report%20Final_2.docx%23_Toc104813375
file://///UOFA/USERS$/users6/a1720576/Honours/Progress%20Report/Progress%20Report%20Final_2.docx%23_Toc104813377


 

vi 
 

List of Abbreviations 

 

Abbreviation Meaning 

AI Artificial Intelligence 

AUC Area Under the Curve 

CLAHE Contrast Limited Adaptive Histogram Equalisation 

COVID-19 Coronavirus 2019 

CIR Contrast Improvement Ratio 

CNN Convolutional Neural Network 

CT Computer Tomography 

CXR Chest X-Ray 

DenseNet Dense Connected Convolutional Networks 

GGO Ground Glass Opacity 

HOG Histogram-Oriented Gradient 

ML Machine Learning 

MobileNet Mobile Network 

RAT Rapid Antigen Testing 

ReLU Rectified Linear Unit 

ResNet Residual Neural Network 

RT-PCR Reverse transcription-polymerase chain reaction 

SVM Support Vector Machines 

VGG Visual Geometry Group 

WHO World Health Organisation 

 

  



 Chapter 1 Introduction 

1 
 

1 Introduction 

1.1 Project Overview 

To increase the testing accessibility of Coronavirus Disease 2019 (COVID-19), it is critical to 

develop new methods that are capable of detecting this disease. The focus of this project, ‘COVID 

or flu? That’s the question!’ is to explore advanced image classification techniques to correctly 

classify chest X-ray (CXR) images into one of the following categories: COVID-19, normal and viral 

pneumonia.   

 

1.2 Background 

According to World Health Organisation (WHO), there has been a total of approximately 452.2 

million COVID-19 cases and 6.3 million deaths, as of March 14, 2022 [1]. The COVID-19 virus has 

caused an ongoing global pandemic and with newer variants being developed rapidly, the world 

is struggling to adapt. The first case of the COVID-19 virus was reported in December 2019, in 

Wuhan, Hubei Province, China, from where it began to transmit rapidly to the rest of the countries 

around the world [2]. 

 

For the diagnosis of COVID-19, various methods are used with the most common method being 

the Reverse transcription-polymerase chain reaction (RT-PCR) testing [3]. Although RT-PCR tests 

can be cost-effective, patients can expect a delay in testing and receiving results, especially during 

an outbreak. Numerous studies also concluded that RT-PCR testing has low sensitivity during the 

early stages of the infection, contributing to false-negative results [4], [5], [6]. Chest imaging using 

X-rays and computer tomography (CT) scans are protocols currently practiced by healthcare 

centres to patients, that show strong respiratory symptoms [7]. Contrast to other popular 

methods such as RT-PCR testing and Rapid Antigen Testing (RAT), the process of using CXR 

imaging is very simple, fast and provides greater accuracy due to its high sensitivity during the 

early stages of the infection [8]. Viral pneumonia is still one of the leading causes of death [9]. 

According to WHO, chest imaging using X-rays is the best method for diagnosing pneumonia [10]. 

For more information on the techniques and/or methods involved in CXR imaging refer to 

Appendix A1. 

 

Over the recent years, there has been a significant development in the areas of Artificial 

Intelligence (AI) and Machine Learning (ML). With increasing computational power and growing 

amount of quality available data, various ML methods have already shown good performance for 

medical imaging diagnosis [11]. However, there are still areas of improvement in the analysis, as 

it requires proficiency and incorporates a diverse range of techniques to improve, accelerate and 

generate an accurate diagnosis. Several studies have showed that deep learning methods, more 

specifically, Convolutional Neural Networks (CNNs), have achieved better performance on image 

classification problems in comparison to other traditional ML models [12], [13], [14]. In this 

project, existing studies will be used as a guide to verify the work being conducted. Furthermore, 

this project will also focus on exploring deep learning models such as CNNs to perform accurate 

CXR image classification. 
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Figure 1 Chest X-ray image of COVID-19, Viral Pneumonia and Healthy patients from the University of 
Montreal dataset 

 

1.3 Motivation 

The main motivation behind this project is to develop a new method for diagnosing COVID-19 

which can serve as a viable alternative to patients who require high accuracy testing with a quick 

turnaround time. In this project, advanced image classification techniques will be implemented to 

accurately differentiate normal patients from those with COVID-19. In addition to this, it is also 

important to be able to distinguish patients with COVID-19 and those with viral pneumonia. In 

comparison to viral pneumonia, COVID-19 is high transmissible and can display little to no 

symptoms, especially during the incubation period. Therefore, it is also important to differentiate 

patients with COVID-19 and viral pneumonia, to help contain the spread of the COVID-19 virus 

and to assign appropriate medical treatments and measures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both COVID-19 and viral pneumonia display similar symptoms such as coughing, fever and 

shortness of breath. To an untrained eye, both diseases show similar characteristics in CXR 

images, as illustrated in Figure 1. As such, differentiating patients with COVID-19 from those with 

viral pneumonia using CXR images can be tedious, even for expert radiologists. Therefore, this 

project provides healthcare centres with an alternative method using automated ML models to 

detect COVID-19 and viral pneumonia diseases using CXR images. This process is also automated 

which has the additional benefit of lessening the burden and stress on healthcare workers, 

especially during outbreaks when there is a significant influx of patients that need to undergo 

testing.  
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1.4 Aims and Scope 

The aim of this project is to explore advanced techniques for image classification to determine 

whether CXR images from patients with COVID-19 can be differentiated from those with normal 

lungs or viral pneumonia. This project will involve designing and constructing ML models, that 

can extract specific features from CXR images and then learn from it, to perform accurate 

classification.  

 

The scope of this project involves identifying and selecting numerous effective ML methods, that 

can be used to perform classification on CXR images. The ML model’s efficiency, relevancy to 

image classification problems, interpretability, and framework support availability, will all be 

analysed for selection. This project will require an analysis of CXR images from normal patients 

as well as those that have been diagnosed with COVID-19 and viral pneumonia. There is no need 

to perform experiments or contact healthcare centres for CXR data as there exists numerous 

online datasets containing CXR images of COVID-19, viral pneumonia and normal patients, that 

are free and publicly available. 

 

This project will make use of two CXR image datasets. The first dataset (which will be referred to 

as Dataset A in this document) is from the University of Montreal which consists of 130 COVID-

19, 100 viral pneumonia and 100 normal CXR images. The journal article, ‘COVID-19 Image Data 

Collection: Prospective Predictions Are the Future’ by Cohen et al. [15] also provided a ‘Data 

Availability Statement,’ allowing public use of their data. The second dataset (referred to as 

Dataset B) is the COVID-19 Radiography Database, which was created from various research 

across several Asian universities. The journal articles, ‘Can AI Help in Screening Viral and COVID-

19 Pneumonia?’ by  Chowdhury et al. [16] and ‘Exploring the effect of image enhancement 

techniques on COVID-19 detection using chest X-ray images’ by Rahman et al. [17] have provided 

a ‘Data Availability Statement,’ allowing public use of their data. The dataset constitutes of 3616 

COVID-19, 1,345 viral pneumonia and 10,192 normal CXR images.  

 

1.5 Objectives 

The technical objectives for this project are summarised in Table 1. This table also includes the 

specific tasks that will need to be undertaken for each objective as well as the expected 

deliverables/outcomes.  
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Table 1 Project objectives and key specifications/outcomes 

# Objective 

description 

Specifications Deliverables / outcomes 

1. Perform image pre-

processing and data 

augmentation on the 

dataset provided to 

prepare the dataset 

for training. 

• Resize images to 224 × 224 pixel size. 

• Pixel value range will be normalised to 

the range 0 to 1. 

• Additional data will be generated via 

data augmentation. 

  

• All CXR images have been 

pre-processed and are ready 

for training the ML models. 

• Additional CXR images 

generated via data 

augmentation to increase 

robustness of ML models. 

 

2. Design and 

construct ML 

models to 

differentiate 

between COVID-19 

and viral pneumonia 

in CXR images. 

• 60% of the dataset provided will be 

used to train the ML models. Another 

20% will be used to validate and fine 

tune the ML models. The remaining 20% 

will be used to testing and evaluation. 

 

• Various CNN architectures will be 

trained to perform classification on CXR 

images.  

 

 

• Multiple ML models capable 

of classifying between COVID-

19, viral pneumonia and 

normal CXR images. 

 

 

3. Evaluate ML models 

to determine the 

best performing 

model. 

• Hold-out set was used to evaluate the 

ML models. 

• Several evaluation metrics will be used 

to evaluate models. 

 

 

• Accuracy, precision, recall 

and F1-score quantities 

determined for each ML 

model. 

• Selection of best performing 

ML model that can accurately 

classify COVID-19, viral 

pneumonia and normal CXR 

images.  

 

 

 

1.6 Document Overview 

The next chapter in this document is the literature review. This chapter will concisely summarise 

the previous research that has been undertaken regarding CXR image classification for COVID-19 

detection. Particular emphasis will be placed on the different methods and techniques that these 

studies implemented as well as the overall performance of the ML models. This chapter will then 

be proceeded by the method that was used to execute this project. This will include a summary of 

the data preparation techniques that were used as well as a description of the various CNN 

architectures that have been implemented. The Results chapter consists of an evaluation of the 

CNN architectures that have been implemented using performance metrics such as accuracy, 

precision, recall and F1-score. The subsequent chapter will then address the limitations of this 

project with reference to the methodology and the results obtained. This report will conclude with 

a Completion Plan chapter which will outline the remaining tasks that have yet to be completed. 
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2 Literature Review 

2.1 Introduction 

Ever since the emergence of the global COVID-19 pandemic, numerous studies have attempted to 

detect traces of COVID-19 in CXR images using a wide range of image classification techniques. 

Although a large number of these studies have already demonstrated a high classification 

accuracy for CXR images, there is limited research comparing these different deep learning 

techniques for the same dataset. As such, the aim of this literature review is to collate the results 

from these various studies and identify the techniques and/or models that yielded the best results 

for CXR image classification. 

 

2.2 Findings 

This review consists of two sections. In the first section, an analysis is performed looking into the 

data pre-processing techniques that have been used to prepare CXR images for the deep learning 

models. The second section will then draw upon literature regarding various image classification 

techniques that have previously been used to classify CXR images.  

 

2.2.1 Data Preparation 

The main techniques that have been used by earlier studies to prepare the CXR data can be 

allocated into one of the following categories: data pre-processing and data augmentation. In this 

case, data pre-processing refers to a group of techniques that are used to improve the quality 

and/or contrast of a CXR image. On the other hand, data augmentation refers to a group of 

techniques that are used to artificially increase the size of a dataset by creating modified copies of 

existing images.  

 

2.2.1.1 Data Pre-processing 

In this case, data pre-processing refers to several techniques that are used to enhance the quality 

of the dataset that is used to train the ML model. One of these techniques involves adjusting the 

contrast on the CXR images to make features encompassing the lungs more prominent. In a study 

conducted by Reynaldi et al. [18], the contrast in CXR images was adjusted by applying a Contrast 

Limited Adaptive Histogram Equalisation (CLAHE) filter. This filter partitions the image into 

similarly-sized non-overlapping regions and then performs adaptive histogram equalisation on 

each section [19]. As part of their results, the researchers of this study [18] compared the accuracy 

of an ML model with and without using the CLAHE filter. The results from this experiment showed 

increased accuracy, sensitivity and specificity when the CLAHE filter was applied. These results 

are supported by a separate study conducted by Umri et al. [20], in which the accuracy of the CNN 

model was increased by 1% after the CLAHE filter was used to pre-process the dataset. The CLAHE 

filter can also be used in conjunction with other pre-processing techniques such as intensity 

normalisation to remove low or high frequencies from the CXR images [21]. 

 

Contrast enhancement can also be performed by means of mathematical morphology [22]. 

Mathematical morphology involves creating a structural element from the original image. This 

structural element consists of binary numbers (1s and 0s), which is then overlayed with the 
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original image to suppress some of the complex background tissue commonly found in medical 

CXR images [23]. An example of contrast enhancement using mathematical morphology was used 

successfully implemented in a study by Sarki et al. [22] to prepare a CXR dataset for an ML model. 

The effectiveness of contrast enhancement via mathematical morphology was demonstrated in a 

study by Kimori [23], in which this technique was compared against several other popular 

contrast enhancement methods, including CLAHE. The results showed a higher contrast 

improvement ratio (CIR) for the mathematical morphology technique over the other methods that 

were considered in this paper [23]. 

 

Data segmentation is another technique that can be applied to the CXR images during the data 

pre-processing stage. This technique is used to crop down the CXR images to eliminate irrelevant 

information such as the patient’s arms, neck, stomach etc., which may otherwise affect how the 

ML model classifies the images. This technique was applied by Tabik et al. [24] during their 

investigation into how deep learning models can be used to detect COVID-19 from a set of CXR 

images. To accomplish this, without manually cropping the images, a U-Net segmentation model 

[25] was employed to isolate the lungs in the CXR images. 

 

A slightly less common data pre-processing technique is wavelet decomposition. This technique 

was used by Singh et al. [26] to convert the CXR images from the spatial domain to the frequency 

domain, from which multiresolution analysis can then performed. This technique offers several 

advantages such as reducing the background noise that plagues CXR images while also improving 

the image contrast in the process [27]. 

 

2.2.1.2 Data Augmentation 

Data augmentation is a technique that is used to expand the number of images contained in a 

dataset by making copies of the existing data with some slight alterations. This technique has been 

used in various studies [24], [28], [29] with the aim of increasing the ML model performance by 

subjecting it to a wider and richer dataset. Data augmentation was used by Li et al. [29], when 

attempting to classify COVID-19 CXR images using a novel neural network model. In this study, 

the authors noted that the number of COVID-19 CXR images (400) were far fewer than those in 

the viral pneumonia and normal classes (7000 and 10000 respectively). To avoid the introduction 

of biases in the ML model, the COVID-19 dataset was expanded twofold via data augmentation 

[29]. A similar process was used by Mishra et al. [30] to expand a limited dataset of 1800 CXR to 

over 15000 images. The data augmentation techniques that were implemented in these studies 

include sheering, zooming, shifting, rotating and (horizontally) flipping the CXR images [29, 30]. 

One way to employ these techniques is to use python libraries, such as OpenCV, as described in 

the study conducted by Hernandez et al. [31]. Unlike previous studies [29, 30], the study 

conducted by Hernandez et al. [31] also included Gaussian noise as a data augmentation 

technique. This was done with the aim of increasing the robustness of the ML model to poor CXR 

image quality. When altering these images, the authors in studies [29], [30] noted that they had to 

be careful to not create images that were drastically different than those in the original dataset. 

Thus, the authors opted to only used one data augmentation technique at a time for each particular 

CXR image. In addition to this, the degree that these images were rotated/shifted was limited to a 

range of +/- 10% [29], [30]. 
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2.2.2 Image Classification Techniques 

The two main image classification techniques that will be discussed in this section are CNNs and 

tradition computer vision techniques. CNNs are deep learning algorithms specific to image 

classification. It employs end-to-end learning which requires the algorithm to determine an 

underlying pattern within a group of images so that they may be correctly classified. There are 

various architectures for CNNs. The main architectures that will be discussed in this literature 

review are: ResNet, VGG, DenseNet and MobileNet. On the other hand, in traditional computer 

vision techniques, the user is responsible for extracting the features of interest from these images 

manually. These extracted features are then used to train an ML model so that these images may 

be accurately classified.  

 

2.2.2.1 Convolutional Neural Networks 

ResNet is one of the most common CNN architectures for image classification. This architecture is 

renowned for its quick training despite consisting of network layers that are considerably deeper 

than many other typical CNN architectures [32]. A variation of this architecture, ResNet-101, was 

used by Reynaldi et al. [18] to identify CXR images for normal patients and those with COVID-19. 

This model was able to accurately classify these images with a reported accuracy of 99.61%, a 

recall of 99.62% and a specificity of 99.6% [18]. These results are supported by a separate, yet 

similar, study which used support vector machines (SVM) alongside the ResNet-50 architecture 

to categorise CXR images as either COVID-19, pneumonia or normal [33]. In this study, Narin [33] 

reported an overall accuracy, recall and specificity of 94.86%, 96.04% and 96.62% respectively 

using a SVM Cubic model.  

 

The VGG architecture is another popular CNN model that has been used to classify CXR images. 

Umri et al. [20] used the VGG-16 architecture (consisting of 16 convolutional layers) to achieve up 

to a 99% training accuracy and a 97% validation accuracy when classifying CXR images into 

COVID-19 and normal classes. In a similar study, Sarki et al. [22] used a pre-trained VGG-16 model 

to achieve a 100% accuracy for binary classification (COVID-19/normal) and an 87.5% accuracy 

for tertiary classification (COVID-19/pneumonia/normal). Alam et al. [34] used VGG-19 

architecture (with 19 convolutional layers) to a 99.49% accuracy. This study also implemented 

individual feature extraction techniques such as histogram-oriented gradient (HOG) which is 

believed to have increased the accuracy of the model [34]. 

 

DenseNet is a CNN architecture which consists of many convolutional layers but makes use of 

concatenation to reduce the number of hyperparameters required [35]. Chaudhary et al. [36] 

implemented a pre-trained DenseNet architecture to detect the presence of COVID-19 in CT scans. 

This was done in a two-stage classification framework which yielded an overall accuracy of 89.3% 

for a three-class classification: COVID-19, pneumonia and normal. Similar results were also 

obtained by Albahli, Ayub and Shiraz [37] who used a pre-trained DenseNet architecture to obtain 

an accuracy of 92% using the same three-class classification identified earlier. Montalbo [35] was 

able to boost the performance of the DenseNet architecture by using a lightweight model with 

partial layer freezing and feature extraction to classify CXR images. With these techniques, 

Montalbo [35] achieved an accuracy of 99.84%, a precision of 99%, a recall of 100% and a F1-

score of 99%. Bohmrah and Kaur [38] used CXR images to trained several variations of DenseNet 

architectures including DenseNet-121, DenseNet-169 and DenseNet-201. The best performing 
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model was DenseNet-201, which achieved an accuracy of 95.2% [38]. The authors also 

experimentally determined that DenseNet architectures produced better results using the 

RMSprop optimiser over the more commonly used Adam and Adamax optimisers [38]. 

 

MobileNet is a CNN architecture designed for mobile and vision-based embedded applications 

[39]. Mohammadi et al. [40] achieved an accuracy of 99.1% when using the MobileNet architecture 

to perform binary classification of CXR images (COVID-19 or normal). A modified version of this 

model was used by Tangudu, Kakarla and Venkateswarlu [41] to perform the same binary 

classification as above. This model used a residual separable convolutional block in conjunction 

with a pre-trained MobileNet model [41]. Overall, this model achieved a 99% accuracy for two 

publicly available datasets (COVID5K and COVIDRD) [41]. Another modified MobileNet model was 

also used by Jia, Lam and Xu [42] to perform a 5-way classification for CXR images (COVID-19, 

tuberculosis, viral pneumonia, bacterial pneumonia and normal). The modified MobileNet model 

was based on the architecture of MobileNet-V3_Small and aimed to overcome some of the issues 

that were present in the original model such as vanishing gradients and overfitting [42]. This 

modified MobileNet architecture produced similar results to that which was used in [41], with an 

overall accuracy of 99.6% for the 5-way classification of CXR images [42]. 

 

Some comparative studies have also been conducted to determine the best performing CNN 

architecture for COVID-19 diagnosis via CXR images. El Asnaoui and Chawki [21] measured the 

accuracy of several CNN architectures such as VGG-16, VGG-19, DensNet-101, Inception_ResNet-

V2, Inception-V3, ResNet-50 and MobileNet-V2. The models with the highest accuracies were 

reported to be Inception_ResNet-V2 (92.18%) and DensNet101 (88.09%) [21]. On the other hand, 

studies performed by Jabber et al. [43] and Akter et al. [44] have demonstrated that a modified 

version of the MobileNet-V2 architecture can outperform other CNN models including DenseNet-

121 and the ResNet-50V2. In a separate study, Shorfuzzaman and Masud [45] conducted a 

comparative study with several major CNN architectures including VGG-16, ResNet-50V2, 

MobileNet and DenseNet. The authors concluded that ResNet-50V2 was the best performing CNN 

model in terms of accuracy, precision, sensitivity, specificity and F1-score [45]. This was closely 

followed by the MobileNet architecture which managed to outscore ResNet50-V2 in the Area 

Under Curve (AUC) metric [45]. These results are supported by Hernandez et al. [31] who 

performed a similar study where they compared their own custom CNN model to the likes of 

ResNet-50, VGG-16 and DenseNet-121. Once again, the ResNet-50 architecture outscored all the 

other models (including the custom CNN model) for all the performance metrics including 

accuracy, precision, recall and the F1-score [31]. Santoso and Pernomo [46] also created their own 

CNN model which they used to compare against the ResNet-50, Inception-V3 and Xception 

architectures. In this case, the custom CNN model outperformed the other models in this study 

[46]. However, the researchers noted that the computational time for their custom model 

exceeded that of the other models. Another comparative study was performed by Rahaman et al. 

[47] using 15 pre-trained CNN models to determine which one could best classify CXR images into 

normal, pneumonia and COVID-19 categories. In this case, the VGG-19 architecture was found to 

outperform the other models in this study [47]. 
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2.2.2.2 CNNs vs Traditional Computer Vision Techniques 

Ever since deep learning techniques became mainstream in digital image processing, traditional 

computer vision techniques have become obsolete [12]. This can be seen in a study performed by 

Hedjazi, Kourbane and Genc [14], in which a comparison is drawn between CNN and classical ML 

methods. In this case, the CNN model (AlexNet) was shown to have a validation accuracy of at least 

86.75%, thus outperforming the traditional ML method with a maximum validation accuracy of 

83% [14]. This result was consistent for the two datasets that were considered in this study, the 

smaller of which contained approximately 6000 images and the larger containing nearly 300,000 

[14]. On the other hand, O’Mahoney et al. [12] notes that deep learning methods (such as CNNs) 

can sometimes be unnecessary as traditional computer vision techniques can sometimes classify 

images with fewer lines of code and greater efficiency. Another advantage for traditional 

computer vision techniques is that the algorithms are not class-specific and can thus be used to 

detect features from any image in the training dataset [12]. This differs from CNNs which are 

required to learn the features of each class of images separately. As such, a poorly constructed 

training dataset will likely result in a subpar performing CNN model. That being said, the major 

advantage of CNNs is the elimination of having to manually perform feature extraction, which is 

perhaps the most time-consuming process in traditional ML methods [14]. In another study, 

López-Cabrera et al. [48] investigated the limitations of deep learning methods for CXR image 

classification and compared those to traditional ML methods. In this paper the authors suspected 

that the patterns extracted via deep learning approaches can be subtle and often overlap with 

other viral pneumonias [48]. Furthermore, results from their study showed that many CNN 

models suffered from shortcut learning, in which the model would use simple characteristics to 

classify the image as opposed to learning and capturing the true essence of the underlying data. 

This was observed when the authors noted that a large portion of the region outside the lungs was 

being used to classify the CXR image [48]. This result is highly irrational and can be partially 

attributed to improper image pre-processing. In this case, the authors recommend using 

traditional ML methods which they believe are better at generalising CXR image classification for 

new/unseen datasets [48]. 

 

2.2.3 Comparison of CNN models 

A summary of the main literature discussed in Section 2.2.2.1 can be found in Table 2 below. It 

should be noted here that the data size column corresponds to the size of the original data, i.e., 

prior to performing any data augmentation. Most the literature considered here implemented 

CNN architectures in conjunction with Transfer Learning (TL). Furthermore, for comparison-

based studies which considered more than one CNN architecture, the results for the best 

performing model were selected for display. These studies are indicated by an asterisk (*).  
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Table 2 Summary of key literature that performed  X-ray classification using CNN models 

Study Classes Data 

size 

Data 

Preparation 

Techniques 

Model(s) Performance 

Metrics 

Average 

Performance 

(%) 

Reynaldi et al. 

[18] 

COVID-19 

Normal 

1281 

1281 

CLAHE 

 

ResNet-

101 + TL 

Accuracy 

Recall 

Specificity 

99.61 

99.62 

99.60 

Narin [33] COVID-19 

Pneumonia 

Normal 

219 

1345 

1341 

N/A ResNet-50 

+ SVM 

Cubic + TL 

Accuracy  

Recall 

Specificity 

94.86 

96.04 

96.62 

Umri et al. [20] COVID-19 

Normal 

100 

100 

CLAHE VGG-16 + 

TL 

Accuracy 

 

97 

 

Sarki et al. [22] COVID-19 

Pneumonia 

Normal 

296 

3875 

1341 

Math. 

Morphology 

VGG-16 + 

TL 

Accuracy 

Recall 

Specificity 

87.50 

96.43 

100 

Alam et al. [34] COVID-19 

Normal 

1979 

3111 

Region of 

Interest 

 

VGG-19 + 

TL 

Accuracy 

Recall 

Specificity 

99.49 

93.65 

95.7 

Chaudhary et 

al. [36] 

COVID-19 

Pneumonia 

Normal 

171 

60 

76 

N/A DenseNet-

121 + TL 

Accuracy 89.3 

Albahli, Ayub 

and Shiraz [37] 

COVID-19 

Pneumonia 

Normal 

590 

6057 

8851 

Data 

Augmen. 

 

DenseNet-

512 + TL 

Accuracy 

Recall 

Specificity 

92 

85 

99 

Montalbo [35] COVID 

Pneumonia 

Normal 

1281 

4657 

3270 

N/A Custom 

DenseNet 

+ TL 

Accuracy 

Precision 

Recall 

F1-score 

97.99 

98.38 

98.15 

98.26 

Bohmrah and 

Kaur [38] 

COVID-19 

Pneumonia 

Normal 

111 

70 

70 

N/A DenseNet-

201 + TL 

Accuracy 

Precision 

Recall 

F1-score 

86 

92 

91 

91 

Mohammadi et 

al. [40] 

COVID-19 

Normal 

181 

364 

Data 

Augmen. 

 

MobileNet 

+ TL 

Accuracy 

Precision 

Recall 

F1-score 

99.1 

100 

98.0 

99.0 

Tangudu, 

Kakarla and 

Venkateswarlu 

[41] 

COVID-19 

Normal 

1341 

1200 

N/A MobileNet 

+ TL 

Accuracy 

Recall 

Specificity 

99.65 

99.65 

100.0 

Jia, Lam and Xu 

[42] 

COVID-19 

Tuberculosis 

B. Pneumonia 

V. Pneumonia 

Normal 

1770 

1436 

1700 

1345 

1341 

N/A MobileNet Accuracy 

Recall 

Precision 

95.0 

95.0 

95.3 

El Asnaoui and 

Chawki [21]* 

Coronavirus 

B. Pneumonia 

Normal 

1724 

2780 

1583 

CLAHE Inception_ 

ResNet-

V2 

 

Accuracy 

Recall 

Specificity 

Precision 

92.18 

92.11 

96.06 

92.38 
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F1-score 92.07 

Jabber et al. 

[43]* 

COVID-19 

Non-COVID 

500 

6000 

N/A MobileNet Accuracy 

Recall 

Specificity 

Precision 

F1-score 

98.6 

87.8 

99.3 

87.8 

87.8 

Akter et al. 

[44]* 

COVID-19 

Normal 

3616 

10192 

Data 

Augmen. 

CLAHE 

 

MobileNet 

+ TL 

Accuracy 

Recall 

Specificity 

Precision 

F1-score 

98 

98 

97 

97 

97 

Shorfuzzaman 

and Masud 

[45]* 

COVID-19 

Pneumonia 

Normal 

226 

226 

226 

Data 

Augmen. 

 

ResNet-

50V2 

Accuracy 

Recall 

Specificity 

Precision 

F1-score 

98.15 

98.26 

98.89 

97.87 

98.06 

Hernandez et 

al. [31]* 

COVID-19 

Pneumonia 

Normal 

1234 

4576 

16627 

N/A ResNet-50 

+ TL 

Accuracy 

Recall 

Precision 

F1-score 

90.63 

91.67 

90.00 

90.72 

Santoso and 

Pernomo [46]* 

COVID-19 

Pneumonia 

Normal 

206 

206 

206 

N/A FCovNet Accuracy 

Recall 

99.55 

96.67 

Rahaman et al. 

[47]* 

COVID-19 

Pneumonia 

Normal 

260 

300 

300 

Data 

Augmen. 

 

VGG-19 Accuracy 

Recall 

Precision 

F1-score 

89.3 

89.7 

90.8 

89.6 

 

 

 

2.3 Review Conclusions 

Looking through the literature in Table 2, a large amount of research has already been conducted 

on the classification of CXR images using CNN models. Although various performance metrics 

were used, the accuracy metric is the only one that is common to all of these studies. As such, this 

will be the major performance metric that will be used to compare the results from these studies.  

 

First, by examining the Classes column, it is evident that the studies that performed binary 

classification (i.e., studies that only consisted of two classes) had on average a higher accuracy 

metric. This result is expected as it is relatively easy to differentiate a normal patient from one 

that contains COVID-19. However, when additional classes are added, such as viral pneumonia, 

the model may struggle to differentiate between the various illnesses (especially if these diseases 

display similar CXR characteristics). Out of the seven studies that performed binary classification, 

the minimum testing accuracy (97%) corresponded to the study conducted by Umri et al. [20]. 

Despite this impressive result, this accuracy is slightly lower compared to the rest of the binary 

classification studies, which contained an average performance accuracy of 99.08%. This is likely 

attributed to the low data size that was used by Umri et al. [20], which only contained 100 CXR 

images for each class. Due to this small data size, the VGG-16 model was likely inadequately 

trained compared to the models implemented in some of these other studies which used 
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thousands of CXR images for training. In this case, the researchers of this study could have 

benefitted from implementing data augmentation to increase the training data sample size. This 

technique was used by Mohammadi et al. [40] and who was able to achieve an accuracy of 99.1%, 

despite the fact that the original data size only contained approximately 500 CXR images. 

However, it should be noted that these two studies used different CNN architectures and thus their 

results cannot be fully compared.  

 

On the other hand, the average accuracy for the studies that performed a three-way classification 

is approximately 92.5%. Overall, the ResNet architecture consistently displayed a high 

performance accuracy with respect to the other studies. This can be seen in studies [21], [31], [33] 

and [45] which used the ResNet architecture to obtain classification accuracies of 92.18%, 

90.63%, 94.86% and 98.15% respectively. In one particular study [35], the custom DenseNet 

architecture was shown to perform reasonably well, with an overall accuracy of 97.99%. However, 

when considering the other studies that used DenseNet, this architecture had a considerably 

lower average accuracy of approximately 89%. In addition to this, the DenseNet architecture is 

infamous for its long training times and larger number of hyperparameters needed [35]. As such 

this model is likely less suited to performing image classification compared to some of the other 

architectures considered here. Similarly, the VGG architecture also had a lower than average 

performance compared to ResNet with an average classification accuracy of 88.4% [22], [47].  

 

The CLAHE filter was implemented in several studies in this literature review [18], [20, 21] and 

[44].  These studies used this filter to improve the contrast of the CXR and to highlight small 

features that might otherwise be missed by the CNN model when performing image classification. 

The studies that implemented this filter achieved an average accuracy of over 95% despite the 

various CNN architectures and data sizes used. An interesting data pre-processing technique that 

was used by Alam et al. [34] is region of interest (ROI) extraction. ROI extraction was used to 

remove any unnecessary labels (such as numbers and letters) that commonly appear on the edges 

of CXR images. This process encourages the CNN model to focus in on the lung region of the CXR 

image and thus lessens the likelihood of the model using shortcut learning when classifying the 

image [48]. Unfortunately, ROI extraction appears to be overlooked in most of the studies that 

were considered in this literature review. This pre-process technique can be quite tedious to 

implement (especially for datasets with thousands of images), which is likely why many 

researchers have elected to skip this process entirely. Finally, it is worth noting that a large 

number of these studies implemented CNNs via TL. TL was used to reduce the training time 

required by reusing the model hyperparameters from a different (albeit similar) task.  

 

In summary, upon reviewing the previous literature, the following techniques will be considered 

for implementation in our project: 

1. Data augmentation to increase/balance out the data size between the different classes. 

2. Image contrast enhancement via a CHALE filter or mathematical morphology. 

3. Region of interest extraction to remove unwanted labels and to focus in on the lung region. 

4. Implementation of various CNN architectures including but not limited to ResNet, VGG and 

DenseNet. 

5. An evaluation of various models using performance metrics such as accuracy, recall, F1-

score. 
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3 Methods 

3.1 Introduction 

This chapter recounts the methodology that was used to classify the CXR images using ML models. 

The first section describes the techniques that were used to prepare the data. These techniques 

are categorised into the following subsections: data distribution, pre-processing and 

augmentation. This chapter will then discuss the various CNN architectures that were 

implemented to classify the CXR images. This includes a custom CNN model that was designed 

from scratch and several pre-trained CNN architectures such as VGG-16, Inception-V3 and 

DenseNet-121. 

 

3.2 Data Preparation 

The data preparation techniques that were used to prepare the CXR for the ML models are data 

distributions, data pre-processing and data augmentation. Data distribution was performed to 

evenly distribute the dataset to ensure that each class (COVID-19, viral pneumonia and normal) 

contained the same amount of CXR images. Data pre-processing was then applied to normalise the 

CXR images for the ML models. Finally, data augmentation was used to improve the ML model 

performance by subjecting it to a larger and richer dataset. 

 

3.2.1 Data Distribution 

The experiments were performed on the two different datasets separately. For dataset A, all the 

CXR images were used during the training process. For dataset B, a data imbalance exists, as 

shown in Figure 2, which may cause false classification performances [49]. Furthermore, to 

minimise the training time required for the second dataset, a random sample of 1345 CXR images 

were selected for each class. Since viral pneumonia class contained the least amount of CXR 

images (1345), this sample size was used to randomly select the CXR images from the COVID-19 

and normal classes to help even out the distribution.  

 

 

 

 

 

 

 

 

 

 

Figure 2 Image distribution between classes for dataset B 
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For both datasets, 60% of the data were used to train the ML models, 20% were used for validation 

purposes and the remaining 20% were used for testing. The distribution of the train, validation, 

and test sets for the datasets A and B are summarised in Tables 3 and 4, respectively. 

 

Table 3 Distribution of the training, validation and testing sets for dataset A 

Set Count Percentage 

COVID-19 Normal Viral 

Pneumonia 

Train 78 60 60 60% 

Validation 26 20 20 20% 

Test 26 20 20 20% 

Total 130 100 100 100% 

 

 

Table 4 Distribution of the training, validation and testing sets for dataset B 

Set Count Percentage 

COVID-19 Normal Viral 

Pneumonia 

Train 807 807 807 60% 

Validation 269 269 269 20% 

Test 269 269 269 20% 

Total 1345 1345 1345 100% 

 

 

3.2.2 Data Pre-processing 

The CXR images present in each dataset were in JPEG and PNG formats, with different sizes 

varying from 299 × 299 to 4248 × 3480 pixels. For performing the experiments, the image size of 

224 × 224 was selected, as this was the required input size for all of the TL models used in this 

project. The nearest neighbour interpolation method was used to compress (i.e., down sample) 

the images to the target size. Pixel normalisation is very important, as it aids in improving the 

computational time of the deep learning models [50]. The learning process of the deep learning 

models can be significantly slower, when the inputs hold large integer values. The CXR images in 

the datasets were normalised, such that the pixel value ranged from 0 to 1. This was performed 

by multiplying every pixel value with a multiplication factor. Both datasets contain 8-bit RGB 

colour images, and the pixel values ranged from 0 to 255. Therefore, the multiplication factor can 

be computed using the following expression: 

 

Multiplication factor =
pixel value−min (pixel value)

max(pixel value)−min(pixel value)
=

pixel value

255
. 
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3.2.3 Data Augmentation 

Several studies have shown that data augmentation have been effective in increasing the 

performances in medical image classification problems [51], [52]. Data augmentation will 

generate additional images with slight variations using existing data. Data augmentation was 

performed on the training set to increase the training set size and to reduce overfitting. Overfitting 

occurs when the ML model performs too well on the training set but, is unable to generalise to the 

testing set which contains unseen data. As the ML models are exposed to a larger dataset during 

training process, the models are being forced to generalise. 

 

Table 5 provides a summary of the data augmentation methods applied on the training set. For 

this project, the following data augmentation techniques were used: rotation, horizontal shifting, 

vertical shifting and horizontal flipping. For rotation augmentation, each image was randomly 

rotated within a maximum range of ±20°. Horizontal and vertical shift augmentation were 

responsible for shifting the CXR image pixels horizontally or vertically by a certain fraction. In 

horizontal flip augmentation, the pixel columns in the CXR images were reversed (i.e., the image 

was flipped horizontally).  

 

Table 5 Data augmentation techniques applied on the training datasets 

Type of Augmentation Value 

Rotation range 20° 

Width shift range 20% 

Height shift range 20% 

Horizontal flip True 

 

 

3.3 CNN Architectures 

According to a study conducted by Litjens et al. [53], [54], CNNs are one of the most common 

techniques for medical image analysis. The is likely due to the CNNs distinctive ability to extract 

and retain the complex features of the input images. A CNN architecture comprises of multiple 

sequential convolutional and pooling layers. A CNN’s main aim is to learn and retain patterns of 

images associated with each class, while reducing the dimensionality of the image. For more 

information on the configuration of the CNN layers, refer to Appendix A. During this project, a 

custom CNN model was designed and implemented from scratch to perform image classification. 

The CNN model was implemented using the Keras library in the Python programming language. 

Several pre-trained CNN models were also implemented via TL using the Keras library. 

 

3.3.1 Custom CNN Model 

A diagram of the custom CNN architecture that was designed and implemented for CXR image 

classification is shown in Figure 3. The custom CNN architecture consists of 3 convolutional layers. 

This architecture takes in an input image of size 224 × 224. For each convolutional layer, the 

rectified linear unit (ReLU) activation function is used. After each convolutional layer, a 2 × 2 max 

pooling layer is applied to reduce the dimensionality of the image. The first convolutional layer 

uses 16 3 × 3 kernel filters. The second convolutional layer uses 32 3 × 3 kernel filters. The final 
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convolutional layer uses 64 3 × 3 kernel filters. To perform classification on the output obtained 

from the convolutional layers, multiple dense layers are used. The first dense layer consists of 512 

neurons with the activation function being ReLU. The second dense layer consist of 3 neurons 

with a softmax activation function. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Architecture of the custom CNN model implemented 

 

 

3.3.2 CNN models with Transfer Learning 

TL is a popular ML technique that uses pre-trained models (often with the same weights) to solve 

a new problem. TL is a well-researched technique in ML and is generally shown to result in 

increased model performance while minimising training time, overfitting and the number of 

parameters required [55].  

This section provides a brief overview of the TL methods used in this project. The pre-trained 

models along with the pre-trained weights, made available in Keras Applications have been 

utilised for this project. For this project, the models, VGG-16, Inception-V3, and ResNet-50 with 

pre-trained weights on the ImageNet database have been used. The ImageNet database is a large-

scale hierarchical image database, consisting of 3.2 million images with over 5247 classes [56]. A 

study by Alexander Ke et al. [57], found that pre-trained models on ImageNet dataset yielded a 

significant boost in performance compared to other architectures for CXR interpretation.  

 

3.3.2.1 VGG-16 

The VGG-16 architecture consists of 16 convolutional layers. Like the proposed CNN architecture 

above, VGG-16 is also designed for input images of size 224 × 224 × 3. The first two layers start off 

by making use of 64 kernel filters of size 3 × 3 [58]. The subsequent convolutional layers make 

use of progressively more filters from 128 (for layers 3 and 4) to 256 (for layers 5 to 7) and finally 

to 512 (for layers 8 to 13) [58]. Convolutional layers 2, 4, 7, 10 and 13 also make use of max pooling 

which is used to select the most prominent features contained in those layers [59]. Dense layers 

consisting of 4096 neurons are then used for the 14th and 15th convolutional layers. These layers 

are then fed into a dense softmax layer which also utilises ReLU activation to classify these images. 

In total, this model consists of approximately 140 million hyperparameters [59]. 
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3.3.2.2 Inception-V3 

The inception-V3 architecture is made up of 42 convolutional layers. Like VGG-16, Inception-V3 

also makes use of max pooling layers throughout the model and terminates with a Softmax layer 

for image classification [60]. Where these architectures differ however, is that Inception-V3 

employs three inception-based modules which serve as a “multi-level function extractor” [22]. 

These modules compute convolutions of sizes 1 × 1, 3 × 3 and 5 × 5 for the same network layer, 

which are all then concatenated via a filter before being passed onto the next network layer [22].   

 

3.3.2.3 DenseNet-121 

In a DenseNet architecture, each convolutional layer is connected to each other layer via a Densely 

Connected Convolutional Network [61]. In this study, DenseNet-121 was used which consists of 

four DenseBlocks consisting of 6, 12, 24 and 16 dense layers respectively [62]. Each dense layer 

is made up of convolutions of 1×1 and 3×3. Between each DenseBlock is a transition layer which 

consists of 1×1 convolution followed by a 2×2 average pool [63]. The Softmax function is once 

again used to perform image classification in the final layer of this architecture [61] . 

 

3.4 Summary 

In summary, two experiments were performed using datasets A and B. Data pre-processing 

techniques such as image compression and pixel normalisation were applied. The data 

augmentation techniques, rotation augmentation, horizontal augmentation, vertical 

augmentation and horizontal flip augmentation were performed to generate additional training 

data.  To perform classification on CXR images, four different CNN architectures, custom CNN, 

VGG-16, Inception-V3 and DenseNet-121, were implemented.  
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4 Results 

4.1 Introduction 

This chapter will summarise the major results obtained from this project. In this study, the CNN 

architectures will be evaluated according to the following performance metrics: accuracy, 

precision, recall and F1-score. Definitions for these performance metrics can be found in the 

Appendix B. To help visualise the performance of these ML models, a series of confusion matrices 

were also created.  

 

4.2 Evaluation of CNN Architectures 

Tables 6 and 7 show the performance evaluation on the test data for the ML models on the two 

datasets experimented. The tables include the precision, recall and F1-score values obtained for 

each class and the overall accuracy of the ML models when evaluated on the testing set.  

 

 

Table 6 Performance evaluation of ML models for dataset A 

Model Classes Precision Recall F1-score Testing 

accuracy (%) 

Custom CNN COVID-19 1.00 0.96 0.98 86% 

Normal 0.73 0.95 0.83 

Viral 

Pneumonia 

0.87 0.65 0.74 

VGG-16 COVID-19 1.00 1.00 1.00 89% 

Normal 0.84 0.80 0.82 

Viral 

Pneumonia 

0.81 0.85 0.83 

Inception-V3 COVID-19 0.96 0.96 0.96 86% 

Normal 0.79 0.75 0.77 

Viral 

Pneumonia 

0.81 0.85 0.83 

DenseNet-121 COVID-19 1.00 1.00 1.00 91% 

Normal 0.79 0.95 0.86 

Viral 

Pneumonia 

0.94 0.75 0.83 
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Table 7 Performance evaluation of ML models for dataset B 

Model Classes Precision Recall F1-score Testing 

accuracy (%) 

Custom CNN COVID-19 0.87 0.69 0.77 82% 

Normal 0.72 0.84 0.77 

Viral 

Pneumonia 

0.90 0.94 0.92 

VGG-16 COVID-19 0.90 0.87 0.88 89% 

Normal 0.81 0.91 0.86 

Viral 

Pneumonia 

0.99 0.91 0.95 

Inception-V3 COVID-19 0.73 0.93 0.82 84% 

Normal 0.89 0.61 0.72 

Viral 

Pneumonia 

0.94 0.98 0.96 

DenseNet-121 COVID-19 0.93 0.85 0.89 91% 

Normal 0.83 0.92 0.87 

Viral 

Pneumonia 

0.98 0.96 0.97 

 

 

According to Tables 6 and 7, the best performing model for COVID-19 detection in CXR images is 

DenseNet-121. This model produced the highest values for precision, recall and F1-score for both 

datasets A and B. This was closely followed by the VGG-16 architecture which obtained the second 

highest scores for precision, recall and F1-score. Both models, DenseNet-121 and VGG-16, 

obtained a perfect score of 1 for precision, recall and F1-score on dataset A for the COVID-19 class. 

The DenseNet-121 and VGG-16 models on dataset B obtained high F1-score values of 0.89 and 

0.88, respectively. Therefore, the DenseNet-121 model outperformed the VGG-16 model on 

dataset B for the COVID-19 class. The high F1-score values indicate that, the models DenseNet-

121 and VGG-16 produced low false positives and low false negatives for the COVID-19 class. 

Overall, both models were successful in detecting the CXR images of COVID-19 patients. 

 

The DenseNet-121 and VGG-16 models also produced high values of precision, recall and F1-score 

for the normal class on both datasets. Therefore, both models are capable of identifying CXR 

images of normal patients and differentiating them from patients with COVID-19 and viral 

pneumonia. The custom CNN model did produce a high recall value on dataset A. The recall value, 

however, was very low on dataset B. This meant that, the CNN model produced a larger number 

of false negatives on dataset B. The Inception-V3 model produced low recall values of 0.75 and 

0.61 on dataset A and B, respectively. Thus, the Inception-V3 model produced a large number of 

false negatives for the normal class on both datasets. A large number of false negatives is 

detrimental, as it means that the model is not capable of correctly detecting normal CXR images. 

Therefore, the custom CNN and Inception-V3 models cannot successfully differentiate normal CXR 

images from COVID-19 and viral pneumonia CXR images.  

 

All three pre-trained models, DenseNet-121, VGG-16, and Inception-V3 outperformed the custom 

CNN model on the viral pneumonia class, as higher values of precision, recall and F1-score were 
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Figure 4 Confusion matrices for custom CNN (top left), VGG-16 (top right), Inception-
V3 (bottom left) and DenseNet-121 (bottom right) for dataset A 

obtained on both datasets. The custom CNN model produced a low recall value of 0.65 on dataset 

A, indicating a large number of false negatives. Therefore, the custom CNN model cannot 

successfully detect CXR images of patients with viral pneumonia on dataset A. All the models 

produced high values of precision, recall and F1-score on dataset B. Therefore, on dataset B, the 

models were able to successfully detect viral pneumonia CXR images and differentiate them from 

COVID-19 and normal CXR images.  

 

From Tables 6 and 7, it can be observed that the DenseNet-121 model outperformed all other ML 

models, as it produced the highest testing accuracy (91%) on both datasets. For each class, the 

DenseNet-121 model consistently produced high values of precision, recall and F1-score, on both 

datasets. The VGG-16 model also performed well on both datasets, as it obtained a testing 

accuracy of 89% on datasets A and B. In comparison with the pre-trained models (VGG-16, 

Inception-V3 and DenseNet-121), the custom CNN architecture designed by the team produced 

the worst performance, as it obtained the lowest testing accuracy of 86% and 82% on dataset A 

and B respectively. 

 

4.3 Confusion Matrices 

Figure 4 illustrates the confusion matrices obtained from the ML models when evaluated on the 

testing set of dataset A. Figure 5 shows the confusion matrices obtained from the ML models when 

evaluated on the testing set of dataset B. 
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Figure 5 Confusion matrices for custom CNN (top left), VGG-16 (top right), Inception-
V3 (bottom left) and DenseNet-121 (bottom right) for dataset B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the ML models were highly successful in correctly predicting the CXR images of the COVID-19 

patients on dataset A. This can be observed in Figure 4, as a low number of misclassifications were 

produced for each ML model on the COVID-19 class. The custom CNN model and the DenseNet-

121 model produced the least number of misclassifications for the normal class on dataset A.  

However, the custom CNN model produced the worst performance on classifying the viral 

pneumonia class for dataset A, as a high number of misclassifications was observed.   

 

The custom CNN model also produced the worst performance in classifying CXR images of COVID-

19 patients on dataset B. As shown in Figure 5, the custom CNN model was able to correctly 

classify 185 CXR images of COVID-19 patients. However, the model incorrectly classified 80 

COVID-19 CXR images as normal CXR images. Therefore, the custom CNN model is incapable of 

successfully differentiating CXR images of COVID-19 and normal patients. The Inception-V3 model 

had the highest success in classifying CXR images of COVID-19 patients. As shown in Figure 5, the 

Inception-V3 model correctly classified 249 CXR images of COVID-19 patients and only incorrectly 

classified 20 COVID-19 CXR images.  

 

The DenseNet-121 model produced the best performance in classifying CXR images of normal 

patients on dataset B. The model correctly classified 248 CXR images of normal patients and only 

misclassified 21 normal CXR images, as shown in Figure 5. The Inception-V3 model produced the 

worst performance in classifying normal CXR images. As illustrated in Figure 5, the model 

incorrectly classified 92 normal CXR images as COVID-19 CXR images. Therefore, the Inception-

V3 model is not able to successfully differentiate between COVID-19 CXR images and normal CXR 

images on dataset B.  
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Referring to Figure 5, all the ML models were highly successful in detecting viral pneumonia in 

CXR images and differentiating them from the other classes, as evident from the low number of 

misclassifications observed. The Inception-V3 model outperformed all the other models in 

classifying viral pneumonia CXR images on dataset B. The Inception-V3 model correctly classified 

263 viral pneumonia CXR images and only incorrectly classified 6 viral pneumonia CXR images.  

 

 

The Custom CNN implemented produced the worst performance in classifying CXR images on 

both datasets. All three pre-trained models produced high values of precision, recall and f1-score 

on both datasets. Moreover, all the pre-trained models scored higher values of accuracy, when 

evaluated on the testing set. Therefore, this is indicating that the pre-trained models are more 

capable of generalising to unseen data, compared to the custom CNN model. The DenseNet121 

model generally produced the best performance in classifying CXR images of COVID-19 and 

normal patients. The Inception-V3 produced the best performance in classifying viral pneumonia 

CXR images. However, the Inception-V3 model outputted a large number of incorrect 

classifications on the normal CXR images on both datasets, which is detrimental. Therefore, based 

on the experiments considered, the DensetNet-121 model can be considered the best performing 

model. 

 

 

 

4.4 Summary 

The results demonstrate that both the designed and pre-trained CNN models can successfully 

extract important features from the CXR images to perform classification. The Custom CNN model 

implemented produced the worst performance in classifying CXR images on both datasets. All 

three pre-trained models produced high values of precision, recall and F1-score on both datasets. 

Moreover, all the pre-trained models scored higher values of accuracy, when evaluated on the 

testing set. Therefore, this indicates that the pre-trained models are more capable of generalising 

to unseen data, compared to the custom CNN model. The DenseNet-121 model had a high success 

rate of classifying COVID-19, normal and viral pneumonia CXR images. This model also produced 

the highest testing accuracy (91%) for both datasets. Therefore, DenseNet-121 was considered to 

be the best performing model for CXR image classification. 
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5 Limitations 

5.1 Introduction 

This project was subjected to several limitations that impacted the quality and generalisability of 

the results. The major limitations of this study are mainly the small dataset size and missing 

metadata. These limitations and their impact on the project’s results are discussed in the following 

subsections. 

 

5.2 Sample Size 

The first limitation was the low number of CXR images provided in dataset A. This dataset only 

contained a total of 330 samples which only included 130 CXR images for COVID-19 class. This 

sample size is generally considered to be very small, compared to some other ML studies which 

use a recommended sample size of at least 1000 images [64]. A small sample size is generally 

insufficient for the models to adequately learn the characteristics of the image which often leads 

to biased results and poor image classification.   

 

To combat this limitation, the COVID-19 Radiography Database (dataset B) was used.   This dataset 

consists of 3616 COVID-19, 1,345 viral pneumonia and 10,192 normal CXR images. Although a 

larger dataset often leads to greater generalisation, the effect of biasing may still be prevalent due 

to a data imbalance between the classes of the dataset. To obtain an even distribution of data, a 

random sample of 1,345 CXR images were selected from each class. 

 

5.3 Missing Metadata 

Both datasets were missing key metadata such as COVID-19 strain type (Delta, Omicron etc.), as 

well as some patient descriptors such as a patient’s age, gender, contamination period and medical 

history. This metadata could help to further generalise the results obtained in this study.  

 

For example, different COVID-19 strains are known to affect the lungs differently. One of these 

variants (Omicron) causes less damage to the lungs compared to other variants such as Delta [65]. 

Since the variant type was not included in the CXR metadata, the performance of these ML models 

could not be generalised for different COVID-19 strains.  Another limitation could be the patient's 

sex, as the male and female immune systems differ in the way that they treat infectious diseases 

[66].  A patient’s age could also influence the interpretation of the results in this study . 

Government health officials reported that the severity of COVID-19 increases with the patient's 

age [67]. For example, older patients are more likely to suffer from other respiratory diseases 

which may also be visible in CXR images. These images can cause the ML models to produce 

misleading classification performances. Similarly, a patient's medical history can also limit the 

interpretability of our results. For example, CXR images from patients with a history of lung 

disease can affect the learning and classification of the ML models. Another important limitation 

is contamination period of COVID-19. For example, during the incubation period the patients may 

be asymptomatic and thus there may be no distinguishable COVID-19 features in the CXR image 

[68]. In this case, the ML model may misclassify a COVID-19 CXR image as normal. 
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5.4 Summary 

In summary, several limitations were imposed on the datasets used. One of these limitations was 

a low sample size which can lead to biased results and poor image classification. To mitigate the 

effect of this limitation, a second dataset containing a larger number of CXR images was used in 

this project. Another limitation that was identified was the lack of key metadata. This includes the 

strain of the COVID-19 virus as well as several other patient descriptors that could provide insight 

into the patients' health at the time when the CXR images were taken. With these important factors 

missing, the resulting obscure dataset may in turn lead to subpar and/or inaccurate ML model 

performance 
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6 Completion Plan 

The ML models implemented produced good performances in classifying the CXR images into the 

following three classes: COVID-19, normal and viral pneumonia. However, the results achieved by 

the models were not as great as some of the models from the literature review. Therefore, 

improvements can be made to the methods used, to obtain a more accurate classification of the 

CXR images.   

 

 For the remainder of this project, the following tasks are to be considered:  

 

1. More advanced pre-processing techniques, such as ROI extraction and image contrasting 

needs to be applied.  

 

2. Implementation of several other pre-trained CNN architectures mentioned in the 

literature review, such as ResNet, MobileNet and EfficientNet.  

 

3. Investigation into novel image classification techniques, such as Vision Transformers.   

 

4. Selection of the best performing ML model for CXR image classification.  

 

5. Comparing the results of the best performing model to the previously developed models 

in literature review. 
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7 Conclusion 

The project thus far has seen progression towards answering the question “Covid or Flu? That’s 

the question!”. Despite having limitations, the ML models implemented were able to achieve 

satisfactory results on both datasets.  The pre-trained models, VGG-16, Inception-V3 and 

DenseNet-121 produced a higher classification accuracy compared to the custom CNN model that 

was implemented. The DenseNet-121 model outperformed all the other models that were 

implemented, as it produced the highest classification accuracy on the testing set. Nonetheless, 

there are still areas of improvement in the methodology that was used in this project. At the pre-

processing stage, ROI extraction needs to be performed on the CXR images, so that only the 

relevant area of the chest is kept. Ideally, this will lead to an improvement in the classification 

accuracy of the ML models and reduce the likelihood of shortcut learning. Furthermore, other pre-

trained CNN architectures, including but not limited to ResNet, MobileNet and EfficientNet, could 

be explored for CXR image classification. Vision transformers are a viable alternative to CNNs for 

image classification, which will also be considered for implementation during the second half of 

this project. 
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Figure 6 Depiction of patient undergoing CXR imaging  

Appendices 

Appendix A: Theory 

In this part of the report, a number of technical information related to the project topic will be 

discussed.  

 

A1 CXR Radiography 

CXR is one the imaging techniques that is used to look inside the body, specifically the chest area 

as the ROI. Hence, this technique is useful for analysing the heart, lungs, and chest area for 

medical diagnosis and treatment purposes [69]. This imaging techniques uses small amount of 

ionising radiation to produce these images [70]. In small dosages, this radiation is considered to 

be non-lethal, and is thus not likely to cause any serious health complications for the patient 

[71].   

A CXR image is typically undertaken in a special room purposefully equipped with a portable X-

ray camera supported by a metallic frame. Prior to proceeding with the examination, the patient 

will be asked by the technician to remain in front of X-ray film so when the radiation beam 

passes through the body, it can be captured and recorded [71], as shown in Figure 6.    

 

 

 

 

 

 

 

 

 

 

 

 

If the patient does not remain still during this procedure, the film will appear to be blurry and 

the resulting CXR will not be sufficient for the radiologists to correctly report on the patient's 

condition [70].   

A CXR is a 2D image where body parts in the chest area appear in different colours, depending 

on the intensity of the radiation passing through them [69]. For instance, more radiation will 

pass through soft body tissue compared to dense structures such as bones. Thus, the X-ray will 

show the dense structures as a bright white colour, soft tissues as a grey colour and any air 

inside the lungs as a dark colour [72].  After the X-ray examination is completed, the patient may 
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go home, and the X-ray image would be sent to a radiologist so a technical analysis report would 

be prepared for the patient’s general practician [72].     

CXR imaging has several advantages when compared to other medical imaging techniques. The 

use of X-ray imaging is prevalent inside emergency rooms as it is significantly faster and more 

convenient to use [69]. More medical centres and clinics intend to equip their place with X-ray 

machines as it is considered to be a cost-effective machine for medical diagnosis [69].   

For patients with COVID-19 symptoms, their CXR images can show signs of abnormalities with 

the prominent ones being the presence of Ground Glass Opacity (GGO) in the lower region of the 

lungs called, “Lower Lobes” [73] and consolidation of the lungs [74].    

GGO refers to the grey area that can be present on CXR images and in the case of lung organs, it 

can be described as a sign of an unusual condition for the lungs since healthy lungs should 

appear as a black colour on the CXR images [75]. GGO can be caused due to many reasons that 

can compromise the normal function of the lungs [75]. One of the main causes of GGO is due to 

an increased density in the lungs which can be a result of fluid build-up, inflammation or tissue 

damage in the lung region.   

However, the scale of the size of GGO depends on various important factors such as the severity 

of disease and at what period the image is taken [20], [76]. In the case of a common COVID-19 

disease, GGO may start to develop from the first few days when the symptoms are shown and 

reaches the peak level from day 5 to day 10 since the first symptoms [73], [76]. In the case of a 

severe COVID-19 patient, GGO would compromise the whole lobe and lungs in general.  

As discussed, one of the other common features in the CXR images of patients with COVID-19, is 

the consolidation of the lungs. On a CXR, this can be seen as a white area with similar features to 

GGO. However, in this case, the blood vessels are concealed in the X-ray image [73].   

A2 Machine Learning Techniques 

ML is a field of computer and data science which uses advanced algorithms and a large dataset, 

to develop and train a model, so that a machine can learn, think and understand like a human 

without the need of any pre-programming [77].   

ML runs in different arrangements called supervised, unsupervised, semi-supervised and 

reinforcement learning. For this project, the focus is placed on supervised ML methods, where 

the ML model is trained on a dataset and learns the patterns associated with the data [78]. To 

achieve this, the dataset should be separated into two sets: training set (labelled) and testing set 

(unlabelled). From the training set, the model would be able to learn the pattern present in the 

data [78].  The model can then be evaluated using the testing dataset to measure the model's 

effectiveness in learning and classifying images [79]. Several evaluation metrics, such as 

precision, recall, accuracy and F1-score, can be used to measure the model’s performance [80].  

In this project, emphasis is placed on deep learning image classification techniques, such as 

CNNs.  CNN is a unique technique where convolutional layers are used to classify data such as 

image portrays, as seen in Figure 7. The first convolutional layer is responsible for extracting the 

high-level features associated with the images, such as major shape structures. A pooling layer is 

then used to further reduce the size of the image [81]. The purpose of this reduction in size is to 

reduce computation power to process the data. These two layers together subsequently make up 

a single layer of a CNN.  There can typically be multiple copies of this single layer in the case 

where image data has significantly more complex patterns. However, as more layers are added, 

there is an increased demand on the computational power required to process the image [82]. 
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Figure 7 Diagram depicting the layers of a CNN model 

 

The learning process for a CNN model starts with a convolutional layer that can be described as 

the main feature of the CNN modelling technique. This simply runs a linear operation of 

multiplication using the input function (𝐼) and a set of weight function called kernel or filter (𝑓) 

to produce a function map or feature map 𝐹(𝑡) from the operation [22] [83].  

𝐹(𝑡) = (𝐼 ∗ 𝑓)(𝑡) 

Given the input value is one dimensional, and 𝑡 only takes inputs that are integers, the following 

equation can be constructed [22]:  

𝐹(𝑡) = ∑ I(𝑎). 𝑓(𝑡 − 𝑎)

𝑎

 

If the given input value is two-dimensional, the variables would be 𝐼(𝑚, 𝑛) and 𝑓(𝑎, 𝑏) and the 

equation can be written as the following [22]:  

𝐹(𝑡) = ∑ ∑ I(𝑎, 𝑏). 𝑓(𝑚 − 𝑎, 𝑛 − 𝑏)

𝑏𝑎

 

 

This equation can be re-expressed by switching the filter using the commutative law [22]:  

 

𝐹(𝑡) = ∑ ∑ I(𝑚 − 𝑎, 𝑛 − 𝑏). 𝑓(𝑎, 𝑏)

𝑏𝑎

 

 

However, in neural networks, the cross-correlation function is applied instead, which has the 

same form as the convolution equation above but without flipping the filter variable [22].  

 

𝐹(𝑡) = ∑ ∑ I(𝑚 + 𝑎, 𝑛 + 𝑏). 𝑓(𝑎, 𝑏)

𝑏𝑎
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Once the feature map is produced, each feature is passed through the next layer called ReLU 

which is defined as an activation function. This function aims to convert the negative input 

values to zero so that the training of the ML model on the input data can be more efficient and 

faster [22], [83].   

The final layer in this technique is called max pooling, whose function is to extract the maximum 

pixel value or element in the feature map input from the previous layer [84]. Once the learning 

process is finished, classification of the input data is initiated by having a connected layer which 

takes the flattened output from the max-pooling layer to calculate the probability values for 

classification purposes [22], [82].   

The classification stage also consists of an activation function called softmax. This function is 

typically used for classification problems that deal with multiple classes (i.e., 2 or more classes). 

This function takes the input from the output of the previous layer to perform the final 

probability calculation [22], [82]. The equation for this function can be expressed as [85]:  

Softmax Function (Zi) =  
e (Zi)

∑ e (Zj)j
 

 

In this equation, Z represents the neuron values from the output of the previous layer which 

passes through an exponential function and is normalised by dividing it by the sum of the 

neuron values (Z).  
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Figure 8 Example of a confusion matrix 

Appendix B: Evaluation Metrics 

Accuracy can be defined as the number of correct predictions over the total number of 

predictions. The accuracy score can be defined using the following expression: 

Accuracy =
TP + TN

TP + TN + FP + FN
 

Where TP is the true positives, TN is the true negatives, FP is the false positives and FN is the false 

negatives.  The accuracy score should not be used alone to evaluate a model’s performance as it 

can produce misleading results on an imbalanced dataset. Therefore, it is important to consider 

other evaluation metrics.  

 

Recall is another evaluation metric that allows to measure the ML model’s ability to determine 

positive cases. Recall can be defined as the number of positive class predictions over the total 

number of positives. Recall be defined using the following expression: 

Recall =
TP

TP + FN
 

 

Precision is an evaluation metric that measures the number of true positives over the total 

number of positive predictions. Mathematically, it can be expressed using the definition below: 

  

Precision =
TP

TP + FP
 

 

An F1 score is an evaluation metric that considers both recall and precision. Therefore, F1 score 

can be defined to be the harmonic mean of recall and precision. It can be defined using the 

expression shown below, 

F1 score = 2 
Precision × Recall

Precision + Recall
 

 

A confusion matrix was used to visualise the performance of the ML model on a test dataset. Figure 

8 shows the format of a confusion matrix. For each class, a confusion matrix provides information 

about the True Positives, True Negatives, False Negatives and False Positives. Using the confusion 

matrix, the accuracy, recall, precision and F1-scores can be computed.  

 

 

 


