A MINIATURE UNDERWATER Drone

2023s1-EME.EE-DZA-UG-13492

Yang Lia1781379Mohamad Nazif Mohammad Sobria1834186Muhammad Alif Aiman Ahmad Fadzila1838701

Supervisor Professor Derek Abbott Co-Supervisor Professor Benjamin Cazzolato

Introduction

What is an underwater drone?

Capable of executing tasks in underwater environments Remotely controlled

Basic functions

Sensor integration Data processing Remote control Communication

Why we need them?

Safety risks associated with human diving

Traditional underwater exploration face numerous limitations:

High pressures Low temperatures High turbidity in deep-sea environments Safety risks associated with human diving

Project Aim

Develop a reliable, efficient prototype drone

Capabilities:

Dive to an assigned depth Observe with a camera Transmit data

For further improvements and other projects

Physical Structures

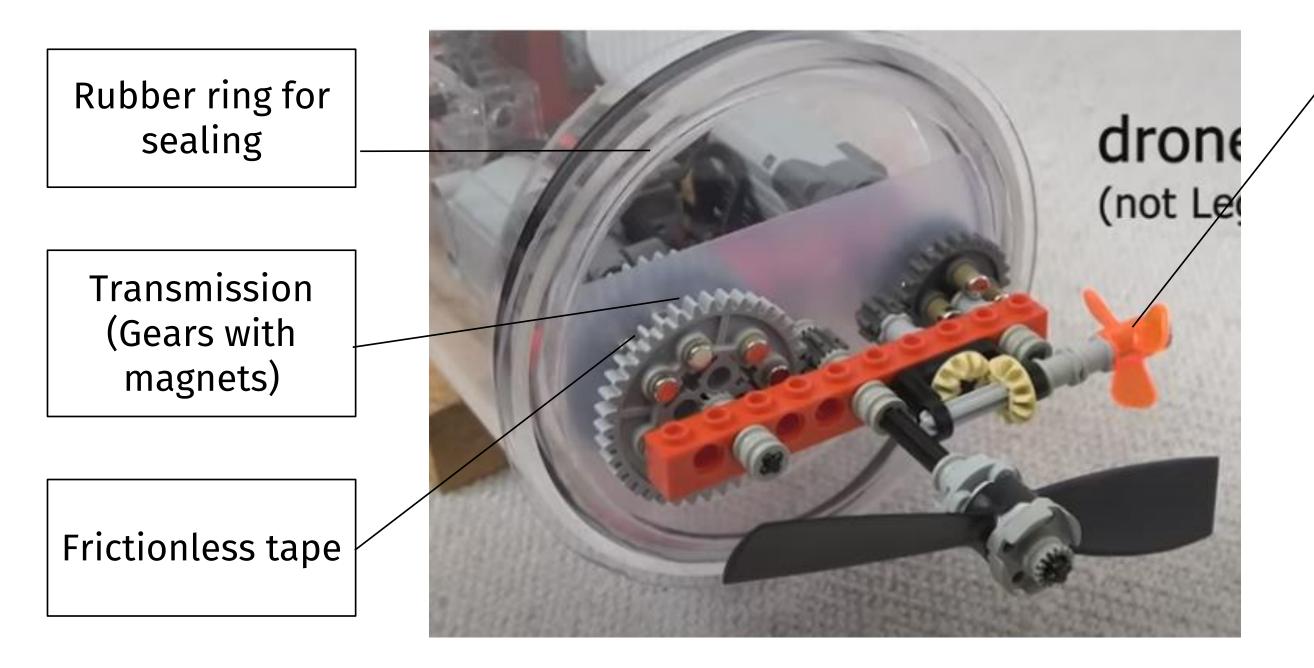


Figure 1 Backside concept idea from Lego-powered Submarine [1].

Propeller

Physical Structures

Transmission (From motor to syringe control)

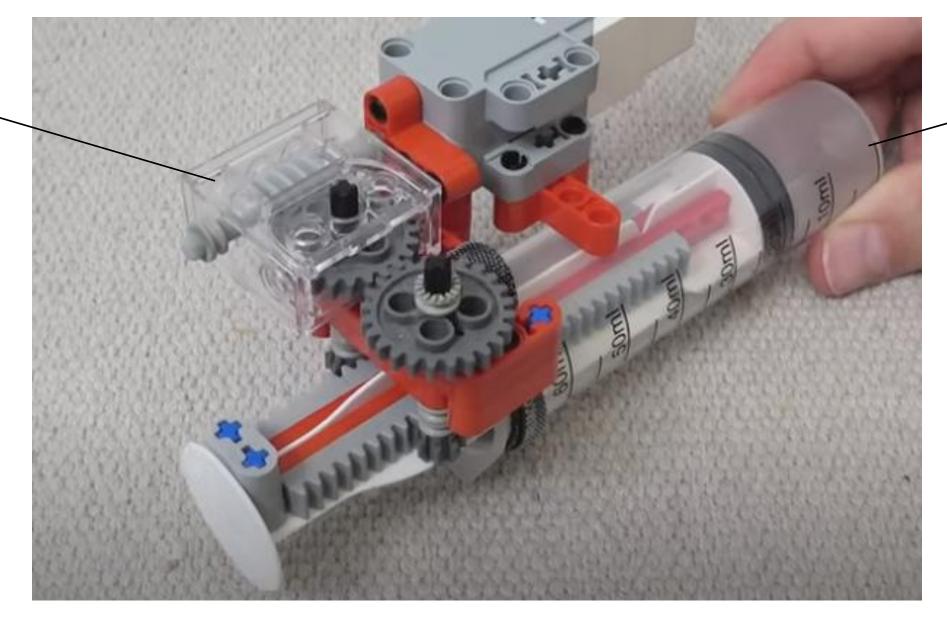


Figure 2 Top view concept idea from Lego-powered Submarine [1].

Diving control (Controlling by changing weight)

Physical Structures

Counterweight at the bottom of drone (Replaced with lead or iron bars)

Figure 3 Lead as counterweight [1].

Existing Project

- Inspired by the Lego-powered Submarine project from the Brick Experiment Channel on YouTube.
- Challenge of maintaining a constant depth for a remote-control submarine.
- Implemented PID control and utilized a pressure sensor with a Raspberry Pi as a microcontroller to measure depth.
- Difficulties in closing the end caps of the submarine, insufficient propeller strength, and the inability to maintain a straight path at peak speed.

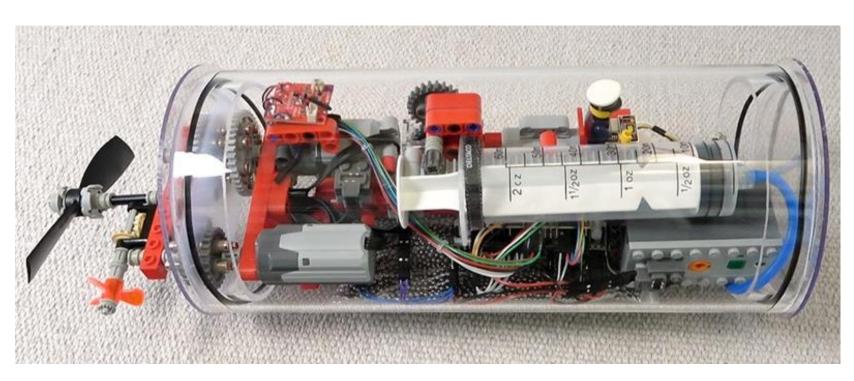


Figure 4 Lego-powered Submarine from Brick Experiment Channel [1].

Type of Communication Underwater

Technology	Pros	
	Proven technology.	Does not transit water
	Range: up to 20 km.	Poor in shallow water
	Energy efficiency.	Adversely affected by
Acoustic	Precision navigation.	unpredictable propaga
Acoustic	Low size and cost.	Limited bandwidth.
		Latency.
		Impact on marine life
		Detectable.
	Ultra-high bandwidth: Gbps.	Susceptible to turbidit
Erec Space	Low cost.	Marine fouling on len
Free Space Optical		Needs tight alignment
oputui		Very short range.
		Difficulty transiting w
	Transits water/air boundary.	Susceptible to electron
	Transits water/seabed boundary.	Limited range through
	Signal passes through ice.	
	Unaffected by water depth.	
	Unaffected by turbidity/bubbles.	
Electromagnetic	Non-line-of-sight performance.	
Radio Frequency	Immune to acoustic noise.	
	Immune to marine fouling.	
	Up to 100 Mbps data rates.	
	Frequency agile capability.	
	Unaffected by multi-path.	
	No known effects on marine animals.	

Table 1 Comparison of three type communication underwater [2].

Cons

er/air.

er.

by water aeration, ambient noise and gation.

te.

lity & particles. ens faces.

nt.

water/air.

comagnetic interferences. gh water.

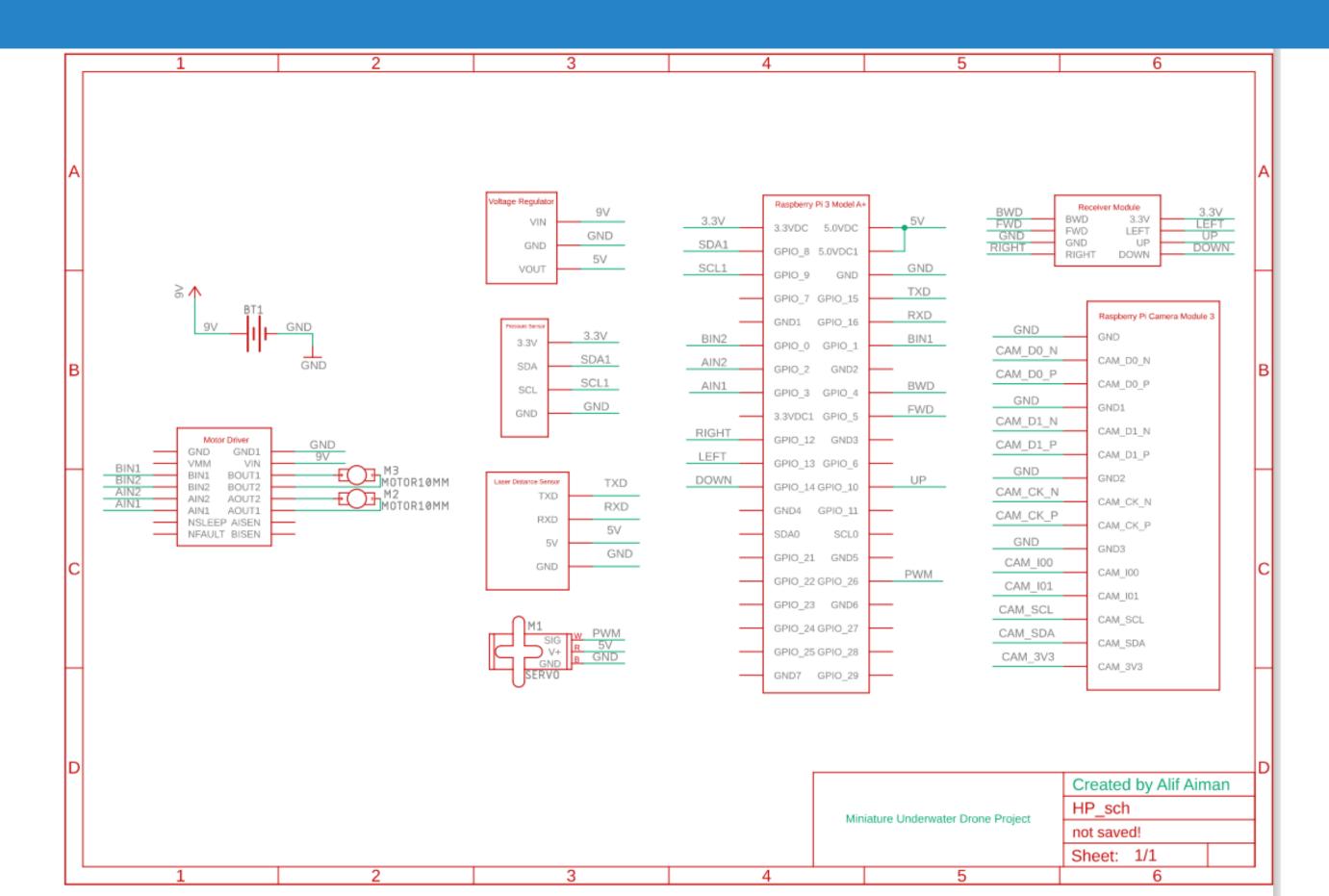
Factors Affecting RF **Communication Underwater**

Environmental factors

5

Water depth and pressure

/_


Attenuation Loss Underwater

$$lpha = 0.11 rac{f^2}{1+f^2} + 44 rac{f^2}{4100+f^2} + 2.75 imes 10^{-4} f^2 + 0.003$$

Figure 5 Thorp's equation [3].

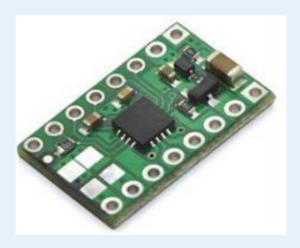
Project Schematic

Items and component used

No.	Name	Description
1.	Single-board computer	Raspberry Pi 3 Model A+
2.	Pressure Sensor	Honeywell Piezoresistive Pressure Sensor

Figure

No.	Name	Description
3.	Laser Distance Sensor	TF Mini LiDAR (ToF)
4.	Li-Po Battery	2200mAh 7.4v 2S 30C Soft Case LiPo Battery
5.	Servo Motor	Metal Geared 15Kg Standard Servo



No.	Name	Description
6.	DC motor	RS PRO Geared, 24.6 W, 3 to 7.2 V dc, 107.3 gcm, 22356 rpm, 2.3mm Shaft Diameter
7.	Motor Driver	DRV8833 Dual Motor Driver Carrier (1.2A and low voltage)
8.	Mini Camera	Raspberry Pi Camera Module 3

No.	Name	Description
9.	Voltage Regulator	Pololu 5V Step- Up/Step-Down Voltage Regulator S7V8F5
10.	Receiver module	27 MHz controller dissembled from a toy submarine

Figure

References

- Available: https://brickexperimentchannel.wordpress.com/2022/06/25/rc-submarine-4-0-background-1-10/.
- Spain, Santander, Spain, 2011, pp. 1-8. doi: 10.1109/Oceans-Spain.2011.6003580.
- Electronics, Intelligent Control and 10.1109/ICPEICES.2016.7853300.

1. BrickExperimentChannel et al., "RC submarine 4.0 – background (1/10)," Brick Experiment Channel, Jun. 25, 2022. [Online].

2. A. Palmeiro, M. Martín, I. Crowther, and M. Rhodes, "Underwater radio frequency communications," OCEANS 2011 IEEE -

3. Y. Kularia, S. Kohli, and P. P. Bhattacharya, "Analyzing propagation delay, transmission loss and signal to noise ratio in acoustic channel for Underwater Wireless Sensor Networks," 2016 IEEE 1st International Conference on Power Energy Systems (ICPEICES), Delhi, India, 2016, pp. 1-5, doi: