Clifford's geometric algebra

A unifying mathematical formalism for science

by: Dr. James Chappell

". . . it is a good thing to have two ways of looking at a subject, and to admit that there are two ways of looking at it."

What is geometric algebra?

- An elegant mathematical framework for expressing geometrical ideas and doing computations.
- used in physics, engineering and in computer vision applications.

Its main advantages are:

- geometrical ideas can be expressed compactly without having to consider coordinates and bases.
- Correctly expresses the properties of physical space
- Can be extended effortlessly to spaces of arbitrary dimensions.
- Unifies complex numbers, quaternions, vectors,Pauli spinors....
- Resolves distinction between true and axial vectors.

Pioneers of geometric algebra

Hamilton

Quaternions i, j, k

Grassman

Wedge product
Geometric product Unifies dot and cross product
$a b=a . b+i a \times b$

Defining vectors (Cartesian coordinates)

 Descartes 1637Define three orthogonal axes e_{1}, e_{2}, e_{3}
Produce a vector $v=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$

Rival coordinate systems
 3D

Axes non-commutative

Clifford's description of space

- Adopt e_{1}, e_{2}, e_{3} with $e_{1}{ }^{2}=e_{2}{ }^{2}=e_{3}{ }^{2}=1$ where e_{1}, e_{2}, e_{3} are viewed as simply algebraic symbols rather than unit vectors.
Each element anti-commutes, that is
$e_{1} e_{2}=-e_{2} e_{1}, e_{2} e_{3}=-e_{3} e_{2}$, etc
- Define trivector $e_{1} e_{2} e_{3}$

e_{3} †Clifford 3D Geometric Algebra

Timeline

 20001878 Geometric algebra-Clifford 1843 Quaternions-Hamilton
1799 Complex numbers, Argand diagram 1637 Cartesian coordinates-Descarte 1545 negative numbers established, number line

1170-1250 debts seen as negative numbers-Pisa 800 zero used in India
-ve numbers used in India and China 300BC, Euclid-"Father of Geometry" d 475BC, Pythagoras
d 547BC, Thales-"the first true mathematician"

Cliffords geometric algebra

Clifford's mathematical system incorporating 3D Cartesian coordinates, and the properties of complex numbers and quaternions into a single framework "should have gone on to dominate mathematical physics....", but....
-Clifford died young, at the age of just 33
-Vector calculus was heavily promoted
by Gibbs and rapidly became popular, eclipsing
Clifford's work, which in comparison appeared strange with its non-commuting variables and bilinear transformations for rotations.

$e_{3} \dagger$ Geometric Algebra-Dual representation

$$
\begin{aligned}
e_{2} e_{3}=i e_{1}, \quad e_{3} e_{1}=i e_{2}, & e_{1} e_{2}=i e_{3} \\
& i=e_{1} e_{2} e_{3}
\end{aligned}
$$

Multiply two vectors (expand the brackets)

Distribution of multiplication over addition)

$u v$

$$
\begin{aligned}
& =\left(e_{1} u_{1}+e_{2} u_{2}+e_{3} u_{3}\right)\left(e_{1} v_{1}+e_{2} v_{2}+e_{3} v_{3}\right) \\
& =u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}+\left(u_{2} v_{3}-v_{2} u_{3}\right) e_{2} e_{3}+\left(u_{1} v_{3}-v_{1} u_{3}\right) e_{1} e_{3}+\left(u_{1} v_{2}-v_{1} u_{2}\right) e_{1} e_{2} \\
& =u_{i} v_{i}+i\left[\left(u_{2} v_{3}-v_{2} u_{3}\right) e_{1}+\left(u_{1} v_{3}-v_{1} u_{3}\right) e_{2}+\left(u_{1} v_{2}-v_{1} u_{2}\right) e_{3}\right] \\
& =u \cdot v+i u \times v
\end{aligned}
$$

$$
u^{2}=u \cdot u=u_{1}^{2}+u_{2}^{2} \quad \text { a scalar. }
$$

$$
i=e_{1} e_{2} e_{3}
$$

Therefore the inverse vector is: $u^{-1}=u / u^{2}$
a vector with the same direction and inverse length.

The conventional dot product works for any number of dimensions and provides the metric, however the cross product is only applicable in 3D, and is an axial vector, whereas the wedge product is valid in any number of dimensions.

Areas and volumes

All dimensions in metres

1. Calculate the enclosed area between the vectors v_{1} and v_{2}.
$v_{1}=7 e_{1}+4 e_{2}$ and $v_{2}=4 e_{1}+9 e_{2}$

$$
\text { Ans: } A=\left\langle v_{1} v_{2}\right\rangle_{2} m^{2}
$$

2. Calculate the enclosed volume between the vectors $\mathrm{v}_{1}, \mathrm{v}_{2}$ and v_{3}.
$\mathrm{v}_{1}=7 \mathrm{e}_{1}+\mathrm{e}_{2}+4 \mathrm{e}_{3}, \mathrm{v}_{2}=2 \mathrm{e}_{1}+7 \mathrm{e}_{2}+5 \mathrm{e}_{3} \mathrm{v}_{3}=\mathrm{e}_{1}+3 \mathrm{e}_{2}+6 \mathrm{e}_{3}$

$$
\text { Ans: } V=\left\langle v_{1} v_{2} v_{3}\right\rangle_{3} m^{3}
$$

Reflection of rays

So what does $j=\sqrt{-1}$ mean?

"The true metaphysics of the square root of -1 is elusive." Gauss 1825

Imaginary numbers first appeared as the roots to quadratic equations.
For example: $\quad x^{2}+1=0 \longrightarrow x= \pm \sqrt{-1}$
We find that an oriented unit area described by a bivector squares to $-1 \ldots$?
That is, in the $e_{1} e_{2}$ plane: $\hat{A}^{2}=\left(e_{1} e_{2}\right)^{2}=e_{1} e_{2} e_{1} e_{2}=-1$

Hence the simplest geometric meaning to i is a unit area...

Eg, solve: $x^{2}-4 x+5=0$

What is a number?

"A number is used to represent something."

Dr Alexander

- Real numbers(eg temperature)
- Complex numbers(waves), e.g. 5+3j

Directed number(Vectors), e.g. $2 e_{1}+3 e_{2}$

- Quaternions $3+2 i+3 j-4 k$
- Is there a general type of number that can encompass all these types of numbers?

Multivector numbers $\left(\Re \oplus \Re^{3} \oplus \Lambda^{2} \Re^{3} \oplus \Lambda^{3} \Re^{3}\right)$
$\bigwedge \Re^{3}$ is the exterior algebra of $\Re^{3} \quad C l_{3,0}(\Re)$

$$
\begin{aligned}
M & =a+v_{1} e_{1}+v_{2} e_{2}+v_{3} e_{3}+w_{1} e_{2} e_{3}+w_{2} e_{3} e_{1}+w_{3} e_{1} e_{2}+b e_{1} e_{2} e_{3} \\
& =a+\underline{v}+i \underline{w}+i b
\end{aligned}
$$

$$
z=a+i b
$$

$$
\underline{v}=v_{1} e_{1}+v_{2} e_{2}+v_{3} e_{3}
$$

$$
B=i \underline{w}=i\left(w_{1} e_{1}+w_{2} e_{2}+w_{3} e_{3}\right)
$$

$$
H=a+i \underline{w}
$$

$$
F=\underline{E}+i \underline{B}
$$

$$
\psi=a+\underline{E}+i \underline{B}+i b
$$

vectors (directed numbers)
pseudovector, axial vector
quaternions, Pauli spinors

EM field, F^{2}
???

The Maths family

"The real numbers are the dependable breadwinner of the family, the complete ordered field we all rely on. The complex numbers are a slightly flashier but still respectable younger brother: not ordered, but algebraically complete. The quaternions, being noncommutative, are the eccentric cousin who is shunned at important family gatherings. But the octonions are the crazy old uncle nobody lets out of the attic: they are nonassociative."-John Baez

The multivector now puts the reals, complex numbers and quaternions all on an equal footing.

$$
\mathrm{M}=a+\underline{v}+i \underline{w}+i b
$$

The leaning tower Of Pisa, Italy

u.v $\$ \mathrm{u} \times \mathrm{v}$ \& Matrices as basis vectors

"I skimped a bit on the foundations, but no one is ever going to notice."

Maxwell's equations

$$
\begin{array}{rlrl}
\vec{\nabla} \cdot \vec{E} & =\frac{\rho}{\epsilon}, & \text { (Gauss' law) } \\
\vec{\nabla} \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E} & =\mu_{0} \vec{J}, & \text { (Ampère's law) } \\
\vec{\nabla} \times \vec{E}+\partial_{t} \vec{B} & =0, \quad \text { (Faraday's law); } \\
\vec{\nabla} \cdot \vec{B} & =0, \quad \text { (Gauss' law of magnetism) }
\end{array}
$$

using the vector gradient:

$$
\nabla=e_{1} \partial_{x}+e_{2} \partial_{y}+e_{3} \partial_{z}
$$

Maxwell in GA
 $u v=u \cdot v+i u \times v$

$\nabla \cdot E=\rho / \varepsilon$
$\nabla \cdot E=\rho / \varepsilon$
$\nabla \times E+\partial_{t} B=0$
$i \nabla \times E+\partial_{t} i B=0$
$\nabla \times B-\partial_{t} E=\mu_{0} J \quad \longrightarrow \quad i \nabla \times i B+\partial_{t} E=-\mu_{0} J$
$\nabla \cdot B=0$
$\nabla \cdot i B=0$
$\nabla E+\partial_{t} i B=\frac{\rho}{\varepsilon}$
$\longrightarrow\left(\partial_{t}+\nabla\right)(E+i B)=\frac{\rho}{\varepsilon}-\mu_{0} J$
$\nabla i B+\partial_{t} E=-\mu_{0} J$

Maxwell's equation

$$
\begin{array}{cl}
\partial F=J & \\
\partial=\partial_{t}+\nabla & \text { Four-gradient } \\
F=E+i B & \text { Field variable } \\
J=\mu_{0}(c \rho-J) & \text { Four-current }
\end{array}
$$

Two types of vectors....

Notationally E and B not distinguished...?

POLAR (vectors)	AXIAL (bivectors)
\boldsymbol{E}	\boldsymbol{B}
\boldsymbol{v}	$\boldsymbol{w}=\boldsymbol{r} \times \boldsymbol{v}$
$\boldsymbol{p}=q d \boldsymbol{r}$ (electric dipole)	$\boldsymbol{m}=/ d \boldsymbol{A}$ (mag. dipole)
$\boldsymbol{f} \quad$ (force)	$\boldsymbol{T}=\boldsymbol{r} \times \boldsymbol{F}$ (torque)

$$
(\boldsymbol{p}+i \boldsymbol{m}) F=(\boldsymbol{p}+i \boldsymbol{m})(\boldsymbol{E}+i \boldsymbol{B})=-U+i \boldsymbol{T}
$$

Electromagnetic waves

We can define a plane wave

$$
\begin{aligned}
& F=F_{0} \mathrm{e}^{ \pm i(\mathbf{k} \cdot \mathbf{r}-w t)} \\
& \left(\partial_{t}+\nabla\right) F= \pm i(w-\mathbf{k}) F=0 \\
\Rightarrow & \nabla \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}}=-i \mathbf{k} \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} \\
& (w-\mathbf{k})\left(\mathbf{E}_{0}+i \mathbf{B}_{0}\right)=0 \\
\Rightarrow & \underbrace{-\mathbf{k} \cdot \mathbf{E}_{0}}_{\text {scalar }}+\underbrace{w \mathbf{E}_{0}-i \mathbf{k} \wedge \mathbf{B}_{0}}_{\text {vector }}-\underbrace{\mathbf{k} \wedge \mathbf{E}_{0}-w i \mathbf{B}_{0}}_{\text {bivector }}-\underbrace{i \mathbf{k} \cdot \mathbf{B}_{0}}_{\text {trivector }}=0
\end{aligned}
$$

Circular polarization by default

$$
F=F_{0} \mathrm{e}^{ \pm i(\mathbf{k} \cdot \mathbf{r}-w t)}
$$

Potential formulation

Assuming: $\quad F=\left(\partial_{t}-\nabla\right) A$

$$
\begin{aligned}
& \left(\partial_{t}+\nabla\right) F=\left(\partial_{t}+\nabla\right)\left(\partial_{t}-\nabla\right) A \\
\Rightarrow & \left(\partial_{t}^{2}-\nabla^{2}\right) A=J
\end{aligned}
$$

So we require a multivector potential

$$
\begin{aligned}
& A=V-\mathbf{A} \quad \text { to correspond to a source } \\
& J=\rho-\mathbf{J}
\end{aligned}
$$

Special relativity

Its easiest to begin in 2D, which is sufficient to describe most phenomena. We define a 2D spacetime event as $\boldsymbol{x}=x_{1} e_{1}+x_{2} e_{2} \quad i=e_{1} e_{2}$

$$
X=x+i t
$$

So that time is represented as the bivector of the plane and so an extra Euclidean-type dimension is not required.

We find: $\quad X^{2}=x^{2}-t^{2} \quad$ the correct spacetime distance.
We have the general Lorentz transformation given by:
Consisting of a rotation and a boost,

$$
X^{\prime}=e^{-\phi \hat{v} / 2} e^{-i \theta / 2} X e^{i \theta / 2} e^{\phi \hat{v} / 2}
$$ which applies uniformly to both coordinate and field multivectors.

$P^{\prime}=-\hat{\mathbf{v}} \mathrm{e}^{-\phi \hat{\mathbf{v}} / 2} P \mathrm{e}^{\phi \hat{\mathbf{v}} / 2} \hat{\mathbf{v}} \quad$ Compton scattering formula

A few negatives

$$
e^{i \pi}=-1
$$

"...it is absolutely paradoxical; we cannot understand it, and we don't know what it means."

Benjamin Peirce

Setting $i=e_{1} e_{2} \quad$ we have in 2D $\quad e^{i \pi / 2} \vec{v} e^{-i \pi / 2}=-\vec{v}$
We can view the formula above as describing a rotation that flips a vector in sign, but

$$
\begin{aligned}
& e^{i \pi / 2} \vec{v} e^{-i \pi / 2}=-\vec{v} \\
& \Rightarrow e^{i \pi} \vec{v}=-\vec{v}
\end{aligned}
$$

i anti-commutes in 2D

$$
\Rightarrow e^{i \pi}=-1
$$

i.e. rotating a vector by π flips the sign

Foundational errors in mathematical physics

By not recognizing that the vector dot and cross products are two halves of a single combined geometric product.
Circa 1910.
2. That the non-commuting properties of matrices are a clumsy substitute for Clifford's noncommuting orthonormal axes of three-space. Circa 1930.

Research areas in GA

- black holes and cosmology
- quantum tunneling and quantum field theory
- beam dynamics and buckling
- computer vision, computer games
- quantum mechanics-EPR
- quantum game theory
- signal processing-rotations in N dimensions, wedge product also generalizes to N dimensions

$$
u v=u \cdot v+i u \times v
$$

Conclusion

- Geometric algebra unifies complex numbers, quaternions, vectors, axial vectors into a single multivector
- Useful in describing Maxwells equations, RLC circuits, EM waves, anisotropic media including metamaterials and general relativity.

Algebraic description of space

Use of quaternions

Used in airplane guidance systems to avoid Gimbal lock

Quotes

"The reasonable man adapts himself to the world around him. The unreasonable man persists in his attempts to adapt the world to himself. Therefore, all progress depends on the unreasonable man." George Bernard Shaw,

- Murphy's two laws of discovery:
"All great discoveries are made by mistake."
"If you don't understand it, it's intuitively obvious."
" "tt's easy to have a complicated idea. It's very hard to have a simple idea." Carver Mead.

Greek concept of the product Euclid Book VII(B.C. 325-265)

"1. A unit is that by virtue of which each of the things that exist is called one."
" 2 . A number is a multitude composed of units."
"16. When two numbers having multiplied one another make some number, the number so produced is called plane, and its sides are the numbers which have multiplied one another."

How many space dimensions do we have?

The existence of five regular solids implies three dimensional space(6 in 4D, $3>4 D$) Gravity and EM follow inverse square laws to very high precision. Orbits(Gravity and Atomic) not stable with more than 3 D.

- Tests for extra dimensions failed, must be sub-millimetre

What is time?

- "Of all obstacles to a thoroughly penetrating account of existence, none looms up more dismayingly than time." Wheeler 1986
- In GA time is a bivector, ie rotation.
- Clock time(EM), Dynamical time(Gravity) and Entropy arrow of time
- Space=3 translational freedoms,

Time $=3$ rotational freedoms of physical space.

Greek concept of the product Euclid Book VII(B.C. 325-265)

"1. A unit is that by virtue of which each of the things that exist is called one."
" 2 . A number is a multitude composed of units."
"16. When two numbers having multiplied one another make some number, the number so produced is called plane, and its sides are the numbers which have multiplied one another."

References

Geometric algebra: A powerful tool for representing power under nonsinusoidal conditions, Menti, A., T. Zacharias, and J. Milias-Argitis, IEEE Trans. on Circuits and Systems I / Regular Papers, Vol. 54, No. 3, Mar. 2007.

- Anisotropy done right: a geometric algebra approach, S.A. Matos, C.R. Paiva, and A.M. Barbosa, The European Physical Journal Applied Physics, 2011
- A New Framework Based on Geometric Algebra for the Analysis of Materials and Metamaterials with Electric and Magnetic Anisotropy, S.A. Matos, C.R. Paiva, and A.M. Barbosa, Antennas and Propagation society international Symposium 2008. AP-S 2008 IEEE.

Reminders on the Board

$j=\sqrt{-1}$
$\vec{v}=v_{1} e_{1}+v_{2} e_{2}+v_{3} e_{3}$
$i=e_{1} e_{2} e_{3}$
$M=a+\vec{v}+i \vec{w}+i b$
$i e_{1}=e_{2} e_{3}, i e_{2}=e_{3} e_{1}, i e_{3}=e_{1} e_{2}$
$i \vec{w}=i\left(w_{1} e_{1}+w_{2} e_{2}+w_{3} e_{3}\right)=w_{1} e_{2} e_{3}+w_{2} e_{3} e_{1}+w_{3} e_{1} e_{2}$
Substitutions:
$B \rightarrow c B, A \rightarrow c A, J \rightarrow c \mu J, \rho \rightarrow \rho / \varepsilon_{0}, \partial_{t} \rightarrow \partial_{c t}, k \rightarrow c k$

General solution to Maxwell in potential form

$$
\begin{array}{r}
V(\mathbf{r}, t)=\frac{1}{4 \pi} \int \frac{\rho\left(\mathbf{r}^{\prime}, t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \tau^{\prime}, A(\mathbf{r}, t)=\frac{1}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \tau^{\prime} \\
\text { using retarded times. }
\end{array}
$$

These can be combined in geometric algebra:

$$
A=V-\mathbf{A}=\frac{1}{4 \pi} \int \frac{J\left(\mathbf{r}^{\prime}, t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \tau^{\prime} \quad J=\rho-\mathbf{J}
$$

The field is then calculated from

$$
F=\left(\partial_{t}-\nabla\right) A \quad F=E+\imath B
$$

Gauge freedom(optional)

Enforcing the Lorenz gauge

$$
\partial_{t} V+\nabla \cdot \mathbf{A}=0
$$

Without affecting \mathbf{E} and \mathbf{B}, or the Lorenz gauge we can make the substitution:

$$
V^{\prime}=V-\partial_{t} \lambda, A^{\prime}=A+\nabla \lambda
$$

provided

$$
\nabla^{2} \lambda-\partial_{t}^{2} \lambda=0
$$

Field properties

Multiplying from the right with the four gradient

$$
\begin{aligned}
& \left(\partial_{t}-\nabla\right)\left(\partial_{t}+\nabla\right) F=0 \\
\Rightarrow & \left(\partial_{t}^{2}-\nabla^{2}\right) F=0 \\
\Rightarrow & \left(\partial_{t}^{2}-\nabla^{2}\right)\left(\mathbf{E}_{0}+i \mathbf{B}_{0}\right)=0
\end{aligned}
$$

Therefore \mathbf{E}_{0} and \mathbf{B}_{0} separately satisfy the 3D wave equation.

Other references

- Emanuel, A. E., Poynting vector and the physical meaning of nonactive powers," IEEE Trans. on Instrument. and Meas., Vol. 54, No. 4, Aug. 2005.
- Emanuel, A. E., About the rejection of poynting vector in power systems analysis," Electrical Power Quality and Utilization,Vol. 13, No. 1, 43\{49, 2007.
- Agunov, M. V. and A. V. Agunov, On the power relationships in electrical circuits operating under nonsinusoidal conditions," Elektricesvo, No. 4, 53\{56, 2005.
- Sutherland, P. E., On the definition of power in an electrical circuit," IEEE Trans. on Power Delivery, Vol. 22, No. 2,Apr. 2007.

A simply Ball model for kids

Simplify

$$
\left(2 e_{1}\right)\left(3 e_{3}\right) 2 e_{1}=12 e_{1} e_{3} e_{1}=-12 e_{3}
$$

Simplify

$$
\left(3 e_{3} e_{1}+2 e_{1}\right) 2 e_{2}=6 e_{1} e_{2} e_{3}+4 e_{1} e_{2}
$$

Enclosed area of polygons

All dimensions in metres
$A=1 / 2\langle a b+b c+c d+d a\rangle_{2} m^{2}$

Talks

- Why study it? What problems like to solve?
- Each slide one idea

Take home msg

RLC circuit analysis

An applied voltage: $V=V_{m} e_{1} \mathrm{e}^{\iota(w t+\theta)}$

$$
\iota=e_{1} e_{2}
$$

$I=I_{m} e_{1} \mathrm{e}^{\iota(w t+\theta)}=I_{m} e_{1} \mathrm{e}^{\iota \theta} \mathrm{e}^{\iota w t}=I_{m}\left(\cos \theta e_{1}+\sin \theta e_{2}\right) \mathrm{e}^{\iota w t}$
The potential across an inductor: $\quad V_{L}=L \frac{d I}{d t}=L I \iota w$
For a RL series circuit we have

$$
\begin{aligned}
V & =V_{R}+V_{L} \\
& =(R-\iota w L) I
\end{aligned}
$$

Lorenz gauge

Using $\quad F=\left(\partial_{t}-\nabla\right) A$
we find:

$$
\begin{aligned}
F & =\left(\partial_{t}-\nabla\right)(V-\mathbf{A}) \\
\mathbf{E}+i \mathbf{B} & =\underbrace{\partial_{t} V+\nabla \cdot \mathbf{A}}_{\text {scalar }}+\underbrace{-\nabla V-\partial_{t} \mathbf{A}}_{\text {vector }}+\underbrace{\nabla \wedge \mathbf{A}}_{\text {bivector }}
\end{aligned}
$$

We require

$$
\partial_{t} V+\nabla \cdot \mathbf{A}=0
$$

which is the Lorenz gauge.
This gauge uniquely places V and A on equal footing.

